Advertisement

Regulation of the Mouse and Human Melanocortin-1 Receptor

  • Zalfa Abdel-Malek
Chapter
Part of the The Receptors book series (REC)

Abstract

Decades before the molecular cloning of the melanocortin 1 receptor (MC1-R) gene, genetic studies on the coat color of mice concluded that the extension (e) locus codes for a receptor for melanocyte stimulating hormone (MSH) (1,2). Activation of this receptor is known to regulate the switch from pheomelanin to eumelanin synthesis in mouse follicular melanocytes (1–4). In addition, mutations at the e locus were found to be associated with either a reduction or an increase in eumelanin formation (1,5,6). Since the 1970s numerous studies have focused on elucidating the mechanism of action of α-or β-MSH on the vertebrate pigmentary systems. In most cases, these studies relied on bioassays of lizard or frog skins, or utilized established mouse melanoma cell lines as an in vitro model to explore the role of MSH in mammalian pigmentation (7–12). Comparative analysis of the MSH receptors expressed on pigment cells of different vertebrate species was based primarily on structure—function studies. In these, the relative potencies of physiologic melanotropic hormones or synthetic analogs of α-MSH were compared (9,13–17). Most of what we currently know about the signaling pathway of α-MSH came from studies on the pigmentary effects of α-or β-MSH, particularly on mouse normal melanocytes or melanoma cell lines (2,12,18–21).

Keywords

Melanoma Cell Cholera Toxin Pigment Cell Tyrosinase Activity Frog Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tamate, H. B. and Takeuchi, T. (1984) Action of the e locus of mice in the response of phaeomelanic hair follicles to a—melanocyte—stimulating hormone in vitro. Science 224, 1241–1242.PubMedCrossRefGoogle Scholar
  2. 2.
    Takeuchi, T., Kobunai, T., and Yamamoto, H. (1989) Genetic control of signal transduction in mouse melanocytes. J. Invest. Dermatol. 92, 239S - 242S.PubMedCrossRefGoogle Scholar
  3. 3.
    Geschwind, I. I., Huseby, R. A., and Nishioka, R. (1972) The effect of melanocytestimulating hormone on coat color in the mouse. Rec. Prog. Hormone Res. 28, 91–130.Google Scholar
  4. 4.
    Burchill, S. A., Thody, A. J., and Ito, S. (1986) Melanocyte-stimulating hormone, tyrosinase activity and the regulation of eumelanogenesis and pheomelanogenesis in hair follicular melanocytes of the mouse. J. Endocrinol. 109, 15–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Silvers, W. K. (1979) The Coat Colors of Mice. A Model for Mammalian Gene Action and Interaction. Springer—Verlag, New York.CrossRefGoogle Scholar
  6. 6.
    Robbins, L. S., Nadeau, J. H., Johnson, K. R., Kelly, M. A., Roselli-Rehfuss, L., Baack, E., Mountjoy, K. G., and Cone, R. D. (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827–834.Google Scholar
  7. 7.
    Sawyer, T. K., Yang, Y. C. S., Bregman, M. D., Hruby, V. J., Heward, C. B., Fuller, B. B., and Hadley, M. E. (1979) Structure—function studies of melanophore stimulating hormones (a—MSH and f3—MSH) and their analogs on melanoma plasma membrane adenylate cyclase: comparison with frog skin melanophores, in Peptides: Structure and Biological Function ( Gross, E. and Meienhofer, J., eds.), Pierce Chemical Company, Rockford. pp. 1017–1020.Google Scholar
  8. 8.
    Hadley, M. E., Heward, C. B., Hruby, V. J., Sawyer, T. K., and Yang, Y. C.—S. (1981) Hormone receptors of vertebrate pigment cells, in Pigment Cell 1981. Phenotypic Expression in Pigment Cells. Proc XIth International Pigment Cell Conference, Sendai, Japan,1980 ( Seiji, M., ed.), University of Tokyo Press, Tokyo, Japan, pp. 323–330.Google Scholar
  9. 9.
    Sawyer, T. K., Hruby, V. J., Wilkes, B. C., Draelos, M. T., Hadley, M. E., and Bergsneider, M. (1982) Comparative biological activities of highly potent active—site analogues of a—melanotropin. J. Med. Chem. 25, 1022–1027.PubMedCrossRefGoogle Scholar
  10. 10.
    Pawelek, J., Wong, G., Sansone, M., and Morowitz, J. (1973) Molecular biology of pigment cells: molecular controls in mammalian pigmentation. Yale J. Biol. Med. 46, 430–143.PubMedGoogle Scholar
  11. 11.
    Fuller, B. B. and Viskochil, D. H. (1979) The role of RNA and protein synthesis in mediating the action of MSH on mouse melanoma cells. Life Sci. 24, 2405–2416.PubMedCrossRefGoogle Scholar
  12. 12.
    Pawelek, J. M. (1985) Studies on the Cloudman melanoma cell line as a model for the action of MSH. Yale J. Biol. Med. 58, 571–578.PubMedGoogle Scholar
  13. 13.
    Marwan, M. M., Abdel—Malek, Z. A., Kreutzfeld, K. L., Castrucci, A. M., Hadley, M. E., Wilkes, B.C., and Hruby, V. J. (1985) Stimulation of S91 melanoma tyrosinase activity by superpotent a—melanotropins. Mol. Cell Endocrinol. 41, 171–177.Google Scholar
  14. 14.
    Hruby, V. J., Wilkes, B. C., Hadley, M. D., Al—Obeidi, F., Sawyer, T. K., Staples, D. J., Vaux, A. E., Dym, O., Castrucci, A. M. L., Hintz, M. F., Priehm, J. P., and Rao, K. M. (1987) a—Melanotropin: the minimal active sequence in the frog skin bioassay. J. Med. Chem. 30, 2126–2130.Google Scholar
  15. 15.
    Castrucci, A. M. L., Hadley, M. E., Sawyer, T. K., Wilkes, B. C., Al—Obeidi, F., Staples, D. J., De Vaux, A. E., Dym, O., Hintz, M. F., Riehm, J. P., Rao, K. R., and Hruby, V. J. (1989) a—Melanotropin: the minimal active sequence in the lizard skin bioassay. Gen. Comp. Endocrinol. 73, 157–163.Google Scholar
  16. 16.
    Hadley, M. E., Abdel—Malek, Z. A., Kreutzfeld, K. L., Marwan, M. M., and Hruby, V. J. (1985) [Nle4, D—Phe’]—a—MSH: A superpotent melanotropin that “irreversibly” activates melanoma tyrosinase. Endocr. Res. 11, 157–170.Google Scholar
  17. 17.
    Wilkes, B. C., Sawyer, T. K., Hruby, V. J., and Hadley, M. E. (1983) Differentiation of the structural features of melanotropins important for biological potency and prolonged activity in vitro. Int. J. Pept. Protein Res. 22, 313–324.CrossRefGoogle Scholar
  18. 18.
    Hirobe, T. and Takeuchi, T. (1977) Induction of melanogenesis in the epidermal melanoblasts of newborn mouse by MSH. J. Embryo!. Exp. Morphol. 37, 79–90.Google Scholar
  19. 19.
    Hirobe, T. and Takeuchi, T. (1977) Induction of melanogenesis in vitro in the epidermal melanoblasts of newborn mouse skin by MSH. In Vitro 13, 311–315.PubMedCrossRefGoogle Scholar
  20. 20.
    Kreiner, P. W., Gold, C. J., Keirns, J. J., Brock, W. A., and Bitensky, M. W. (1973) Hormonal control of melanocytes: MSH-sensitive adenyl cyclase in the Cloudman melanoma. Yale J. Biol. Med. 46, 583–591.PubMedGoogle Scholar
  21. 21.
    Fuller, B. B., Lunsford, J. B., and Iman, D. S. (1987) Alpha-melanocyte-stimulating hormone regulation of tyrosinase in Cloudman S91 mouse melanoma cell cultures. J. Biol. Chem. 262, 4024–4033.PubMedGoogle Scholar
  22. 22a.
    Hirobe, T. and Takeuchi, T. (1977) Induction of melanogenesis in the epidermal melanoblasts of newborn mouse skin by MSH. J. Embryol. Exp. Morphol. 37, 79–90.PubMedGoogle Scholar
  23. 22b.
    Hirobe, T. and Takeuchi, T. (1978) Changes of organelles associated with the differentiation of epidermal melanocytes in the mouse. J. Embryol. Exp. Morphol. 43, 107–121.PubMedGoogle Scholar
  24. 22c.
    Hirobe, T. (1992) Control of melanocyte proliferation and differentiation in the mouse epidermis. Pigment Cell Res. 5, 1–11.PubMedCrossRefGoogle Scholar
  25. 23.
    Lerner, A. B. and McGuire, J. S. (1961) Effect of alpha-and beta-melanocyte stimulating hormones on the skin colour of man. Nature 189, 176–179.PubMedCrossRefGoogle Scholar
  26. 24.
    Lerner, A. B. and McGuire, J. S. (1964) Melanocyte-stimulating hormone and adrenocorticotrophic hormone: their relation to pigmentation. N. Engl. J. Med. 270, 539–546.PubMedCrossRefGoogle Scholar
  27. 25.
    Levine, N., Sheftel, S. N., Eytan, T., Dorr, R. T., Hadley, M. E., Weinrach, J. C., Ertl, G. A., Toth, K., and Hruby, V. J. (1991) Induction of skin tanning by the subcutaneous administration of a potent synthetic melanotropin. DAMA 266, 2730–2736.CrossRefGoogle Scholar
  28. 26.
    De Luca, M., Siegrist, W., Bondanza, S., Mathor, M., Cancedda, R., and Eberle, A. N. (1993) aMelanocyte stimulating hormone (aMSH) stimulates normal human melanocyte growth by binding to high-affinity receptors. J. Cell Sci. 105, 1079–1084.Google Scholar
  29. 27.
    Abdel-Malek, Z., Swope, V. B., Suzuki, I., Akcali, C., Harriger, M. D., Boyce, S. T., Urabe, K., and Hearing, V. J. (1995) Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. U. S. A. 92, 1789–1793.PubMedCrossRefGoogle Scholar
  30. 28.
    Suzuki, I., Cone, R., Im, S., Nordlund, J., and Abdel-Malek, Z. (1996) Binding capacity and activation of the MC1 receptors by melanotropic hormones correlate directly with their mitogenic and melanogenic effects on human melanocytes. Endocrinology 137, 1627–1633.PubMedCrossRefGoogle Scholar
  31. 29.
    Hunt, G., Todd, C., Cresswell, J. E., and Thody, A. J. (1994) a-Melanocyte stimulating hormone and its analogue Nle4DPhe7a-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J. Cell Sci. 107, 205–211.Google Scholar
  32. 30.
    Hunt, G., Todd, C., Kyne, S., and Thody, A. J. (1994) ACTH stimulates melanogenesis in cultured human melanocytes. J. Endocrinol. 140, R1 - R3.PubMedCrossRefGoogle Scholar
  33. 31.
    Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., and Cone, R. D. (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251.PubMedCrossRefGoogle Scholar
  34. 32.
    Chhajlani, V. and Wikberg, J. E. S. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.PubMedCrossRefGoogle Scholar
  35. 33.
    Donatien, P. D., Hunt, G., Pieron, C., Lunec, J., Taïeb, A., and Thody, A. J. (1992) The expression of functional MSH receptors on cultured human melanocytes. Arch. Dermatol. Res. 284, 424–426.PubMedCrossRefGoogle Scholar
  36. 34.
    Wong, G. and Pawelek, J. (1973) Control of phenotypic expression of cultured melanoma cells by melanocyte stimulating hormones. Nature New Biol. 241, 213–215.PubMedCrossRefGoogle Scholar
  37. 35.
    Niles, R. M. and Makarski, J. S. (1978) Control of melanogenesis in mouse melanoma cells of varying metastatic potential. J. Natl. Cancer Inst. 61, 523–526.PubMedGoogle Scholar
  38. 36.
    Aroca, P., Urabe, K., Kobayashi, T., Tsukamoto, K., and Hearing, V. J. (1993) Melanin biosynthesis patterns following hormonal stimulation. J. Biol. Chem. 268, 25,650–25, 655.Google Scholar
  39. 37.
    Wong, G., Pawelek, J., Sansone, M., and Morowitz, J. (1974) Response of mouse melanoma cells to melanocyte stimulating hormone. Nature 248, 351–354.PubMedCrossRefGoogle Scholar
  40. 38.
    DiPasquale, A., McGuire, J., and Varga, J. M. (1977) The number of receptors for f3—melanocyte stimulating hormone in Cloudman melanoma cells is increased by dibutyryl adenosine 3’:5’—cyclic monophosphate or cholera toxin. Proc. Natl. Acad. Sci. U. S. A. 74, 601–605.PubMedCrossRefGoogle Scholar
  41. 39.
    O’Keefe, E. and Cuatrecasas, P. (1974) Cholera toxin mimics melanocyte stimulating hormone in inducing differentiation in melanoma cells. Proc. Natl. Acad. Sci. U. S. A. 71, 2500–2504.PubMedCrossRefGoogle Scholar
  42. 40.
    Chakraborty, A., Slominski, A., Erinak, G., Hwang, J., and Pawelek, J. (1995) Ultraviolet B and melanocyte stimulating hormone (MSH) stimulate mRNA production for a—MSH receptors and proopiomelanocortin—derived peptides in mouse melanoma cells and transformed keratinocytes. J. Invest. Dermatol. 105, 655–659.PubMedCrossRefGoogle Scholar
  43. 41.
    Siegrist, W., Stutz, S., and Eberle, A. N. (1994) Homologous and heterologous regulation of a—melanocyte—stimulating hormone receptors in human and mouse melanoma cell lines. Cancer Res. 54, 2604–2610.PubMedGoogle Scholar
  44. 42.
    Siegrist, W., Drozdz, R., Cotti, R., Willard, D. H., Wilkison, W. O., and Eberle, A. N. (1997) Interactions of a—melanotropin and agouti on B16 melanoma cells: evidence for inverse agonism of agouti. J. Recept. Signal Trans. Res. 17, 75–98.CrossRefGoogle Scholar
  45. 43.
    Varga, J. M., DiPasquale, A., Pawelek, J., McGuire, J. S., and Lerner, A. B. (1974) Regulation of melanocyte stimulating hormone action at the receptor level: discontinuous binding of hormone to synchronized mouse melanoma cells during the cell cycle. Proc. Natl. Acad. Sci. U. S. A. 71, 1590–1593.PubMedCrossRefGoogle Scholar
  46. 44.
    McLane, J. A. and Pawelek, J. M. (1988) Receptors for f3 melanocyte stimulating hormone exhibit positive cooperativity in synchronized melanoma cells. Biochemistry 27, 3743–3747.PubMedCrossRefGoogle Scholar
  47. 45.
    Bolognia, J., Murray, M., and Pawelek, J. (1989) UVB—induced melanogenesis may be mediated through the MSH—receptor system. J. Invest. Dermatol. 92, 651–656.PubMedCrossRefGoogle Scholar
  48. 46.
    Chakraborty, A. K. and Pawelek, J. M. (1992) Up—regulation of MSH receptors by MSH in Cloudman melanoma cells. Biochem. Biophys. Res. Commun. 188, 1325–1331.PubMedCrossRefGoogle Scholar
  49. 47.
    Pawelek, J. M., Chakraborty, A. K., Osber, M. P., Orlow, S. J., Min, K. K., Rosenzweig, K. E., and Bolognia, J. L. (1992) Molecular cascades in UV—induced melanogenesis: a central role for melanotropins? Pigment Cell Res. 5, 348–356.PubMedCrossRefGoogle Scholar
  50. 48.
    Abdel-Malek, Z., Swope, V. B., Amornsiripanitch, N., and Nordlund, J. J. (1987) In vitro modulation of proliferation and melanization of S91 melanoma cells by prostaglandins. Cancer Res. 47, 3141–3146.PubMedGoogle Scholar
  51. 49.
    Abdel-Malek, Z. A., Ross, R., Pike, J. W., Trinkle, L., Swope, V., and Nordlund, J. J. (1988) Hormonal effects of vitamin D3 on epidermal melanocytes. J. Cell. Physiol. 136, 273–280.PubMedCrossRefGoogle Scholar
  52. 50.
    Kameyama, K., Tanaka, S., Ishida, Y., and Hearing, V. J. (1989) Interferons modulate the expression of hormone receptors on the surface of murine melanoma cells. J. Clin. Invest. 83, 213–221.PubMedCrossRefGoogle Scholar
  53. 51.
    Varga, J. M., Moellmann, G. E., Fritsch, P., Godawska, E., and Lerner, A. B. (1976) Association of cell surface receptors for melanotropin with the Golgi region in mouse melanoma cells. Proc. Natl. Acad. Sci. U. S. A. 73, 559–562.PubMedCrossRefGoogle Scholar
  54. 52.
    Orlow, S. J., Hotchkiss, S., and Pawelek, J. M. (1990) Internal binding sites for MSH: analyses in wild—type and variant Cloudman melanoma cells. J. Cell. Physiol. 142, 129–136.PubMedCrossRefGoogle Scholar
  55. 53.
    Chakraborty, A. K., Orlow, S. J., Bolognia, J. L., and Pawelek, J. M. (1991) Structural/functional relationships between internal and external MSH receptors: modulation of expression in Cloudman melanoma cells by UVB radiation. J. Cell. Physiol. 147, 1–6.PubMedCrossRefGoogle Scholar
  56. 54.
    Eisinger, M. and Marko, O. (1982) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc. Natl. Acad. Sci. U. S. A. 79, 2018–2022.PubMedCrossRefGoogle Scholar
  57. 55.
    Halaban, R., Pomerantz, S. H., Marshall, S., Lambert, D. T., and Lerner, A. B. (1983) Regulation of tyrosinase in human melanocytes grown in culture. J. Cell Biol. 97, 480–488.PubMedCrossRefGoogle Scholar
  58. 56.
    Ranson, M., Posen, S., and Mason, R. S. (1988) Human melanocytes as a target tissue for hormones: in vitro studies with 1a-25,dihydroxyvitamin D3, a—melanocyte stimulating hormone, and (3—estradiol. J. Invest. Dermatol. 91, 593–598.PubMedCrossRefGoogle Scholar
  59. 57.
    Friedman, P. S., Wren, F., Buffey, J., and McNeil, S. (1990) a—MSH causes a small rise in cAMP but has no effect on basal or ultraviolet—stimulated melanogenesis in human melanocytes. Br. J. Dermatol. 123, 145–151.Google Scholar
  60. 58.
    Bhardwaj, R. S., Becher, E., Mahnke, K., Hartmeyer, M., Scholzen, T., Schwarz, T., and Luger, T. A. (1996) Evidence of the expression of a functional melanocortin receptor 1 by human keratinocytes. [Abstract]. J. Invest. Dermatol. 106, 817.Google Scholar
  61. 59.
    Hartmeyer, M., Scholzen, T., Becher, E., Bhardwaj, R. S., Fastrich, M., Schwarz, T., and Luger, T. A. (1996) Human microvascular enothelial cells (HMEC-1) express the melanocortin receptor type 1 and produce increased levels of IL-8 upon stimulation with a—MSH. [Abstract]. J. Invest. Dermatol. 106, 809.Google Scholar
  62. 60.
    Im, S., Moro, 0., Medrano, E. E., Cornelius, J., Babcock, G., Nordlund, J., and Abdel—Malek, Z. (1998) Activation of the cAMP pathway by a—melanotropin mediates the response of human melanocytes to UVB radiation. Cancer Res. 58, 47–54.Google Scholar
  63. 61.
    Schauer, E., Trautinger, F., Kock, A., Schwarz, A., Bhardwaj, R., Simon, M., Ansel, J. C., Schwarz, T., and Luger, T. A. (1994) Proopiomelanocortin—derived peptides are synthesized and released by human keratinocytes. J. Clin. Invest. 93, 2258–2262.PubMedCrossRefGoogle Scholar
  64. 62.
    Kippenberger, S., Bernd, A., Loitsch, S., Ramirez—Bosca, A., Bereiter—Hahn, J., and Holzmann, H. (1995) a—MSH is expressed in cultured human melanocytes and keratinocytes. Eur. J. Dermatol. 5, 395–397.Google Scholar
  65. 63.
    Chakraborty, A. K., Funasaka, Y., Slominski, A., Ermak, G., Hwang, J., Pawelek, J. M., and Ichihashi, M. (1996) Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: regulation by ultraviolet B. Biochim. Biophys. Acta. 1313, 130–138.PubMedCrossRefGoogle Scholar
  66. 64.
    Thody, A. J., Hunt, G., Donatien, P. D., and Todd, C. (1993) Human melanocytes express functional melanocyte—stimulating hormone receptors. Ann. N. Y. Acad. Sci. 680, 381–390.PubMedCrossRefGoogle Scholar
  67. 65.
    Imokawa, G., Yada, Y., and Miyagishi, M. (1992) Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J. Biol. Chem. 267, 24,675–24, 680.Google Scholar
  68. 66.
    Tada, A., Suzuki, I., Im, S., Davis, M. B., Nordlund, J. J., and Abdel—Malek, Z. M. (1998) Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their response to ultraviolet radiation. Cell Growth Diff. 9, 575–584.PubMedGoogle Scholar
  69. 67.
    Swope, V. B., Medrano, E. E., Smalara, D., and Abdel-Malek, Z. (1995) Longterm proliferation of human melanocytes is supported by the physiologic mitogens a—melanotropin, endothelin-1, and basic fibroblast growth factor. Exp. Cell Res. 217, 453–459.PubMedCrossRefGoogle Scholar
  70. 68.
    Lunec, J., Pieron, C., Sherbet, G. V., and Thody, A. J. (1990) Alpha—melanocytestimulating hormone immunoreactivity in melanoma cells. Pathobiology 58, 193–197.PubMedCrossRefGoogle Scholar
  71. 69.
    Ghanem, G., Loir, B., Hadley, M., Abdel—Malek, Z., Libert, A., Del Marmol, V., Lejeune, F., Lozano, J., and Garcia—Borrón, J.—C. (1992) Partial characterization of IR—a—MSH peptides found in melanoma tumors. Peptides 13, 989–994.Google Scholar
  72. 70.
    Hadley, M. E. and Dawson, B. V. (1988) Biomedical applications of synthetic melanotropins. Pigment Cell Res. Suppl 1, 69–78.Google Scholar
  73. 71.
    Siegrist, W. and Eberle, A. N. (1993) Homologous regulation of the MSH receptor in melanoma cells. J. Recept. Res. 13, 263–281.PubMedGoogle Scholar
  74. 72.
    Valverde, P., Healy, E., Sikkink, S., Haldane, F., Thody, A. J., Carothers, A., Jackson, I. J., and Rees, J. L. (1996) The Asp84Glu variant of the melanocortin 1 receptor (MCJR) is associated with melanoma. Hum. Mol. Genet. 5, 1663–1666.PubMedCrossRefGoogle Scholar
  75. 73.
    Valverde, P., Healy, E., Jackson, I., Rees, J. L., and Thody, A. J. (1995) Variants of the melanocyte—stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 11, 328–330.PubMedCrossRefGoogle Scholar
  76. 74.
    Mountjoy, K. G., Bird, I. M., Rainey, W. E., and Cone, R. D. (1994) ACTH induces up—regulation of ACTH receptor mRNA in mouse and human adrenocortical cell lines. Mol. Cell Endocrinol. 99, R17 — R20.PubMedCrossRefGoogle Scholar
  77. 75.
    Penhoat, A., Jaillard, C., and Saez, J. M. (1989) Corticotropin positively regulates its own receptors and cAMP response in cultured bovine adrenal cells. Proc. Natl. Acad. Sci. U. S. A. 86, 4978–4981.PubMedCrossRefGoogle Scholar
  78. 76.
    Rainey, W. E., Viard, I., and Saez, J. M. (1989) Transforming growth factor ß treatment decreases ACTH receptors on ovine adrenocortical cells. J. Biol. Chem. 264, 21,474–21, 477.Google Scholar
  79. 77.
    Collins, S., Bouvier, M., Bolanowski, M. A., Caron, M. G., and Lefkowitz, R. J. (1989) cAMP stimulates transcription of the (32 adrenergic receptor gene in response to short—term agonist exposure. Proc. Natl. Acad. Sci. U. S. A. 86, 4853–4857.Google Scholar
  80. 78.
    Eason, M. G. and Liggett, S. B. (1992) Subtype—selective desensitization of az adrenergic receptors. J. Biol. Chem. 267, 25473–25479.PubMedGoogle Scholar
  81. 79.
    Cone, R. D., Mountjoy, K. G., Robbins, L. S., Nadeau, J. H., Johnson, K. R., Roselli-Rehfuss, L., and Mortrud, M. T. (1993) Cloning and functional characterization of a family of receptors for the melanotropic peptides. Ann. N. Y. Acad. Sci. 680, 342–363.Google Scholar
  82. 80.
    Mountjoy, K. G. (1994) The human melanocyte stimulating hormone receptor has evolved to become “super—sensitive” to melanocortin peptides. Mol. Cell Endocrinol. 102, R7 — R11.PubMedCrossRefGoogle Scholar
  83. 81.
    Chlubade Tapia, J., Bagutti, C., Cotti, R., and Eberle, A. N. (1996) Induction of constitutive melanogenesis in amelanotic mouse melanoma cells by transfection of the human melanocortin-1 receptor gene. J. Cell Sci. 109, 2023–2030.Google Scholar
  84. 82.
    Lu, D., Willard, D., Patel, I. R., Kadwell, S., Overton, L., Kost, T., Luther, M., Chen, W., Woychik, R. P., Wilkison, W. O., and Cone, R. D. (1994) Agouti protein is an antagonist of the melanocyte—stimulating—hormone receptor. Nature 371, 799–802.PubMedCrossRefGoogle Scholar
  85. 83.
    Suzuki, I., Tada, A., Ollmann, M. M., Barsh, G. S., Im, S., Lamoreux, M. L., Hearing, V. J., Nordlund, J., and Abdel-Malek, Z. A. (1997) Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to a—melanotropin. J. Invest. Dermatol. 108, 838–842.PubMedCrossRefGoogle Scholar
  86. 84.
    Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250.PubMedGoogle Scholar
  87. 85.
    Gantz, I., Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15,174–15, 179.Google Scholar
  88. 86.
    Roselli-Rehfuss, L., Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., Low, M. J., Tatro, J. B., Entwistle, M. L., Simerly, R. B., and Cone, R. D. (1993) Identification of a receptor for gamma—melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U. S. A. 90, 8856–8860.PubMedCrossRefGoogle Scholar
  89. 87.
    Labbé, O., Desarnaud, F., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 33, 4543–4549.PubMedCrossRefGoogle Scholar
  90. 88.
    Hunt, G., Kyne, S., Wakamatsu, K., Ito, S., and Thody, A. J. (1995) Nle4DPhe7 a—Melanocyte—stimulating hormone increases the eumelanin: phaeomelanin ratio in cultured human melanocytes. J. Invest. Dermatol. 104, 83–85.PubMedCrossRefGoogle Scholar
  91. 89.
    Kwon, H. Y., Bultman, S. J., Löffler, C., Chen, W.—J., Furdon, P. J., Powell, J. G., Usala, A.—L., Wilkison, W., Hansmann, I., and Woychik, R. P. (1994) Molecular structure and chromosomal mapping of the human homolog of the agouti gene. Proc. Natl. Acad. Sci. U. S. A. 91, 9760–9764.PubMedCrossRefGoogle Scholar
  92. 90.
    Wilson, B. D., Ollmann, M. M., Kang, L., Stoffel, M., Bell, G. I., and Barsh, G. S. (1995) Structure and function of ASP, the human homolog of the mouse agouti gene. Hum. Mol. Genet. 4, 223–230.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Zalfa Abdel-Malek

There are no affiliations available

Personalised recommendations