Advertisement

Drugs for Tuberculosis

  • Charles A. Peloquin
Part of the Infectious Disease book series (ID)

Abstract

Tuberculosis (TB) represents one of the classic diseases where combinations of drugs are the cornerstone of therapy. The effective treatment of TB requires the use of multiple agents to avoid the development of resistance, so the prevailing attitude toward polypharmacy in this context is positive (1). However, because patients with TB are often infected with other pathogens, especially HIV, we must reevaluate the potential negative consequences of polypharmacy. This chapter will assess the risk for drug interactions in patients with TB, including drug—drug interactions, drug—food interactions, and interactions associated with overlapping adverse effects.

Keywords

Optic Neuritis Hepatic Microsomal Enzyme Antimycobacterial Agent Acidic Beverage Mycobacterium Avium Complex Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peloquin CA, Ebert SC. Tuberculosis. In DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM. (eds.). Pharmacotherapy: A Pathophysiologic Approach, 4th ed. Stamford, CT: Appleton & Lange, 1999, pp. 1717–1736.Google Scholar
  2. 2.
    Centers for Disease Control and Prevention. Reported tuberculosis in the United States, 1997. CDC July 1998: 1–83.Google Scholar
  3. 3.
    Lobato MN, Hopewell PC. Mycobacterium tuberculosis infection after travel to or contact with visitors from countries with a high prevalence of tuberculosis. Am J Respir Crit Care Med 1998; 158: 1871–1875.PubMedCrossRefGoogle Scholar
  4. 4.
    Centers for Disease Control and Prevention. Updated guidelines for the use of rifabutin or rifampin for the treatment and prevention of tuberculosis among HIV-infected patients taking protease inhibitors or nonnucleoside reverse transcriptase inhibitors. MMWR Weekly; 2000; 49 (09): 185–189.Google Scholar
  5. 5.
    American Thoracic Society. Treatment of tuberculosis and tuberculosis infection in adults and children. Am J Respir Crit Care Med 1994; 149: 1359–1374.CrossRefGoogle Scholar
  6. 6.
    Peloquin CA, Namdar R, Dodge AA, Nix DE. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Intl J Tuberc Lung Dis 1999; 21: 703–710.Google Scholar
  7. 7.
    Peloquin CA, Namdar R, Singleton MD, Nix DE. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999; 115: 12–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 1999; 43: 568–572.PubMedGoogle Scholar
  9. 9.
    Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, James GT, Nix DE. Pharmacokinetics of pyrazinamide under fasting conditions, with food, and with antacids. Pharmacotherapy 1998; 18: 1205–1211.PubMedGoogle Scholar
  10. 10.
    Sahai J, Gallicano K, Swick L, et al. Reduced plasma concentrations of antiturberculous drugs in patients with HIV infection. Ann Intern Med 1997; 127: 289–293.PubMedCrossRefGoogle Scholar
  11. 11.
    Peloquin CA, Nitta AT, Burman WJ, et al. Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 1996; 30: 919–925.PubMedGoogle Scholar
  12. 12.
    Berning SE, Huitt GA, Iseman MD, Peloquin CA. Malabsorption of antituberculosis medications by a patient with AIDS (letter). N Engl J Med 1992; 327: 1817–1818.PubMedCrossRefGoogle Scholar
  13. 13.
    Patel KB, Belmonte R, Crowe HM. Drug malabsorption and resistant tuberculosis in HIV-infected patients (letter). N Engl J Med 1995; 332: 336–337.PubMedCrossRefGoogle Scholar
  14. 14.
    Peloquin CA, MacPhee AA, Berning SE. Malabsorption of antimycobacterial medications (letter). N Engl J Med. 1993; 329: 1122–1123.PubMedCrossRefGoogle Scholar
  15. 15.
    Gordon SM, Horsburgh CR Jr, Peloquin CA, et al. Low serum levels of oral antimycobacterial agents in patients with disseminated Mycobacterium avium complex disease. J Infect Dis 1993; 168: 1559–1562.PubMedCrossRefGoogle Scholar
  16. 16.
    Peloquin CA. Using therapeutic drug monitoring to dose the antimycobacterial drugs. Clin Chest Med 1997; 18: 79–87.PubMedCrossRefGoogle Scholar
  17. 17.
    Colborn D, Lewis R, Narang P. HIV disease does not influence rifabutin absorption [Abstr]. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy. Orlando, FL, 1994.Google Scholar
  18. 18.
    Gatti G, Papa P, Torre D, et al. Population pharmacokinetic analysis of rifabutin in HIV-infected patients [Abstr]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, Ont., 1997.Google Scholar
  19. 19.
    Owens RC, Jr, Keung AC, Gardner S, et al. Pharmacokinetic and food effect evaluation of rifapentine in subjects seropositive for the human immunodeficiency virus [Abstr]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy. Toronto, Ontario, 1997.Google Scholar
  20. 20.
    Ehrenpreis ED, Ganger DR, Kochvar GT, Patterson BK, Craig RM. D-xylose malabsorption: characteristic finding in patients with the AIDS wasting syndrome and chronic diarrhea. J Acq Immune Def Syndr 1992; 5: 1047–1050.Google Scholar
  21. 21.
    Kotler DP, Francisco A, Clayton F, Scholes JV, Orenstein JM. Small intestinal injury and parasitic diseases in AIDS. Ann Intern Med 1990; 113: 444–449.PubMedCrossRefGoogle Scholar
  22. 22.
    Kotler DP, Giang TT, Thiim M, Nataro JP, Sordillo EM, Orenstein JM. Chronic bacterial enteropathy in patients with AIDS. J Infect Dis 1995; 171: 552–558.PubMedCrossRefGoogle Scholar
  23. 23.
    Blum RA, D’ Andrea DT, Florentino BM, et al. Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann Intern Med 1991; 114: 755–757.PubMedCrossRefGoogle Scholar
  24. 24.
    Burman WJ, Gallicano K, Peloquin, C. Therapeutic implications of drug interactions in the treatment of HIV-related tuberculosis. Clin Infect Dis 1999; 28: 419–430.PubMedCrossRefGoogle Scholar
  25. 25.
    Peloquin CA, Antituberculosis Drugs: Pharmacokinetics. In Heifets, L, ed. Drug Susceptibility in the Chemotherapy of Mycobacterial Infections. Boca Raton, FL: CRC Press, 1991, pp. 59–88.Google Scholar
  26. 26.
    Malone RS, Fish DN, Spiegel DM, Childs JM, Peloquin CA. The effect of hemodialysis on isoniazid, rifampin, pyrazinamide, and ethambutol. Am J Respir Crit Care Med 1999; 159: 1580–1584.PubMedCrossRefGoogle Scholar
  27. 27.
    Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–258.PubMedCrossRefGoogle Scholar
  28. 28.
    Ochs HR, Greenblatt DJ, Roberts GM, Dengler HJ. Diazepam interaction with antituberculosis drugs. Clin Pharmacol Ther 1981; 29: 671–678.PubMedCrossRefGoogle Scholar
  29. 29.
    Sutton G, Kupferberg HJ. Isoniazid as an inhibitor of primidone metabolism. Neurology 1975; 25: 1179–1181.PubMedCrossRefGoogle Scholar
  30. 30.
    Zand R, Nelson SD, Slattery JT, Thummel KE, Kalhorn TF, Adams SP, Wright JM Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 1993; 54: 142–149.PubMedCrossRefGoogle Scholar
  31. 31.
    Baciewicz AM, Self TH. Isoniazid interactions. Southern Med J 1985; 78: 714–718.PubMedCrossRefGoogle Scholar
  32. 32.
    Nolan CM, Sandblom RE, Thummel KE, Slattery JT, Nelson SD. Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest 1994; 105: 408–411.PubMedCrossRefGoogle Scholar
  33. 33.
    McEvoy GK (ed). AHFS Drug Information 1999. Bethesda, MD; American Society of Health-Systems Pharmacists, 1999.Google Scholar
  34. 34.
    Mae T, Hosoe K, Yamamoto T, Hidaka T, Ohashi T, Kleeman JM, Adams PE. Effect of a new rifamycin derivative, rifalazil, on liver microsomal enzyme induction in rat and dog. Xenobiotica 1998, 28: 759–766.PubMedCrossRefGoogle Scholar
  35. 35.
    Lin JH, Lu AYH Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35: 361–390.PubMedCrossRefGoogle Scholar
  36. 36.
    Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacother 1998; 18: 84–112.Google Scholar
  37. 37.
    Baciewicz AM, Self TH. Rifampin drug interactions. Arch Intern Med 1984; 144: 1667–1671.PubMedCrossRefGoogle Scholar
  38. 38.
    Baciewicz AM, Self TH, Bekemeyer WB. Update on rifampin drug interactions. Arch Intern Med 1987; 147: 565–568.PubMedCrossRefGoogle Scholar
  39. 39.
    Lacroix C, Guyonnaud C, Chaou M, Duwoos H, Lafont O. Interaction between allopurinol and pyrazinamide. Eur Respir J 1988; 1: 807–811.PubMedGoogle Scholar
  40. 40.
    Urban T, Maquarre E, Housset C, Chouaid C, Devin E, Lebeua B. Allopurinol hypersensitivity. A possible cause of hepatitis and mucocutaneous eruptions in a patient undergoing antitubercular treatment. Revue des Maladies Respiratoires 1995; 12: 314–316.PubMedGoogle Scholar
  41. 41.
    Yu TF, Perel J, Berger L, Roboz J. The effect of the interaction of pyrazinamide and probenecid on urinary uric acid excretion in man. Am J Med 1977; 63: 723–728.PubMedCrossRefGoogle Scholar
  42. 42.
    Tseng AL, Walmsley SL. Rifabutin-associated uveitis. Ann Pharmacother 1995; 29: 1149–1155.PubMedGoogle Scholar
  43. 43.
    Tseng AL, Mortimer CB, Salit IE. Iritis associated with intravenous cidofovir. Ann Pharmacother 1999; 33: 167–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Nicolau DP, Quintiliani R. Aminoglycosides. In Yu VL, Merigan TC, Barriere S, White NJ (eds). Baltimore, MD; Antimicrobial Chemotherapy. Williams and Wilkins, 1998, pp. 621–637.Google Scholar
  45. 45.
    Kucers A, Bennett N McK (eds). The Use of Antibiotics, 4th ed. Philadelphia, PA: JB Lippincott Co, 1988.Google Scholar
  46. 46.
    Berning SE, Peloquin CA. Antimycobacterial agents: cycloserine. In Yu VL, Merigan TC, Barriere S, White NJ (eds). Antimicrobial Chemotherapy. Baltimore, MD: Williams and Wilkins, 1998, pp. 638–642.Google Scholar
  47. 47.
    Malone RS, Fish DN, Spiegel DM, Childs JM, Peloquin CA. The effect of hemodialysis on cycloserine, ethionamide, para-aminosalicylate, and clofazimine. Chest 1999; 116: 984–990.PubMedCrossRefGoogle Scholar
  48. 48.
    Wlaz P, Rolinski Z, Czuczwar SJ. Influence of D-cycloserine on the anticonvulsant activity of phenytoin and carbamazepine against electroconvulsions in mice. Epilepsia 1996; 37: 610–617.PubMedCrossRefGoogle Scholar
  49. 49.
    Berning SE, Peloquin CA. Antimycobacterial agents: ethionamide. In Yu VL, Merigan TC, Barriere S, White NJ (eds). Antimicrobial Chemotherapy. Baltimore, MD: Williams and Wilkins, 1998, pp. 650–654.Google Scholar
  50. 50.
    Berning SE, Peloquin CA. Antimycobacterial agents: para-aminosalicylic acid. In Yu VL, Merigan TC, Barriere S, White NJ (eds). Antimicrobial Chemotherapy. Baltimore, MD: Williams and Wilkins, 1998, pp. 663–668.Google Scholar
  51. 51.
    Van Rensburg CE, Anderson R, Myer MS, Joone GK, O’ Sullivan JF. The riminophenazine agents clofazimine and B669 reverse acquired multidrug resistance in a human lung cancer cell line. Cancer Letters 1994; 85: 59–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Charles A. Peloquin

There are no affiliations available

Personalised recommendations