Miscellaneous Antibiotics

  • Gregory M. Susla
Part of the Infectious Disease book series (ID)


This chapter discusses the interactions of antibiotics that may be the only available agents from a class of antibiotics that is used clinically today. Chloramphenicol and tetracycline are older agents that are less frequently prescribed, so many clinicians may not be familiar with their interactions with other medications. Many of the interacting agents also are less frequently prescribed, such as first-generation oral hypoglycemic agents. Since many of the interactions in this chapter are based on single case reports, it is difficult to determine the mechanism of the interaction and if a true interaction exists. The existence of some interactions may be questioned because of other potential causes that may have been present when the interaction was discovered.


Antimicrob Agent Neuromuscular Blockade Loop Diuretic Ethinyl Estradiol Aminoglycoside Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spika JS, Davis DJ, Martin SR, et al. Interaction between chloramphenicol and acetaminophen. Arch Dis Child 1986; 61: 1211–1124.CrossRefGoogle Scholar
  2. 2.
    Kearns GL, Bocchini JA, Brown RD, et al. Absence of a pharmacokinetic interaction between chloramphenicol and acetaminophen in children. J Pediatr 1985; 107: 134–139.PubMedCrossRefGoogle Scholar
  3. 3.
    Stein CM, Thornhill DP, Neill P, et al. Lack of effect of paracetamol on the pharmacokinetics of chloramphenicol. Br J Clin Pharmacol 1989; 27: 262–264.PubMedCrossRefGoogle Scholar
  4. 4.
    Bloxham RA, Durbin GM, Johnson T, et al. Chloramphenicol and phenobarbitone-a drug interaction. Arch Dis Child 1979; 54: 76, 77.Google Scholar
  5. 5.
    Powell DA, Nahata MC, Durrell DC, et al. Interactions among chloramphenicol, phenytoin, and phenobarbital in a pediatric patient. J Pediatr 1981; 98: 1001–1003.PubMedCrossRefGoogle Scholar
  6. 6.
    Koup JR, Gibaldi M, McNamara P, et al. Interaction of chloramphenicol with phenytoin and phenobarbital. Clin Pharmacol Ther 1987; 24: 571–575.Google Scholar
  7. 7.
    Ballek RE, Reidenberg MM, Orr L. Inhibition of diphenylhydantoin metabolism by chloramphenicol. Lancet 1973; 1: 150.PubMedCrossRefGoogle Scholar
  8. 8.
    Greenlaw CW. Chloramphenicol-phenytoin interaction. Drug Intell Clin Pharm 1979; 13: 609, 610.Google Scholar
  9. 9.
    Saltiel M, Stephens NM. Phenytoin-chloramphenicol interaction. Drug Intell Clin Pharm 1980; 14: 221.Google Scholar
  10. 10.
    Christensen LK, Skovsted L. Inhibition of metabolism by chloramphenicol. Lancet 1969; 2: 1397–1399.PubMedCrossRefGoogle Scholar
  11. 11.
    Brunova E, Slabochova Z, Platilova H, et al. Interaction of tolbutamide and chloramphenicol in diabetic patients. Int J Clin Pharmacol 1977; 15: 7–12.Google Scholar
  12. 12.
    Petitpierre B, Fabre J. Chlorpropamide and chloramphenicol. Lancet 1970; 1: 789.PubMedCrossRefGoogle Scholar
  13. 13.
    Wallace JF, Smith RH, Garcia M, et al. Studies on the pathogenesis of meningitis. VI. Antagonism between penicillin and chloramphenicol in experimental pneumococcal meningitis. J Lab Clin Med 1967; 70: 408–418.PubMedGoogle Scholar
  14. 14.
    Jawetz E. The use of combinations of antimicrobial drugs. Annu Rev Pharmacol 1968; 8: 151–170.PubMedCrossRefGoogle Scholar
  15. 15.
    Deritis F, Giammanco G, Manzillo G. Chloramphenicol combined with ampicillin in treatment of typhoid. Br Med J 1972; 4: 17, 18.Google Scholar
  16. 16.
    French GL, Ling TKW, Davies DP, et al. Antagonism of ceftazidime by chloramphenicol in vitro and in vivo during treatment of gram negative meningitis. Br Med J 1985; 291: 636, 637.Google Scholar
  17. 17.
    Prober C. G. Effect of rifampin on chloramphenicol levels. N Engl J Med 1985; 312: 788, 789.Google Scholar
  18. 18.
    Kelly HW, Couch RC, Davis RL, et al. Interaction of chloramphenicol and rifampin. J Pediatr 1988; 112: 817–820.PubMedCrossRefGoogle Scholar
  19. 19.
    Koch-Weser J, Sellars EM. Drug interactions with coumarin anticoagulants (first of two parts). N Engl J Med 1971; 285: 487–498.CrossRefGoogle Scholar
  20. 20.
    Koch-Weser J, Sellars EM. Drug interactions with coumarin anticoagulants (second of two parts). N Engl J Med 1971; 285: 547–558.CrossRefGoogle Scholar
  21. 21.
    Finegold SM. Interaction of antimicrobial therapy and intestinal flora. Am J Clin Nutr 1970; 23: 1466–1471.PubMedGoogle Scholar
  22. 22.
    Klippel AP, Pitsinger B. Hypoprothrombinemia secondary to antibiotic therapy and manifested by massive gastrointestinal hemorrhage. Arch Surg 1968; 96: 266–268.PubMedCrossRefGoogle Scholar
  23. 23.
    Becker LD, Miller RD. Clindamycin enhances a nondepolarizing neuromuscular blockade. Anesthesiology 1976; 45: 84–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Rubbo JT, Sokoll MD, Gergis SD. Comparative neuromuscular effects of lincomycin and clindamycin. Anesth Analg 1977; 56: 329–332.PubMedCrossRefGoogle Scholar
  25. 25.
    Wright JM, Collier B. Characterization of the neuromuscular block produced by clindamycin and lincomycin. Can J Physiol Pharmacol 1976; 54: 937–944.PubMedCrossRefGoogle Scholar
  26. 26.
    Butkus DE, de Torrente A, Terman DS. Renal failure following gentamicin in combination with clindamycin. Nephron 1976; 17: 307–313.PubMedCrossRefGoogle Scholar
  27. 27.
    Spivey JM, Gal P. Vancomycin pharmacokinetic in neonates. Am J Dis Child 1986; 140: 859.PubMedGoogle Scholar
  28. 28.
    Huang KC, Heise A, Shrader AK, et al. Vancomycin enhances the neuromuscular blockade of vecuronium. Anesth Analg 1990; 71: 194–196.PubMedCrossRefGoogle Scholar
  29. 29.
    Barg NL, Supena RB, Fekety R. Persistent staphylococcal bacteremia in an intravenous drug abuser. Antimicrob Agents Chemother 1986; 29: 209–211.PubMedCrossRefGoogle Scholar
  30. 30.
    Angaran DM, Dias VC, Arom KV, et al. The comparative influence of prophylactic antibiotics on the prothrombin response to warfarin in the postoperative prosthetic cardiac valve patient. Ann Surg 1987; 206: 155–161.PubMedCrossRefGoogle Scholar
  31. 31.
    Tilstone WJ, Gray JM, Nimmo-Smith RH, et al. Interaction between warfarin and sulphamethoxazole. Postgrad Med J 1977; 53: 388–390.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaufman JM, Fauver HE. Potentiation of warfarin by trimethoprim-sulfamethoxazole. Urology 1980; 16: 601–603.PubMedCrossRefGoogle Scholar
  33. 33.
    Greenlaw CW. Drug interaction between co-trimoxazole and warfarin. Am J Hosp Pharm 1979; 36: 1155.PubMedGoogle Scholar
  34. 34.
    Errick JK, Keys PW. Co-trimoxazole and warfarin: case report of an interaction. Am J Hosp Pharm 1978; 35: 1399–1401.PubMedGoogle Scholar
  35. 35.
    O’Reilly RA, Motley CH. Racemic warfarin and trimethoprim-sulfamethoxazole interaction in humans. Ann Intern Med 1979; 91: 34–36.PubMedCrossRefGoogle Scholar
  36. 36.
    O’Reilly RA. Stereoselective interaction of trimethoprim-sulfamethoxazole with the separated enantiomorphs of racemic warfarin in man. N Engl J Med 1980; 302: 33–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Jaffe JM, Colaizzi JL, Poust RI, et al. Effect of altered urinary pH on tetracycline and doxycycline excretion in humans. J Pharmacokinet Biopharm 1973; 1: 267–282.CrossRefGoogle Scholar
  38. 38.
    Jaffe JM, Poust RL, Feld SL, et al. Influence of repetitive dosing and altered pH on doxycycline excretion in humans. J Pharm Sci 1974; 63: 1256–1260.PubMedCrossRefGoogle Scholar
  39. 39.
    Chin TF, Lach JL. Drug diffusion and bioavailability: tetracycline metallic chelation. Am J Hosp Pharm 1975; 32: 625–529.PubMedGoogle Scholar
  40. 40.
    Ericsson CD, Feldman S, Pickering LK, et al. Influence of subsalicylate bismuth on absorption of doxycycline. JAMA 1982; 247: 2266, 2267.Google Scholar
  41. 41.
    Albert KS, Welch RD, DeSante KA, et al. Decreased tetracycline bioavailability caused by a bismuth subsalicylate antidiarrheal mixture. J Pharm Sci 1979; 68: 586–588.PubMedCrossRefGoogle Scholar
  42. 42.
    Friedman H, Greenblatt DJ, LeDuc BW. Impaired absorption of tetracycline by colestipol is not reversed by orange juice. J Clin Pharmacol 1989; 29: 748–751.PubMedCrossRefGoogle Scholar
  43. 43.
    Lindenbaum J, Rund DG, Butler VP, et al. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 1981; 305: 789–794.PubMedCrossRefGoogle Scholar
  44. 44.
    Penttila O, Neuvonen PJ, Aho K, et al. Interaction between doxycycline and some antiepileptic drugs. Br Med J 1974; 2: 470–472.PubMedCrossRefGoogle Scholar
  45. 45.
    Neuvonen PJ, Penttila O, Lehtovaara R, et al. Effect of antiepileptic drugs on the elimination of various tetracycline derivatives. Eur J Clin Pharmacol 1975; 9: 147–154.PubMedCrossRefGoogle Scholar
  46. 46.
    Neuvonen PJ, Penttila O. Interaction between doxycyline and barbiturates. Br Med J 1974; 1: 535, 536.Google Scholar
  47. 47.
    Westfall LK, Mintzer DL, Wiser TH. Potentiation of warfarin by tetracycline. Am J Hosp Pharm 1980; 37: 1620–1625.PubMedGoogle Scholar
  48. 48.
    Caraco Y, Rubinow A. Enhanced anticoagulant effect of coumarin derivatives induced by doxycycline coadministration. Ann Pharmacother 1992; 26: 1084–1086.PubMedGoogle Scholar
  49. 49.
    McGennis AJ. Lithium carbonate and tetracycline interaction. Br Med J 1978; 1: 1183.PubMedCrossRefGoogle Scholar
  50. 50.
    Fankhauser MP, Lindon JL, Connolly B, et al. Evaluation of lithium-tetracycline interaction. Clin Pharm 1988; 7: 314–317.PubMedGoogle Scholar
  51. 51.
    McCormack JP, Reid SE, Lawson LM. Theophylline toxicity induced by tetracycline. Clin Pharm 1990; 9: 546–549.PubMedGoogle Scholar
  52. 52.
    Kawai M, Honda A, Yoshida H, et al. Possible theophylline-minocycline interaction. Ann Pharmacother 1992; 26: 1300, 1301.Google Scholar
  53. 53.
    Pfeifer Hi, Greenblatt DJ, Friedman P. Effects of three antibiotics on theophylline kinetics. Clin Pharmacol Ther 1979; 26: 36–40.Google Scholar
  54. 54.
    Mathis JW, Prince RA, Weinberger MM, et al. Effect of tetracycline hydrochloride on theophylline kinetics. Clin Pharm 1982; 1: 446–448.PubMedGoogle Scholar
  55. 55.
    Gotz VP, Ryerson GG. Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease. Drug Intell Clin Pharm 1986; 20: 694–697.PubMedGoogle Scholar
  56. 56.
    Jonkman JHG, van der Boon WJV, Schoenmaker R, et al. No influence of doxycycline on theophylline pharmacokinetics. Ther Drug Monit 1985; 7: 92–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Bacon JF, Shenfield GM. Pregnancy attributable to interaction between tetracycline and oral contraceptives. Br Med J 1980; 280: 293.PubMedCrossRefGoogle Scholar
  58. 58.
    DeSano EA, Hurley SC. Possible interactions of antihistamines and antibiotics with oral contraceptive effectiveness. Fertil Steril 1982; 37: 853, 854.Google Scholar
  59. 59.
    Neely JL, Abate M, Swinkler M, et al. The effect of doxycycline on serum levels of ethinyl estradiol, norethindrone, and endogenous progesterone. Obstet Gynecol 1991; 77: 416–420.PubMedGoogle Scholar
  60. 60.
    Murphy AA, Zacur HA, Charache P, et al. The effect of tetracycline on levels of oral contraceptives. Am J Obstet Gynecol 1991; 164: 28–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Churchill DN, Seely J. Nephrotoxicity associated with combined gentamicin-amphotericin B therapy. Nephron 1977; 19: 176–181.PubMedCrossRefGoogle Scholar
  62. 62.
    Kroenfeld MA, Thomas SJ, Turndorf H. Recurrence of neuromuscular blockade after reversal of vecuronium in a patient receiving polymyxin/amikacin sternal irrigation. Anesthesiology 1986; 65: 93, 94.Google Scholar
  63. 63.
    Warner WA, Sanders E. Neuromuscular blockade associated with gentamicin therapy. JAMA 1971; 215: 1153, 1154.Google Scholar
  64. 64.
    Levanen J, Nordman R. Complete respiratory paralysis caused by a large dose of streptomycin and its treatment with calcium chloride. Ann Clin Res 1975; 7: 47–49.PubMedGoogle Scholar
  65. 65.
    Lippmann M, Yang E, Au E, et al. Neuromuscular blocking effects of tobramycin, gentamicin, and cefazolin. Anesth Analg 1982; 61: 767–770.PubMedGoogle Scholar
  66. 66.
    Duouis JY, Martin R, Tetrault JP. Atracurium and vecuronium interaction with gentamicin and tobramycin. Can J Anaesth 1989; 36: 407–411.CrossRefGoogle Scholar
  67. 67.
    Singh YN, Marshall IG, Harvey AL. Pre-and postjunctional blocking effects of aminoglycoside, polymyxin, tetracycline and lincosamide antibiotics. Br J Anaesth 1982; 54: 1295–1306.PubMedCrossRefGoogle Scholar
  68. 68.
    Zarfarin Y, Koren G, Maresky D, et al. Possible indomethacin-aminoglycoside interaction in preterm infants. J Peds 1985; 106: 511–513.CrossRefGoogle Scholar
  69. 69.
    Termeer A, Hoitsma AJ, Koene RAP. Severe nephrotoxicity caused by the combined use of gentamicin and cyclosporine in renal allograft recipients. Transplantation 1986; 42: 220, 221.Google Scholar
  70. 70.
    Christensen ML, Stewart CF, Crom WR. Evaluation of aminoglycoside disposition in patients previously treated with cisplatin. Ther Drug Monit 1989; 11: 631–636.PubMedCrossRefGoogle Scholar
  71. 71.
    Gonzalez-Vitale JC, Hayes DM, Cvitkovic E, et al. Acute renal failure after cisdichlorodiammineplatinum(II) and gentamicin-cephalothin therapies. Cancer Treat Rep 1978; 62: 693–698.PubMedGoogle Scholar
  72. 72.
    Salem PA, Jabboury KW, Khalil MF. Severe nephrotoxicity: a probable complication of cis-dichlorodiammineplatinum (II) and cephalothin-gentamicin therapy. Oncology 1982; 39: 31, 32.Google Scholar
  73. 73.
    Kohn S, Fradis M, Podoshin L, et al. Ototoxicity resulting from combined administration of cisplatin and gentamicin. Laryngoscope 1997; 107: 407, 408.Google Scholar
  74. 74.
    Dentino M, Luft F. C, Yum M. N, et al. Long-term effect of cis-diamminedichloride platinum (CDDP) on renal function and structure in man. Cancer 1978; 41: 1274–1281.PubMedCrossRefGoogle Scholar
  75. 75.
    Lee EJ, Egorin MJ, Van Echo DA, et al. Phase I and pharmacokinetic trial of carboplatin in refractory adult leukemia. J Natl Cancer Inst 1988; 80: 131–135.PubMedCrossRefGoogle Scholar
  76. 76.
    Bregman CL, Williams PD. Comparative nephrotoxicity of carboplatin and cisplatin in combination with tobramycin. Cancer Chemother Pharmacol 1986; 18: 117–123.PubMedCrossRefGoogle Scholar
  77. 77.
    Kaka JS, Lyman C, Kilarski DJ. Tobramycin-furosemide interaction. Drug Intell Clin Pharm 1984; 18: 235–238.PubMedGoogle Scholar
  78. 78.
    Mathog RH, Klein WJ. Ototoxicity of ethacrynic acid and aminoglycoside antibiotics in uremia. N Engl J Med 1969; 280: 1223, 1224.Google Scholar
  79. 79.
    Smith CR, Lietman PS. Effect of furosemide on aminoglycoside-induced nephrotoxicity and auditory toxicity in humans. Antimicrob Agents Chemother 1983; 23: 133–137.PubMedCrossRefGoogle Scholar
  80. 80.
    Pillay VKG, Schwartz FD, Aimi K, et al. Transient and permanent deafness following treatment with ethacrynic acid in renal failure. Lancet 1969; 1: 77–79.PubMedCrossRefGoogle Scholar
  81. 81.
    Meriweather WD, Mangi RJ, Serpick AA. Deafness following standard intravenous doses of ethacrynic acid. JAMA 1971; 216: 795–798.CrossRefGoogle Scholar
  82. 82.
    Cimino MA, Rotstein C, Slaughter RL, et al. Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am J Med 1987; 83: 1091–1097.PubMedCrossRefGoogle Scholar
  83. 83.
    Pauly DJ, Musa DM, Lestico MR, et al. Risk of nephrotoxicity with combination vancomycin-aminoglycoside antibiotic therapy. Pharmacotherapy 1990; 10: 378–382.PubMedGoogle Scholar
  84. 84.
    Mellor JA, Kingdom J, Cafferkey M, et al. Vancomycin toxicity: a prospective study. J Antimicrob Chemother 1985; 15: 773–780.PubMedCrossRefGoogle Scholar
  85. 85.
    Ryback MJ, Albrecht LM, Boike SC, et al. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 1990; 25: 679–687.CrossRefGoogle Scholar
  86. 86.
    Lampasona V, Crass RE, Reines HD. Decreased serum tobramycin concentrations in patient with renal failure. Clin Pharm 1983; 2: 6–9.PubMedGoogle Scholar
  87. 87.
    Russo M. Penicillin-aminoglycoside inactivation: another possible mechanism of interaction. Am J Hosp Pharm 1980; 37: 702–704.PubMedGoogle Scholar
  88. 88.
    Chow MSS, Quintiliani R, Nightingale CH. In vivo inactivation of tobramycin by ticarcillin. JAMA 1982; 247: 658, 659.Google Scholar
  89. 89.
    Kradjan WA, Burger R. In vivo inactivation of gentamicin by carbenicillin and ticarcillin. Arch Intern Med 1980; 140: 1668–1670.PubMedCrossRefGoogle Scholar
  90. 90.
    Schentag JJ, Simons GW, Schultz RW, et al. Complexation versus hemodialysis to reduce elevated aminoglycoside serum concentrations. Pharmacotherapy 1984; 4: 374–380.PubMedGoogle Scholar
  91. 91.
    Uber WE, Brundage RR, White RL, et al. In vivo inactivation of tobramycin by piperacillin. Ann Pharmacother 1991; 25: 357–359.Google Scholar
  92. 92.
    Thompson MIB, Russo ME, Saxon BJ, et al. Gentamicin inactivation by piperacillin or carbenicillin in patients with end-stage renal disease. Antimicrob Agents Chemother 1982; 21: 268–273.PubMedCrossRefGoogle Scholar
  93. 93.
    Ervin FR, Bullock WE, Nuttall CE. Inactivation of gentamicin by penicillins in patients with renal failure. Antimicrob Agents Chemother 1976; 9: 1004–1031.PubMedCrossRefGoogle Scholar
  94. 94.
    Wallace SM, Chan LY. In vitro interaction of aminoglycosides with (3-lactam penicillins. Antimicrob Agents Chemother 1985; 28: 274–281.PubMedCrossRefGoogle Scholar
  95. 95.
    Henderson JL, Polk RE, Kline BJ. In vitro inactivation of gentamicin, tobramycin, and netilmicin by carbenicillin, azlocillin, or mezlocillin. Am J Hosp Pharm 1981; 38: 1167–1170.PubMedGoogle Scholar
  96. 96.
    Pickering LK, Gearhart P. Effect of time and concentration upon interaction between gentamicin, tobramycin, netilmicin, or amikacin and carbenicillin or ticarcillin. Antimicrob Agents Chemother 1979; 15: 592–596.PubMedCrossRefGoogle Scholar
  97. 97.
    Pickering LK, Rutherford I. Effect of concentration and time upon inactivation of tobramycin, gentamicin, netilmicin, and amikacin by azlocillin, carbenicillin, mecillinam, mezlocillin, and piperacillin. J Pharmacol Exp Ther 1981; 217: 345–349.PubMedGoogle Scholar
  98. 98.
    Hold HA, Broughall JM, McCarthy M, et al. Interactions between aminoglycoside antibiotics and carbenicillin or ticarcillin. Infection 1976; 4: 107–109.CrossRefGoogle Scholar
  99. 99.
    Davies M, Morgan JR, Anand C. Interaction of carbenicillin and ticarcillin with gentamicin. Antimicrob Agents Chemother 1975; 7: 431–434.PubMedCrossRefGoogle Scholar
  100. 100.
    Mclaughlin JE, Reeves DS. Clinical and laboratory evidence of inactivation of gentamicin by carbenicillin. Lancet 1971; 1: 261–264.PubMedCrossRefGoogle Scholar
  101. 101.
    Rich DS. Recent information about inactivation of aminoglycosides by carbenicillin, and ticarcillin• clinical implications. Hosp Pharm 1983; 18: 41–43.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Gregory M. Susla

There are no affiliations available

Personalised recommendations