The Melanocortin-1 Receptor

  • Dongsi Lu
  • Carrie Haskell-Luevano
  • Dag Inge Vage
  • Roger D. Cone
Part of the The Receptors book series (REC)


The melanocyte-stimulating hormone (MSH) receptor, recently renamed the melanocortin-1 receptor (MC1-R), is a 7 transmembrane domain receptor in the rhodopsin superfamily that plays an important role in the regulation of mammalian pigmentation. The study of the MC 1-R has introduced at least two novel paradigms to the G protein signaling field: constitutively active receptors (1) and endogenous receptor antagonists (2). To elaborate on these and other findings, it is first necessary to briefly review mammalian pigmentation and the role of the MC1-R in its regulation. Findings specific to the human MC1-R and its role in human pigmentation are discussed in Chapter 11.


Coat Color Tyrosinase Activity Melanocortin Receptor Stimulate Hormone Receptor Agouti Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robbins, L. S., Nadeau, J. H., Johnson, K. R., Kelly, M. A., Roselli—Rehfuss, L., Baack, E., Mountjoy, K. G., and Cone, R. D. (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827–834.Google Scholar
  2. 2.
    Lu, D., Willard, D., Patel, I. R., Kadwell, S., Overton, L., Kost, T., Luther, M., Chen, W., Woychik, R. P., Wilkison, W. O., and Cone, R. D. (1994) Agouti protein is an antagonist of the melanocyte—stimulating hormone receptor. Nature 371, 799–802.PubMedGoogle Scholar
  3. 3.
    Barsh, G. S. (1996) The genetics of pigmentation: from fancy genes to complex traits. TIG 12, 299–305.PubMedGoogle Scholar
  4. 4.
    Jackson, I. J. (1994) Molecular and developmental genetics of mouse coat color. Annu. Rev. Genet. 28, 189–217.PubMedGoogle Scholar
  5. 5.
    Silvers, W. K. (1979). The Coat Colors of Mice: A Model for Mammalian Gene Action and Interaction. Springer—Verlag, New York.Google Scholar
  6. 6.
    Searle, A. G. (1968). Comparative Genetics of Coat Colors in Mammals. Logos Press London.Google Scholar
  7. 7.
    Jackson, I. J. (1988) A cDNA encoding tyrosinase—related protein maps to the mouse brown locus. Proc. Natl. Acad. Sci. U. S. A. 85, 4392–4396.PubMedGoogle Scholar
  8. 8.
    Jackson, I. J., Chambers, D. M., Tsukamoto, K., Copeland, N. G., Jenkins, N. A., and Hearing, V. (1992) A second tyrosinase—related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 11, 527–535.PubMedGoogle Scholar
  9. 9.
    Kwon, B. S., Chintamaneni, C.D., Kozak, C.A., Copeland, N.G., Gilbert, D.J., Jenkins, N. A., Barton, D.E., Francke, U., Kobayashi, Y., and Kim, K.K. (1991) A melanocyte—specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10, and is a syntenic region on human chromosome 12. Proc. Natl. Acad. Sci. U. S. A. 88, 9228–9232.PubMedGoogle Scholar
  10. 9a.
    Lu, D., Chen, W., and Cone, R. D. (1988) Regulation of melanogenesis by the MSH receptor. In: The Pigmentary System and its Disorders. Norlund, J.J. (ed.) Oxford University Press, New York.Google Scholar
  11. 10.
    Burchill, S. A., Thody, A. J., and Ito, S. (1986) Melanocyte—stimulating hormone, tyrosinase activity and the regulation of eumelanogenesis and phaeomelanogenesis in the hair follicular melanocytes of the mouse. J. Endocrinol. 109, 15–21.PubMedGoogle Scholar
  12. 11.
    Burchill, S. A., Virden, R., and Thody, A. J. (1989) regulation of tyrosinase synthesis and its processing in the hair follicular melanocytes of the mouse during eumelanogenesis and phaeomelanogenesis. J. Invest. Dermatol. 93, 236–240Google Scholar
  13. 12.
    Takeuchi, T., Kobunai, T., and Yamamoto, H. (1989) Genetic control of signal transduction in mouse melanocytes. Soc. Invest. Dermatol. 92, 239S - 242S.Google Scholar
  14. 13.
    Tamate, H. B. and Takeuchi, T. (1984) Action of the e locus of mice in the response of phaeomelanic hair follicles to alpha—melanocyte stimulating hormone in vitro. Science 224, 1241–1242..Google Scholar
  15. 14.
    Kobayashi, T., Vieira, W. D., Potterf, B., Saka, C., Imokawa, G., and Hearing, V. (1995) Modulation of melanogenic protein expression during the switch from eutopheomelanogenesis. J. Cell Sci. 108, 2301–2309.PubMedGoogle Scholar
  16. 15.
    Hoganson, G. E., Ledwitz—Rigby, F., Davidson, R. L., and Fuller, B. B. (1989) Regulation of tyrosinase mRNA levels in mouse melanoma cell clones by melanocyte—stimulating hormone and cyclic AMP. Som. Cell. Mol. Gen. 15, 255–263.Google Scholar
  17. 16.
    Kwon, B. S., Wakulchik, M., Haq, A.Q., Halaban, R., Kestler, D. (1988) Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression. Biochem. Biophys. Res. Commun. 153, 1301–1309.PubMedGoogle Scholar
  18. 17.
    Halaban, R., Pomerantz, S. H., Marshall, S., and Lerner, A. B. (1984) Tyrosinase activity and abundance in cloudman melanoma cells. Arch. Biochem. Biophys. 230, 383–387.PubMedGoogle Scholar
  19. 18.
    Wong, G., and Pawelek, J. (1975) Melanocyte stimulating hormone promotes activation of preexisting tyrosinase molecules in Cloudman S91 melanoma cells. Nature 255, 644–646.PubMedGoogle Scholar
  20. 19.
    Pawelek, J. (1976) Factors regulating growth and pigmentation of melanoma cells. J. Invest. Dermatol. 66, 201–209.PubMedGoogle Scholar
  21. 20.
    Bultman, S. J., Michaud, E. J., and Woychik, R. P. (1992) Molecular characterization of the mouse agouti locus. Cell 71, 1195–1204.PubMedGoogle Scholar
  22. 21.
    Miller, M. W., Duhl, D. M. J., Vrieling, H., Cordes, S. P., 011mann, M. M., Winkes, B. M., and Barsh, G. S. (1993) Cloning of the mouse agouti gene predicts a novel secreted protein ubiquitously expressed in mice carrying the lethal yellow (A`) mutation. Genes Dev. 7, 454–467.PubMedGoogle Scholar
  23. 22.
    Geschwind, I. I. (1966) Change in hair color in mice induced by injection of a—MSH. 79, 1165–1167.Google Scholar
  24. 23.
    Geschwind, I.I., Huseby, R. A., and Nishioka, R. (1972) The effect of melanocytestimulating hormone on coat color in the mouse. Recent Prog. Horm. Res. 28, 91–130.PubMedGoogle Scholar
  25. 24.
    Lamoreux, M. L. and Mayer, T. C. (1975) Site of gene action in the development of hair pigment in recessive yellow (e/e) mice. Dev. Biol. 46, 160–166PubMedGoogle Scholar
  26. 25.
    Silvers, W. K. (1958) An experimental approach to action of genes at the agouti locus in the mouse. III. Transplants of newborn A“—, A—, and a`— skin to A’-, A”—, A, and as hosts. J. Exp. Zool. 137, 189–196.PubMedGoogle Scholar
  27. 26.
    Silvers, W. K. and Russel, E. S. (1955) An experimental approach to action of genes at the agouti locus in the mouse. J. Exp. Zool. 130, 199–220.Google Scholar
  28. 27.
    Gerst, J. E., Sole, J., Hazum, E., and Salomon, Y. (1988) Identification and characterization of melanotropin binding proteins from M2R melanoma cells by covaler photoaffinity labeling. Endocrinology 123, 1792–1797.Google Scholar
  29. 28.
    Solca, F., Siegrist, W., Drozdz, R., Girard, J., and Eberle, A. N. (1989) The receptor for a—melanotropin of mouse and human melanoma cells. J. Biol. Chem. 264, 14,277–14, 280.Google Scholar
  30. 29.
    Chhajlani, V. and Wikberg, J. E. S. (1992) Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309, 417–420.PubMedGoogle Scholar
  31. 30.
    Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., and Cone, R. D. (1992) The cloning of a family of genes that encode the melanocortin receptors. Science 257, 543–546.Google Scholar
  32. 31.
    Vage, D. I., Lu, D., Klungland, H., Lien, S., Adalsteinsson, S., and Cone, R.D. (1997) A non—epistatic interaction of agouti and extension in the fox, Vulpes vulpes. Nat. Genet. 15, 311–315.Google Scholar
  33. 32.
    Klungland, H., Vage, D. I., Gomez—Raya, L., Adelsteinsson, S., and Lien, S. (1995) The role of melanocyte—stimulating hormone (MSH) receptor in bovine coat color determination. Mamm. Genome 6, 636–639.Google Scholar
  34. 33.
    Vanetti, M., Schonrock, C., Meyerhof, W., Hollt, V. (1994) Molecular cloning of a bovine MSH receptor which is highly expressed in the testis. FEBS Lett. 348, 268–272PubMedGoogle Scholar
  35. 34.
    Takeuchi, S., Suzuki, S., Hirose, S., Yabuuchi, M., Sato, C., Yamamoto, H., and Takahashi, S. (1996) Molecular cloning and sequence analysis of the chick melanocortin 1—receptor gene. Biochem. Biophys. Acta 1306, 122–126.PubMedGoogle Scholar
  36. 35.
    Vage, D., Klungland, H., Lu, D., and Cone, R. (1999) Molecular and pharmacological characterization of dominant black coat color in sheep. Mamm. Genome 10, 39–43.PubMedGoogle Scholar
  37. 36.
    Gantz, I., Konda, Y., Tashiro, T., Shimoto, Y., Miwa, H., Munzert, G., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250.PubMedGoogle Scholar
  38. 37.
    Roselli—Rehfuss, L., Mountjoy, K. G., Robbins, L. S., Mortrud, M. T., Low, M. J., Tatro, J. B., Entwistle, M. L., Simerly, R., and Cone, R. D. (1993) Identification of a receptor for ’’—MSH and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U. S. A. 90, 8856–8860.Google Scholar
  39. 38.
    Gantz, I., Miwa, H., Konda, Y., Shimoto, Y., Tashiro, T., Watson, S. J., DelValle, J., and Yamada, T. (1993) Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15,174–15, 179Google Scholar
  40. 39.
    Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B., and Cone, R. D. (1994) Localization of the melanocortin-4 receptor (MC4—R) in neuroendocrine and autonomic control cirsuits in the brain. Mol. Endocrinol. 8, 1298–1308.PubMedGoogle Scholar
  41. 40.
    Barret, P., MacDonald, A., Helliwell, R., Davidson, G., and Morgan, P. (1994) Cloning and expression of a new member of the melanocyte—stimulating hormone receptor family. J. Mol. Endocrinol. 12, 203–213.Google Scholar
  42. 41.
    Chhajlani, V., Muceniece, R., and Wikberg, J. E. S. (1993) Molecular cloning of a novel human melanocortin receptor. Biochem. Biophys. Res. Commun. 195, 866–873.PubMedGoogle Scholar
  43. 42.
    Gantz, I., Shimoto, Y., Konda, Y., Miwa, H., Dickinson, C. J., and Yamada, T. (1994) Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1214–1220.PubMedGoogle Scholar
  44. 43.
    Griffon, N., Mignon, V., Facchinetti, P., Diaz, J., Schwartz, J.—C., and Sokoloff, P. (1994) Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 200, 1007–1014.PubMedGoogle Scholar
  45. 44.
    Labbe, O., Desarnaud, F., Eggerickx, D., Vassart, G., and Parmentier, M. (1994) Molecular cloning of a mouse melanocortin 5 receptor gene widely expressed in peripheral tissues. Biochemistry. 33, 4543–4549.PubMedGoogle Scholar
  46. 45.
    Elphick, M. R. (1998) An invertebrate G—protein coupled receptor is a chimeric cannabinoid/melanocortin receptor. Brain Res. 780, 170–173.PubMedGoogle Scholar
  47. 46.
    Dixon, R. A. F., Sigal, I. S., Candelore, M. R., Register, R. B., Scatergood, A., Rands, E., and Strader, C. D. (1987) Structural features required for ligand binding to the (3—adrenergic receptor. EMBO J. 6, 3269–3275.PubMedGoogle Scholar
  48. 47.
    Karnik, S. S., Sakmann, J. P., Chen, H. B., and Khorana, H. G. (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci., U. S. A. 85, 8459–8463.Google Scholar
  49. 48.
    Eberle, A. N. (1988). The Melanotropins. Chemistry, Physiology and Mechanisms of Action. (S. Karger, Basel).Google Scholar
  50. 49.
    Hadley, M. E., Hruby, V. J., Jiang, J., Sharma, S. D., Fink, J. L., Haskell-Leuvano, C., Bentley, D. L., Al-Obeidi, F., and Sawyer, T. K. (1996) Melanocortin receptors: identification and characterization by melanotropic peptide agonists and antagonists. Pigment Cell Res. 9, 213–234.PubMedGoogle Scholar
  51. 50.
    Abdel-Malek, Z., Swope, V. B., Suzuki, I., Akcali, C., Harriger, M. D., Boyce, S. T., Urabe, K., and Hearing, V. J. (1995) Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. U. S. A. 92, 1789–1793.PubMedGoogle Scholar
  52. 51.
    Hunt, G., Donatien, P. D., Lunec, J., Todd, C., Kyne, S., and Thody, A. J. (1994) Cultured human melanocytes respond to MSH peptides and ACTH. Pigment Cell Res. 7, 217–21.PubMedGoogle Scholar
  53. 52.
    Mountjoy, K. G. (1994) The human melanocyte stimulating hormone receptor has evolved to become “super-sensitive” to melanocortin peptides. Mol. Cell. Endocrinol. 102, R7 - R11.PubMedGoogle Scholar
  54. 53.
    Eberle, A. N., de Graan, P. N. E., Baumann, J. B., Girard, J., van Hees, G., and van de Veerdonk, F. C. G. (1984) Structural requirements of a-MSH for the stimulation of MSH receptors on different pigment cells. Yale J. Biol. Med. 57, 353–354.Google Scholar
  55. 54.
    Lerner, A. B., and McGuire, J. S. (1961) Effect of alpha-and beta-melanocyte stimulating hormones on the skin color of man. Nature 189, 176–177.PubMedGoogle Scholar
  56. 55.
    Levine, N., Sheftel, S. N., Eytan, T., Dorr, R. T., Hadley, M. E., Weinrach, J. C., Ertl, G. A., Toth, K., McGee, D. L., and Hruby, V. J. (1991) Induction of skin tanning by subcataneous administration of a potent synthetic melanotropin. JAMA 266, 2730–2736.PubMedGoogle Scholar
  57. 56.
    Orth, D. N., Kovacs, W. J., and DeBold, C. R. (1992). The adrenal cortex, in Williams Textbook of Endocrinology, ( Wilson, J. D. and Foster, D. W. eds.) Saunders, Philadelphia. pp. 523.Google Scholar
  58. 57.
    Schauer, E., Trautinger, F., Kock, A., Schwarz, A., Bhardwaj, R., Simon, M., Ansel, J. C., Schwarz, T., and Luger, T. A. (1994) Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J. Clin. Invest. 93, 2258–2262.PubMedGoogle Scholar
  59. 58.
    Bateman, N. (1961) Sombre, a viable dominant mutant in the house mouse. J. Hered. 52, 186–189.Google Scholar
  60. 59.
    Carver, E. A. (1984) Coat color genetics of the German shepherd dog. J. Hered. 75, 247–252.Google Scholar
  61. 60.
    Siracusa, L. D. (1994) The agouti gene: turned on to yellow. TIG 10, 423–428.PubMedGoogle Scholar
  62. 61.
    Yen, T. T., Gill, A. M., Frigeri, L. G., Barsh, G. S., and Wolff, G. L. (1994) Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J. 8„ 479–88.Google Scholar
  63. 62.
    Conklin, B. R., and Bourne, H.R. (1993) Mouse coat color reconsidered. Nature 364, 110.PubMedGoogle Scholar
  64. 63.
    Manne, J., Argeson, A. c., and Siracusa, L. D. (1995) Mechanisms for the pleiotropic effects of the agouti gene. Proc. Natl. Acad. Sci. U. S. A. 92, 4721–4724.PubMedGoogle Scholar
  65. 64.
    Zemel, M. B., Kim, J. H., Woychik, R. P., Michaud, E. J., Kadwell, S. H., Patel, I. R., and Wilkison, W. O. (1995) Agouti regulation of intracellular calcium: Role in the insulin resistance of viable yellow mice. Proc. Natl. Acad. Sci. U. S. A. 92, 4733–4737.PubMedGoogle Scholar
  66. 65.
    Hruby, V. J., Lu, D., Sharma, S. D., Castrucci, A. L., Kesterson, R. A., Al-Obeidi, F. A., Hadley, M. E., and Cone, R. D. (1995) Cyclic lactam a-melanotropin analogues of Ac-Nle4-c[Asp4,D-Phe7, Lys1°]a-MSH(4–10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J. Med. Chem. 38, 3454–3461.PubMedGoogle Scholar
  67. 66.
    Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J., and Cone, R. D. (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168.PubMedGoogle Scholar
  68. 67.
    Huszar, D., Lynch, C. A., Fairchild—Huntress, V., Dunmore, J. H., Fang, Q., Berkemeier, L. R., Gu, W., Kesterson, R. A., Boston, B. A., Cone, R. D., Smith, F. J., Campfield, L. A., Burn, P., and Lee, F. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141.PubMedGoogle Scholar
  69. 68.
    Blanchard, S. G., Harris, C. O., Ittoop, O. R. R., Nichols, J. S., Parks, D. J., Truesdale, A. T., and Wilkison, W. O. (1995) Agouti antagonism of melanocortin binding and action in the B16F10 murine melanoma cell line. Biochemistry. 34, 10, 406–10, 411.Google Scholar
  70. 69.
    Hunt, G., and Thody, A. J. (1995) Agouti protein can act independently of melanocyte—stimulating hormone to inhibit melanogenesis. J. Endocrinol. 147, R1 — R4.PubMedGoogle Scholar
  71. 70.
    Siegrist, W., Willard, D. H., Wilkison, W. O., and Eberle, A. N. (1996) Agouti protein inhibits growth of B16 melanoma cells in vitro by acting through melanocortin receptors. Biochem. Biophys. Res. Commun. 218, 171–175.PubMedGoogle Scholar
  72. 71.
    Suzuki, I., 011mann, M., Barsh, G. S., Im, S., Lamoreux, M. L., Hearing, V. J., Nordlund, J. J., and Abdel—Malek, Z. (1997) Agouti signalling protein inhibits melanogenesis and the response of human melanocytes to a—melanotropin. J. Invest. Dermatol. 108, 838–842.PubMedGoogle Scholar
  73. 72.
    Olivera, B. M., Miljanich, G. P., Ramachandran, J., and Adams, M. E. (1994) Calcium channel diversity and neurotransmitter release: The w—Conotoxins and w—Agatoxins. Annu. Rev. Biochem. 63, 823–867.PubMedGoogle Scholar
  74. 73.
    Lefkowitz, R. J., Cotecchia, S., Samama, P., and Costa, T. (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. TiPS 14, 303–308.PubMedGoogle Scholar
  75. 74.
    Samama, P., Pei, G., Costa, T., Cotecchia, S., and Lefkowitz, R. J. (1994) Negative antagonists promote an inactive conformation of the (32 adrenergic receptor. Mol. Pharm. 45, 390–394.Google Scholar
  76. 75.
    Solca, F. F., Chluba—de Tapia, J., Iwata, K., and Eberle, A. N. (1993) B16—G4F mouse melanoma cells: an MSH receptor—deficient clone. FEBS Lett. 322, 177–180.Google Scholar
  77. 76.
    Gantz, I., Yamada, T., Tashiro, T., Konda, Y., Shimoto, Y., Miwa, H., and Trent, J. M. (1994) Mapping of the gene encoding the melanocortin-1 (alpha—melanocyte stimulating hormone receptor (MC1—R) to human chromosome 16q24.3 by fluoresence in situ hybridization. Genomics 19, 394–395.PubMedGoogle Scholar
  78. 77.
    Magenis, R. E., Smith, L., Nadeau, J. H., Johnson, K. R., Mountjoy, K. G., and Cone, R. D. (1994) Mapping of the ACTH, MSH, and neural (MC3 and MC4) melanocortin receptors in the mouse and human. Mamm. Genome 5, 503–508.PubMedGoogle Scholar
  79. 78.
    Falconer, D. S. (1962) Sombre (So) on LG XVIII. Mouse News Lett. 27, 30.Google Scholar
  80. 79.
    Meredith, R. (1971) Linkage of am and e. Mouse News Lett. 45, 31.Google Scholar
  81. 80.
    Searle, A. G. and Beechey, C. V. (1970) Linkage of Os and Eso. Mouse News Lett. 42, 27.Google Scholar
  82. 81.
    Cone, R. D., Mountjoy, K. G., Robbins, L. S., Nadeau, J. H., Johnson, K. R., Roselli—Rehfuss, L., and Mortrud, M. T. (1993) Cloning and functional characterization of a family of receptors for the melanotropic peptides. Ann. N. Y. Acad. Sci. 680, 342–363.Google Scholar
  83. 82.
    Hauschka, T. S., Jacobs, B. B., and Holdridge, B. A. (1968) Recessive yellow and its interaction with belted in the mouse. J. Hered. 59, 339–341.PubMedGoogle Scholar
  84. 83.
    von Lehmann, E. (1973) Coat color genetics of the tobacco-mouse (Mus poschiavinus Fatio). Mouse News Lett. 48, 23.Google Scholar
  85. 84.
    Adalsteinsson, S., Bjarnadottir, S., Vage, D. I., and Jonmundsson, J. V. (1995) Brown coat color in Icelandic cattle produced by the loci agouti and extension. J. Hered. 86, 395–398.PubMedGoogle Scholar
  86. 85.
    Adalsteinsson, S., Hersteinsson, P., and Gunnarsson, E. (1987) Fox colors in relation to colors in mice and sheep. J. Hered. 78, 235–237.PubMedGoogle Scholar
  87. 86.
    Ashbrook, F. G. (1937) The breeding of fur animals. Year. Agric. 1379–1395.Google Scholar
  88. 87.
    Lyon, M. F. (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373.PubMedGoogle Scholar
  89. 88.
    Cone, R. D., Lu, D., Chen, W., Koppula, S., Vage, D. I., Klungland, H., Boston, B., Orth, D. N., Pouton, C., and Kesterson, R. A. (1996) The melanocortin receptors: agonists, antagonists, and the hormonal control of pigmentation. Recent Prog. Horm. Res. 51, 287–318.Google Scholar
  90. 89.
    Frandberg, P.-A., Muceniece, R., Prusis, P., Wikberg, J., and Chhajlani, V. (1994) Evidence for Alternate Points of Attachment for a-MSH and its Stereoisomer [Nle°,D-Phe’]-a-MSH at the Melanocortin-1 Receptor. Biochem. Biophys. Res. Commun. 202, 1266–1271.PubMedGoogle Scholar
  91. 90.
    Chhajlani, V., Xu, X., Blauw, J., and Sudarshi, S. (1996) Identification of ligand binding residues in extracellular loops of the melanocortin 1 receptor. Biochem. Biophys. Res. Commun. 219, 521–525.PubMedGoogle Scholar
  92. 91.
    Lu, D., Vage, D. I., and Cone, R. D. (1998) A ligand-mimetic model for the constitutive activation of the melanocortin-1 receptor. Mol. Endocrinol. 12, 592–604.PubMedGoogle Scholar
  93. 92.
    Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M., and Henderson, R. (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.PubMedGoogle Scholar
  94. 93.
    Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990) Model for the strucuture of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.PubMedGoogle Scholar
  95. 94.
    Schertler, G. F. X., C., V. and R., H. (1993) Projection structure of rhodopsin. Nature 362, 770–772.Google Scholar
  96. 95.
    Kyte, J. and Doolittle, R. F. (1982) A simple method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157, 105–132.PubMedGoogle Scholar
  97. 96.
    Baldwin, J. (1993) The probable arrangement of helices in the G protein-coupled receptors. EMBO J. 12, 1693–1703.PubMedGoogle Scholar
  98. 97.
    Haskell-Luevano, C., Sawyer, T. K., Trumpp-Kallmeyer, S., Bikker, J. A., Humblet, C., Gantz, I., and Hruby, V. J. (1996) Three-dimensional molecular models of the hMC1R melanocortin receptor: complexes with melanotropin peptide agonists. Drug Des. Discov. 14, 197–211.PubMedGoogle Scholar
  99. 98.
    Lu, D., Haskell-Luevano, C., Vage, D. I., and Cone, R. D. (1998). Functional variants of the MSH receptor (MC1-R), agouti, and their effects on mammalian pigmentation, in G Proteins, Receptors, and Disease, ( Spiegel, A. M. ed.) Humana Press, Totowa pp. 231–260.Google Scholar
  100. 99.
    Prusis, P., Frändberg, P.-A., Muceniece, R., Kalvinsh, I., and Wikberg, J. E. S. (1995) A three dimensional model for the interaction of MSH with the melanocortin-1 receptor. Biochem. Biophys. Res. Commun. 210, 205–210.PubMedGoogle Scholar
  101. 100.
    Prusis, P., Schioth, H. B., Muceniece, R., Herzyk, P., Afshar, M., Hubbard, R. E., and Wikberg, J. E. (1997) Modeling of the three-dimensional structure of the human melanocortin 1 receptor, using an automated method and docking of a rigid cyclic melanocyte-stimulating hormone core peptide. J. Mol. Graph. Model. 15, 307–317.PubMedGoogle Scholar
  102. 101.
    Strader, C. D., Fong, T. M., Tota, M. R., Underwood, D., and Dixon, R. A. F. (1994) Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 63, 101–132.PubMedGoogle Scholar
  103. 102.
    Savarese, T. M. and Fraser, C. M. (1992) In Vitro Mutagenesis and the Search for Structure-function relationships among G protein-coupled receptors. Biochem. J. 283, 1–19.PubMedGoogle Scholar
  104. 103.
    Zhu, S. Z., Wang, S. Z., Hu, J., and El-Fakahany, E. E. (1994) An arginine residue conserved in most g protein-coupled receptors is essential for the function of the ml muscarinic receptor. Mol. Pharm. 45, 517–523.Google Scholar
  105. 104.
    Williams, K. A. and Deber, C. M. (1991) Proline residues in transmembrane helicies: structural or dynamic role? Biochemistry 30, 8919–8923.PubMedGoogle Scholar
  106. 105.
    Xia, Y., Wikberg, J. E. S., and Chhajlani, V. (1995) Expression of melanocortin 1 receptor in periaqueductal gray matter. NeuroReport 6, 2193–2196.Google Scholar
  107. 106.
    Schioth, H. B., Muceniece, R., Wikberg, J. E. S., and Chhajlani, V. (1995) Characterisation of melanocortin receptor subtypes by radioligand binding analysis. Eur. J. Pharmacol. (Mol. Pharmacol. Sec.) 288, 311–317.Google Scholar
  108. 107.
    Thornwall, M., Dimitriou, A., Xu, X., Larsson, E., and Chhajlani, V. (1997) Immunohistochemical detection of the melanocortin 1 receptor in human testis, ovary and placenta using specific monoclonal antibody. Horm. Res. 48, 215–218.PubMedGoogle Scholar
  109. 108.
    Rajora, N., Ceriani, G., Catania, A., Star, R. A., Murphy, M. T., and Lipton, J. M. (1996) a-MSH production, receptors, and influence on neopterin in a human monocyte/macrophage cell line. J. Leukoc. Biol. 59, 248–253.Google Scholar
  110. 109.
    Star, R. A., Rajora, N., Huang, J., Stock, R. C., Catania, A., and Lipton, J. M. (1995) Evidence of autocrine modulation of macrophage nitric oxide synthase by a-melanoctye-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 92, 8016–8020.PubMedGoogle Scholar
  111. 110.
    Catania, A., Rajora, N., Capsoni, F., Minonzio, F., Star, R. A., and Lipton, J. M. (1996) The neuropeptide a-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 17, 675–679.Google Scholar
  112. 111.
    Hartmeyer, M., Scholzen, T., Becher, E., Bhardwaj, R. S., Schwarz, T., and Luger, T. A. (1997) Human dermal microvascular endothelial cells express the melanocortin receptor type 1 and produce increased levels of IL-8 upon stimulation with a-melanocyte-stimulating hormone. J. Immunol. 159, 1930–1937.PubMedGoogle Scholar
  113. 112.
    Bhardwaj, R. S., Schwarz, A., Becher, E., Mahnke, K., Aragane, Y., Schwarz, T., and Luger, T. A. (1996) Pro-opiomelanocortin-derived peptides induce IL-10 production in human monocytes. J. Immunol. 156, 2517–2521.PubMedGoogle Scholar
  114. 113.
    Lane, P. W. and Green, M. C. (1960) Mahogany, a recessive color mutation in linkage group V of the mouse. J. Hered. 51, 228–230.Google Scholar
  115. 114.
    Bultman, S. J., Kiebig, M. L., Michaud, E. J., Sweet, H. O., Davisson, M. T., and Woychik, R. P. (1994) Molecular analysis of reverse mutations from nonagouti (a) to black-and-tan (a`) and white-bellied agouti (Al reveals alternative forms of agouti transcripts. Genes Dey. 8, 481–490.Google Scholar
  116. 115.
    Kwon, H. Y., Bultman, S. J., Loffler, C., Chen, W.-J., Furdon, P. J., Powell, J. G., Usala, A.-L., Wilkison, W., Hansmann, I., and Woychik, R. P. (1994) Molecular structure and chromosomal mapping of the human homolog of the agouti gene. Proc. Natl. Acad. Sci., U. S. A. 91, 9760–9764.Google Scholar
  117. 116.
    Wilson, B. D., 011mann, M. M., Kang, L., Stoffel, M., Bell, G. I., and Barsh, G. S. (1995) Structure and function of ASP, the human human homnologue of the mouse agouti gene. Hum. Mol. Genet. 4, 223–230.PubMedGoogle Scholar
  118. 117.
    Johnson, R. A. and Salomon, Y. (1991) Assay of adenylyl cyclase catalytic activity. Methods Enzymol. 195, 3–21.PubMedGoogle Scholar
  119. 118.
    Chen, W., Shields, T. S., Stork, P. J. S., and Cone, R. D. (1995) A colorimetric assay for measuring activation of Gs and Gq coupled signaling pathways. Anal. Biochem. 226, 349–354.PubMedGoogle Scholar
  120. 119.
    Gunn, T. M., Miller, K. A., He, L., Hyman, R. W., Davis, R. W., Azarani, A., Schlossman, S.F., Duke-Cohan, J. S. and Barsh, G. S. (1999) The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 398, 1521–1526.Google Scholar
  121. 120.
    Nagle, D. L., McGrail, S. H., Vitale, J., Woolf, E. Z., Dussault, B. J., Jr., DiRocco, L., Holmgren, L., Montagno, J., Bork, P., Huszar, D., Fairchild-Huntress, V., Ge, P., Keilty, J., Ebeling, C., Baldini, L., Gilchrist, J., Burn, P., Carlson, G. A., and Moore, K. J. (1999) The mahogany protein is a receptor involved in suppression of obesity. Nature 398, 148–152.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Dongsi Lu
  • Carrie Haskell-Luevano
  • Dag Inge Vage
  • Roger D. Cone

There are no affiliations available

Personalised recommendations