Advertisement

The Melanocortin-5 Receptor

  • Wenbiao Chen
Chapter
Part of the The Receptors book series (REC)

Abstract

Melanocortins are a subset of peptides derived from the proopiomelanocortin (POMC) gene product, including ACTH, α-, β-, and γ-MSH (1,2). The name refers to the two principal activities of these peptides, that is, regulation of pigmentation in skin and hair and steroidogenesis in the adrenal cortex.

Keywords

Lacrimal Gland Sebaceous Gland Core Body Temperature Sterol Ester Exocrine Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C., Cohen, S. N., and Numa, S. (1979) Nucleotide sequence of cloned cDNA for bovine corticotropinbeta-lipotropin precursor. Nature 278, 423–427.PubMedCrossRefGoogle Scholar
  2. 2.
    Roberts, J. L., Seeburg, P. H., Shine, J., Herbert, E., Baxter, J. D., and Goodman, H. M. (1979) Corticotropin and beta-endorphin: construction and analysis of recombinant DNA complementary to mRNA for the common precursor. Proc. Natl. Acad. Sci. U. S. A. 76, 2153–2157.PubMedCrossRefGoogle Scholar
  3. 3.
    Eberle, A. N. (1988) The Melanotropins Karger, Basel.Google Scholar
  4. 4.
    Cone, R. D., Lu, D., Koppula, S., Vage, D. I., Klungland, H., Boston, B., Chen, W., Orth, D. N., Pouton, C., and Kesterson, R. A. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent. Prog. Horm. Res. 51, 287–317.PubMedGoogle Scholar
  5. 5.
    Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., and Cone, R. D. (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251.PubMedCrossRefGoogle Scholar
  6. 6.
    Chhajlani, V. and Wikberg, J. E. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.PubMedCrossRefGoogle Scholar
  7. 7.
    Roselli-Rehfuss, L., Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., Low, M. J., Tatro, J. B., Entwistle, M. L., Simerly, R. B., and Cone, R. D. (1993) Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U. S. A. 90, 8856–8860.PubMedCrossRefGoogle Scholar
  8. 8.
    Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250.PubMedGoogle Scholar
  9. 9.
    De Wildt, D. J., Krugers, H., Kasbergen, C. M., De Lang, H., and Versteeg, D. H. (1993) The hemodynamic effects of gamma 2-melanocyte-stimulating hormone and related melanotropins depend on the arousal potential of the rat. Eur. J. Pharmacol. 233, 157–164.PubMedCrossRefGoogle Scholar
  10. 10.
    Valentin, J. P., Wiedemann, E., and Humphreys, M. H. (1993) Natriuretic properties of melanocyte-stimulating hormones. J. Cardiovasc. Pharmacol. 22, S114–8.PubMedGoogle Scholar
  11. 11.
    Gantz, I., Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., DelValle, J., and Yamada, T. (1993b) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179.PubMedGoogle Scholar
  12. 12.
    Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B., and Cone, R. D. (1994) Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308.PubMedCrossRefGoogle Scholar
  13. 13.
    Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J., and Cone, R. D. (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168.PubMedCrossRefGoogle Scholar
  14. 14.
    Huszar, D., Lynch, C. A., Fairchild-Huntress, V., Dunmore, J. H., Fang, Q., Berkemeier, L. R., Gu, W., Kesterson, R. A., Boston, B. A., Cone, R. D., Smith, F. J., Campfield, L. A., Burn, P., and Lee, F. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141.PubMedCrossRefGoogle Scholar
  15. 15.
    Chhajlani, V., Muceniece, R., and Wikberg, J. E. (1993) Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 195, 866–873.PubMedCrossRefGoogle Scholar
  16. 16.
    Barrett, P., MacDonald, A., Helliwell, R., Davidson, G., and Morgan, P. (1994) Cloning and expression of a new member of the melanocyte-stimulating hormone receptor family. J. Mol. Endocrinol. 12, 203–213.PubMedCrossRefGoogle Scholar
  17. 17.
    Gantz, I., Shimoto, Y., Konda, Y., Miwa, H., Dickinson, C. J., and Yamada, T. (1994) Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1214–1220.PubMedCrossRefGoogle Scholar
  18. 18.
    Griffon, N., Mignon, V., Facchinetti, P., Diaz, J., Schwartz, J. C., and Sokoloff, P. (1994) Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem. Biophys. Res. Comm. 200, 1007–1014.PubMedCrossRefGoogle Scholar
  19. 19.
    Labbe, O., Desarnaud, F., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry 33, 4543–4549.PubMedCrossRefGoogle Scholar
  20. 20.
    Fathi, Z., Iben, L. G., and Parker, E. M. (1995) Cloning, expression, and tissue distribution of a fifth melanocortin receptor subtype. Neurochem. Res. 20, 107–113.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen, W. (1997) Doctoral dissertation. Molecular characterization of melanocortin receptors: role of MC5R in exocrine gland function. Oregon Health Sciences University.Google Scholar
  22. 22.
    Chen, W., Kelly, M. A., Optiz-Araya, X., Low, M. J., and Cone, R. D. (1997) Exocrine gland dysfunction in MC5R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91, 789–798.PubMedCrossRefGoogle Scholar
  23. 23.
    Schioth, H. B., Muceniece, R., Wikberg, J. E., and Chhajlani, V. (1995) Characterizations of melanocortin receptor subtypes by radioligand binding analysis. Eur. J. Pharmacol. 288, 311–317.PubMedCrossRefGoogle Scholar
  24. 24.
    Lu, D. (1997) Doctoral dissertation, Antagonists, antagonists, and constitute activation of the melanocortin-1 receptor (MCR1): a dissertation. Oregon Health Sciences University.Google Scholar
  25. 25.
    Cammas, F. M., Kapas, S., Barker, S., and Clark, A. J. (1995) Cloning, characterization and expression of a functional mouse ACTH receptor. Biochem. Biophys. Res. Commun. 212, 912–918.PubMedCrossRefGoogle Scholar
  26. 26.
    Kapas, S., Cammas, F. M., Hinson, J. P., and Clark, A. J. (1996) Agonist and receptor binding properties of adrenocorticotropin peptides using the cloned mouse adrenocorticotropin receptor expressed in a stably transfected hela cell line. Endocrinology 137, 3291–3294.PubMedCrossRefGoogle Scholar
  27. 27.
    Adan, R. A., Cone, R. D., Burbach, J. P., and Gispen, W. H. (1994) Differential effects of melanocortin peptides on neural melanocortin receptors. Mol. Pharmacol. 46, 1182–1190.PubMedGoogle Scholar
  28. 28.
    Boston, B. A. and Cone, R. D. (1996) Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3–L1 cell line. Endocrinology 137, 2043–2050.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson, J. F., Anderson, S., Snook, G., and Llewellyn, K. D. (1984) Quantification of the permeability of the blood-CSF barrier to alpha-MSH in the rat. Peptides 5, 681–685.PubMedCrossRefGoogle Scholar
  30. 30.
    Batemen, A., Signh, A., Kral, T., and Solomon, S. (1989) The immune-hypothalamic-pituitary-adrenal axis. Endocr. Rev. 10, 92–112.CrossRefGoogle Scholar
  31. 31.
    Daynes, R. A., Robertson, B.A., Cho, B.H., Burmham, D.K., and Newton, R. (1987) a-Melanocyte-stimulating hormone exhibits target cell selectivity in its capacity to affect interleukin 1-inducible responses in vivo and in vitro. J. Immunol. 139, 103–109.Google Scholar
  32. 32.
    Robertson, B. A., Gahring, L.C., and Daynes, R.A. (1986) Nuropeptide regulation of interleukin-1 activities: capacity of a-melanocyte stimulating hormone to inhibit interleukin-l-inducible respomses in vivo and in vitro exhibits target cell selectivity. Inflammation 10, 371–385.PubMedCrossRefGoogle Scholar
  33. 33.
    Hiltz, M. E., Catania, A., and Lipton, J. M. (1992) Alpha-MSH peptides inhibit acute inflammation induced in mice by rIL-1 beta, rIL-6, rTNF-alpha and endogenous pyrogen but not that caused by LTB4, PAF and rIL-8. Cytokine 4, 320–328.PubMedCrossRefGoogle Scholar
  34. 34.
    Lipton, J. M., Ceriani, G., Macaluso, A., McCoy, D., Carnes, K., Biltz, J., and Catania, A. (1994) Antiinflammatory effects of the neuropeptide alpha-MSH in acute, chronic, and systemic inflammation. Ann. N. Y. Acad. Sci. 741, 137–148.PubMedCrossRefGoogle Scholar
  35. 35.
    Girten, B., McPherson, S., Garcia, A., McDowell, R., and Tuttle, R. (1994) comparative effects of a-MSH and [Nle4,o-phe7]-a-MSH in LPS induced endotoxema. FASEB J. 8, A643.Google Scholar
  36. 36.
    Girten, B., Omholt, P., Lee, M., McPherson, S., McDowell, R., and Tutle, R. (1995) Comparative effects of a-MSH, NDP and HP228 in pain, inflammation, and endotoxema. FASEB J. 9, A955.Google Scholar
  37. 37.
    Abou-Mohamed, G., Papapetropoulos, A., Ulrich, D., Catravas, J. D., Tuttle, R. R., and Caldwell, R. W. (1995) HP-228, a novel synthetic peptide, inhibits the induction of nitric oxide synthase in vivo but not in vitro. J. Pharmacol. Exp. Ther. 275, 584–591.PubMedGoogle Scholar
  38. 38.
    Hiltz, M. E. and Lipton, J. M. (1989) Antiinflammatory activity of a COOH-terminal fragment of the neuropeptide alpha-MSH. FASEB J. 3, 2282–2284.PubMedGoogle Scholar
  39. 39.
    Macaluso, A., McCoy, D., Ceriani, G., Watanabe, T., Biltz, J., Catania, A., and Lipton, J. M. (1994) Antiinflammatory influences of alpha-MSH molecules: central neurogenic and peripheral actions. J. Neurosci. 14, 2377–2382.PubMedGoogle Scholar
  40. 40.
    Cossu, G., Cusella-De-Angelis, M.G., Senni, M.I., De Angelis L., Vivarelli, E., Vella, S., Bouche, M., Boitani, C., and Molinaro, M. (1989) Adrenocorticotropin is a specific mitogen for,a,alian myogenic cells. Dev. Biol. 131, 331–336.PubMedCrossRefGoogle Scholar
  41. 41.
    De Angelis, L., Cusella-De Angelis, M. G., Bouche, M., Vivarelli, E., Boitani, C., Molinaro, M., and Cossu, G. (1992) ACTH-like peptides in postimplantation mouse embryos: a possible role in myoblast proliferation and muscle histogenesis. Dev. Biol. 151, 446–458.PubMedCrossRefGoogle Scholar
  42. 42.
    Hughes, S., Smith, M. E., and Bailey, C. J. (1992) Beta-endorphin and corticotropin immunoreactivity and specific binding in the neuromuscular system of obese-diabetic mice. Neuroscience 48, 463–468.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith, M. E. and Hughes, S. (1994) POMC neuropeptides and their receptors in the neuromuscular system of wobbler mice. J. Neurol. Sci. 124, 56–58.PubMedCrossRefGoogle Scholar
  44. 44.
    Bijlsma, W. A., Schotman, P., Jennekens, F.G.I., Gispen, W.H., and de Wied, D. (1983) The enhanced recovery of sensorimotor function in rats is related to the melanotropic moiety of ACTH/MSH neuropeptides. Eur. J. Pharmacol. 92, 231–236.PubMedCrossRefGoogle Scholar
  45. 45.
    Strand, F. L. and Kung, T.T. (1980) ACTH accelerates neuromuscular function following crushing of peripheral nerve. Peptides 1, 135–138.PubMedCrossRefGoogle Scholar
  46. 46.
    Strand, F. L., Lee, S. J., Lee, T. S., Zuccarelli, L. A., Antonawich, F. J., Kume, J., and Williams, K. A. (1993) Non-corticotropic ACTH peptides modulate nerve development and regeneration. Rev. Neurosci. 4, 321–363.PubMedCrossRefGoogle Scholar
  47. 47.
    Ramachandran, J., Farmer, S.W., Liles, S., Li, C.H. (1976) Comparison of the steriodogenic and melanotropic activities of corticotropin, a-melanotropin and analogs with their lipolytic activities in rat and rabbit adipocytes. Biochim Biophys Acta 428, 339–346.PubMedCrossRefGoogle Scholar
  48. 48.
    Lu, D., Willard, D., Patel, I. R., Kadwell, S., Overton, L., Kost, T., Luther, M., Chen, W., Woychik, R. P., and Wilkison, W. O. (1994) Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 371, 799–802.PubMedCrossRefGoogle Scholar
  49. 49.
    Thody, A. J. and Shuster, S. (1973) Possible role of MSH in the mammal. Nature 245, 207–209.PubMedCrossRefGoogle Scholar
  50. 50.
    Thody, A. J. and Shuster, S. (1970) The pituitary and sebaceous gland activity. J. Endocrinol. 48, 139–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Ebling, F. J., Ebling, E., Randall, V., and Skinner, J. (1975) The synergistic action of alpha-melanocyte-stimulating hormone and testosterone of the sebaceous, prostate, preputial, Harderian and lachrymal glands, seminal vesicles and brown adipose tissue in the hypophysectomized-castrated rat. J. Endocrinol. 66, 407–412.PubMedCrossRefGoogle Scholar
  52. 52.
    Thody, A. J., Cooper, M. F., Bowden, P. E., Meddis, D., and Shuster, S. (1976) Effect of alpha-melanocyte-stimulating hormone and testosterone on cutaneous and modified sebaceous glands in the rat. J. Endocrinol. 71, 279–288.PubMedCrossRefGoogle Scholar
  53. 53.
    Hay, J. B., Meddis, D., Thody, A. J., and Shuster, S. (1982) Mechanism of action of alpha-melanocyte-stimulating hormone in rat preputial glands: the role of androgen metabolism. J. Endocrinol. 94, 289–294.PubMedCrossRefGoogle Scholar
  54. 54.
    Dartt, D. A. (1994) Regulation of tear secretion. Adv. Exp. Med. Biol. 350, 1–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Jahn, R., Padel, U., Porsch, P. H., and Soling, H. D. (1982) Adrenocorticotropic hormone and a-melanocyte-stimulating hormone induce secretion and protein phosphorylation in the rat lacrimal gland by activation of a cAMP-dependent pathway. Eur. J. Biochem. 126, 623–629.PubMedCrossRefGoogle Scholar
  56. 56.
    Leiba, H., Gaily, N. B., Schmidt-Sole, J., Piterman, O., Azrad, A., and Salomon, Y. (1990) The melanocortin receptor in the rat lacrimal gland: a model system for the study of MSH (melanocyte stimulating hormone) as a potential neurotransmitter. Eur. J. Pharmacol. 181, 71–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Entwistle, M. L., Hann, L. E., Sullivan, D. A., and Tatro, J. B., (1990) Characterization of functional melanotropin receptors in lacrimal glands of the rat. Peptides 11, 477–483.PubMedCrossRefGoogle Scholar
  58. 58.
    Paynes, A. P. (1994) The harderian gland: a terecentennial review. J. Anat. 185; 46–49.Google Scholar
  59. 59.
    Thiessen, D. D. and Kittrell, M. W. (1980) The harderian gland and thermoregulation in the gerbil (Meriones unguiculatus). Physiol. Behay. 24, 417–424.CrossRefGoogle Scholar
  60. 60.
    Harlow, H. J. (1984) The influence of harderian gland removal and fur lipid removal on heat loss and water flux to and from skin of muskrats, Ondatra zibethicus. Phsyiol. Zool. 57, 349–356.Google Scholar
  61. 61.
    Thiessen, D. D. and Harriman, A. E. (1986) Harderian gland exudates in the male Meriones unguiculatus regulate female proceptive behavior, agression, and investigation. J. Comp. Psychol. 100, 85–87.PubMedCrossRefGoogle Scholar
  62. 62.
    Spike, R. C., Payne, A. P., and Moore, M. R. (1992) Porphyrins and their possible significance in Harderian glands, in Harderian Glands: Porphyrin Metabolism, Behavioral and Endocrine Effects ( Webb, S. M., Hoffman, R. A., Puig-Domingo, M. L., and Reiter, R. J. eds.), Springer-Verlag, New York pp. 165–193.CrossRefGoogle Scholar
  63. 63.
    Rodriguez, C., Menendez-Pelaez, A., Reiter, R. J., Buzzell, G. R., and Vaughan, M. K. (1992) Porphyrin metabolism in the harderian glands of golden hamster: in vivo regualtion by testicular hormones, light conditions, pineal gland, and pituitary hormone. Proc. Soc. Exp. Med. 200, 25–29.Google Scholar
  64. 64.
    Buzzell, G. R., Hoffman, R. A., Vaughan, M. K., and Reiter, R. J. (1992) hypophesectomy prevents castration-induced increase in porphyrin concentrations in the harderian glands of male golden hamster: a possible role for prolactin. J. Endocrinol. 133, 29–35.Google Scholar
  65. 65.
    Bronson, F. H., and Caroom, D. (1971) Preputial gland of the male mouse: attractant function. J. Reprod. Fertil. 25, 279–282.PubMedCrossRefGoogle Scholar
  66. 66.
    Orsulak, P. J. and Gawienowski, A. M. (1972) Olfactory preferences for the rat preputial gland. Biol. Reprod. 6, 219–223.PubMedGoogle Scholar
  67. 67.
    Chipman, R. K. and Alberecht, E. D. (1974) The relationship of the male preputial gland to the acce;eration of oestrus in the laboratory mouse. J. Reprod. Fertil. 38, 91–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Nowell, N. W., Thody, A. J., and Woodley, R. (1980) alpha-Melanocyte stimulating hormone and aggressive behavior in the male mouse. Physiol. Behay. 24, 5–9.Google Scholar
  69. 69.
    Nowell, N. W., Thody, A. J., and Woodley, R. (1980) The source of an aggression-promoting olfactory cue, released by alpha-melanocyte stimulating hormone, in the male mouse. Peptides 1, 69–72.PubMedCrossRefGoogle Scholar
  70. 70.
    Thody, A. J., Donohoe, S. M., and Shuster, S. (1981) alpha-Melanocyte stimulating hormone and the release of sex attractant odors in the female rat. Peptides 2, 125–129.Google Scholar
  71. 71.
    Thody, A. J., Wilson, C. A., and Everard, D. (1981) alpha-Melanocyte stimulating hormone stimulates sexual behaviour in the female rat. Psychopharmacology 74, 153–156.Google Scholar
  72. 72.
    Thody, A. J. and Wilson, C. A. (1983) Melanocyte stimulating hormone and the inhibition of sexual behaviour in the female rat. Physiol. Behay. 31, 67–72.CrossRefGoogle Scholar
  73. 73.
    File, S. E. (1978) ACTH, but not corticosterone impairs habituation and reduces exploration. Pharmacol. Biochem. Behay. 9, 161–166.CrossRefGoogle Scholar
  74. Mackay-Sim, A. and Liaing, D.G. (1980) Discrimination of odors from stressed rats by non-stressed rats. Physiol. Behay. 24, 699–704.CrossRefGoogle Scholar
  75. 75.
    Valenta, J. G. and Rigby, M.K. (1968) Discrimination of the odor of stressed rats. Science 161, 599–601.PubMedCrossRefGoogle Scholar
  76. 76.
    Mackay-Sim, A. and Laing, D. G. (1981) The sources of odors from stressed rats. Physiol. Behay. 27, 511–513.CrossRefGoogle Scholar
  77. 77.
    Famselow, M. S. (1985) Odors released by stressed rats produce opioid analgesia in unstressed rats. Behay. Neurosci. 99, 589–592.CrossRefGoogle Scholar
  78. 78.
    Abel, E. L. and Bilitzke, P. J. (1990) A possible alarm substance in the forced swimming test. Physiol. Behay. 48, 233–239.CrossRefGoogle Scholar
  79. 79.
    Abel, E. L. (1994) The pituitary mediates production or release of an alarm chemosignal in rats. Horm. Behay. 28, 139–145.CrossRefGoogle Scholar
  80. 80.
    Abel, E. L. and Bilitzke, P. J. (1992) Adrenal activity does not mediate alarm substance reaction in the forced swim test. Psychoneuroendocrinology 17, 255–259.PubMedCrossRefGoogle Scholar
  81. 81.
    Carr, W. J., Martorano, R.D., and Krames, L. (1970) Responses of mice to odors associated with stress. J. Comp. Physiol. Psychol. 71, 223–228.PubMedCrossRefGoogle Scholar
  82. 82.
    Rottman, S. J. and Snowndon, C.T. (1972) Demonstration and analysis of an alarm pheromone in mice. J. Comp. Physiol. Psychol. 81, 483–490.PubMedCrossRefGoogle Scholar
  83. 83.
    Cocke, R., Moynihan, J.A., Cohen, N., Grota, L.J., and Ader, R. (1993) Exposure to conspecific alarm chemosignals alters immune responses in Balb/c mice. Brain, Behay. Immunity 7, 36–46.CrossRefGoogle Scholar
  84. 84.
    Mugford, R. A. and Nowell, N.W. (1971) Shock-induced release of the preputial gland secretions that elicit fighting in mice. J. Endocrinol. 51, xvi-xvii.Google Scholar
  85. 85.
    Lichtensteiger, W., Hanimann, B., Siegrist, W., and Eberle, A.N. (1996) Region-and stage-specific patterns of melanocortin receptor ontogeny in rat central nervous system, cranial nerve ganglia and sympathetic ganglia. Brain Research. Developmental Brain Res. 91, 93–110.CrossRefGoogle Scholar
  86. 86.
    Zimmermann, E. and Krivoy, W. (1973) Antagonism betwwen morphine and the polypeptides ACTH, ACTH1–24 and beta-MSH in the nervous system. Prog. Brain Res. 39, 383–394.PubMedCrossRefGoogle Scholar
  87. 87.
    Smock, T. and Fields, H. L. (1981) ACTH1–24 blocks opiate–induced analgesia in the rat. Brain Res. 212, 202–206.PubMedCrossRefGoogle Scholar
  88. 88.
    Belcher, G., Smock, T., and Fields, H. L. (1982) Effects of intrathecal ACTH on opiate analgesia in the rat. Brain Res. 247, 373–377.PubMedCrossRefGoogle Scholar
  89. 89.
    Johnston, M. F., Kravitz, E. A., Meiri, H., and Rahamimoff, R. (1983) Adrenocorticotropic hormone causes long-lasting potentiation of transmitter release from frog motor nerve terminals. Science 220, 1071–1072.PubMedCrossRefGoogle Scholar
  90. 90.
    Davies, D. A. Smith, M. E., (1994) ACTH (4–10) increases quantal content at the mouse neuromuscular junction. Brain Res. 637, 328–330.Google Scholar
  91. 91.
    Shapiro, M. S., Namba, T., Grob, D. (1968) The effect of corticotropin on the neuromuscular junction: morphologic studies in rabbits. Neurology 18, 1018–1022.PubMedCrossRefGoogle Scholar
  92. 92.
    Strand, F. L., Williams, K. A., Alves, S. E., Antonawich, F. J., Lee, T. S., Lee, S. J., Kume, J., and Zuccarelli, L. A. (1994) Melanocortins as factors in somatic neuromuscular growth and regeneration. Pharmacol. Ther. 62, 1–27PubMedCrossRefGoogle Scholar
  93. 93.
    Hughes, S. and Smith, M. E. (1988) Effect of nerve section on beta-endorphin and alpha-melanotropin immunoreactivity in motor nerves of normal and dystrophic mice. Neurosci. Lett. 92, 1–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Hughes, S. and Smith, M. E. (1989) Proopiomelanocortin-derived peptides in mice with motoneurone disease. Neurosci. Lett. 103, 169–173.PubMedCrossRefGoogle Scholar
  95. 95.
    Hughes, S., and Smith, M. E. (1993) Upregulation of the pro-opiomelanocortin gene in spinal motoneurones in muscular dystrophy in mice. Neurosci. Lett. 163, 205–207.PubMedCrossRefGoogle Scholar
  96. 96.
    Hughes, S. and Smith, M. E. (1994) Upregulation of the pro-opiomelanocortin gene in motoneurons after nerve section in mice. Brain Res. Mol. Brain Res. 25, 41–49.PubMedCrossRefGoogle Scholar
  97. 97.
    Star, R. A., Rajora, N., Huang, J., Stock, R. C., Catania, A., and Lipton, J. M. (1995) Evidence of autocrine modulation of macrophage nitric oxide synthase by alphamelanocyte-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 92, 8016–8020.PubMedCrossRefGoogle Scholar
  98. 98.
    Baldwin, J. M. (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703.PubMedGoogle Scholar
  99. 99.
    van der Kraan, M., Adan, R. A., Entwistle, M. L., Gispen, W. H., Burback, J. P., and Tatro, J. B. (1998) Expression of melanocortin-5 receptor in secretory epithelia support a functional role in exocrine and endocrine glands. Endocrinology 139, 2348–2355.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Wenbiao Chen

There are no affiliations available

Personalised recommendations