Skip to main content

Overview of Herpesviruses

  • Chapter
Infectious Causes of Cancer

Part of the book series: Infectious Disease ((ID))

  • 234 Accesses

Abstract

Identification of a virus in the family Herpesviridae is based on the morphology of the virus particle. Viewed through an electron microscope, the virions of different members of the Herpesviridae family are indistinguishable and consist of four distinct components: the core, capsid, tegument, and envelope (Fig. 1) (1). The core contains a double-stranded DNA genome arranged in an unusual torus shape that is located inside an icosadeltahedral capsid that is approx 100 nm in size and contains 162 capsomeres (2). Located between the capsid and the viral envelope is an amorphous structure termed the tegument that contains numerous proteins. The tegument structure is generally asymmetrical, although some virus members (such as human herpesvirus 6 [HHV-6] and human herpesvirus 7 [HHV-7]) have been shown to have well-defined tegument structures (3,4). Presumably, the tegument is responsible for connecting the capsid to the envelope and acting as a reservoir for viral proteins that are required during the initial stages of viral infection (5,6). The outermost structure of the herpes virion is the envelope, which is derived from cell nuclear membranes and contains several viral glycoproteins. The size of mature herpesviruses ranges from 120 to 300 nm owing to differences in the size of the individual viral teguments (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roizman B, Sears AE. Herpes simplex viruses and their replication. In: Roizman B, Whitley RJ, Lopez C (eds). The Human Herpesviruses, 1st edit. New York: Raven Press, 1993, pp. 11–68.

    Google Scholar 

  2. Furlong D, Swift H, Roizman B. Arrangement of herpesvirus deoxyribonucleic acid in the core. J Virol 1972; 10: 1071–1074.

    PubMed  CAS  Google Scholar 

  3. Roffman E, Albert JP, Goff JP, Frenkel N. Putative site for the acquisition of human herpesvirus 6 virion tegument. J Virol 1990; 64: 6308–6313.

    PubMed  CAS  Google Scholar 

  4. Kramarsky B, Sander C. Electron microscopy of human herpesvirus-6 (HHV-6). In: Ablashi DV, Krueger GR, Salahuddin SZ (eds). Human Herpesvirus 6. Amsterdam: Elsevier, 1992, pp. 59–79.

    Google Scholar 

  5. Pellett PE, McKnight JL, Jenkins FJ, Roizman B. Nucleotide sequence and predicted amino acid sequence of a protein encoded in a small herpes simplex virus DNA fragment capable of trans-inducing alpha genes. Proc Natl Acad Sci USA 1985; 82: 5870–5874.

    Article  PubMed  CAS  Google Scholar 

  6. Batterson W, Roizman B. Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J Virol 1983; 46: 371–377.

    PubMed  CAS  Google Scholar 

  7. Roizman B, Carmichael LE, Deinhardt F, de, The G, Nahmias AJ, Plowright W et al. Herpesviridae. Definition, provisional nomenclature and taxonomy. Intervirology 1981; 16: 201–217.

    Article  PubMed  CAS  Google Scholar 

  8. Kimberlin DW. Human herpesviruses 6 and 7: identification of newly recognized viral pathogens and their association with human disease. Pediatr Infect Dis J 1998; 17: 59–68.

    Article  PubMed  CAS  Google Scholar 

  9. Kieff E, Liebowitz D. Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, et al. (eds). Field’s Virology, 2nd edit. New York: Raven Press, 1990, pp. 1889–1920.

    Google Scholar 

  10. Jones JF, Katz BZ. Epstein-Barr virus infections in normal and immunosuppressed patients. In: Glaser R, Jones JF (eds). Herpesvirus Infections. New York: Marcel Dekker, 1994, pp. 187–226.

    Google Scholar 

  11. Boshoff C, Weiss RA. Kaposi’s sarcoma-associated herpesvirus. Adv Cancer Res 1998; 75: 58–87.

    Google Scholar 

  12. Richman LK, Montali RJ, Garber RL, Kennedy MA, Lehnhardt J, Hildebrandt T, et al. Novel endotheliotropic herpesviruses fatal for Asian and African elephants. Science 1999; 283: 1171–1176.

    Article  PubMed  CAS  Google Scholar 

  13. Whitley RJ, Gnann JWJr. The epidemiology and clinical manifestations of herpes simplex virus infections. In: Roizman B, Whitley RJ, Lopez C (eds). The Human Herpesviruses. New York: Raven Press, 1993, pp. 69–106.

    Google Scholar 

  14. Cook ML, Stevens JG. Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence of intra-axonal transport of infection. Infect Immun 1973; 7: 272–288.

    PubMed  CAS  Google Scholar 

  15. Hill TJ. Herpes simplex virus latency. In: Roizman B (eds). The Herpesviruses. New York: Plenum Press, 1985, p. 175.

    Chapter  Google Scholar 

  16. Carlton CA, Kilbourne ED. Activation of latent herpes simplex virus by trigeminal sensory-root section. N Engl J Med 1952; 246: 172.

    Article  Google Scholar 

  17. Segal AL, Katcher AH, Bringtman VJ, Miller MF. Recurrent herpes labialis, recurrent apthous ulcers and the menstrual cycles. J Dent Res 1974; 53: 797–803.

    Article  PubMed  CAS  Google Scholar 

  18. Pazin GJ, Ho M, Jannetta PJ. Herpes simplex reactivation after trigeminal nerve root decompression. J Infect Dis 1978; 138: 405.

    Article  PubMed  CAS  Google Scholar 

  19. Spruance SL. Pathogenesis of herpes simplex labialis: experimental induction of lesions with UV light. J Clin Microbiol 1985; 22: 366–368.

    PubMed  CAS  Google Scholar 

  20. Davison AJ, McGeoch DJ. Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. J Gen Virol 1986; 67: 597–611.

    Article  PubMed  CAS  Google Scholar 

  21. Grose C. Varicella zoster virus infections: chickenpox, shingles, and varicella vaccine. In: Glaser R, Jones JF (eds). Herpesvirus Infections. New York: Marcel Dekker, 1994, pp. 117–185.

    Google Scholar 

  22. Arvin AM. Varicella-zoster virus. Clin Microbiol Rev 1996; 9: 361–381.

    PubMed  CAS  Google Scholar 

  23. Gelb LD. Varicella-zoster virus clinical aspects. In: Roizman B, Whitley RJ, Lopez C, (eds). The Human Herpesviruses. New York: Raven Press, 1993, pp. 281–316.

    Google Scholar 

  24. Johnson RE, Nahmias AJ, Magder LS, Lee FK, Brooks CA, Snowden CB. A seroepidemiologic survey of the prevalence of herpes simplex virus type 2 infection in the United States. N Engl J Med 1989; 321: 7–12.

    Article  PubMed  CAS  Google Scholar 

  25. Fleming DT, McQuillan GM, Johnson RE, Nahmias AJ, Aral SO, Lee FK, et al. Herpes simplex virus type 2 in the United States, 1976 to 1994. N Engl J Med 1997; 337: 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  26. Arvin AM. Varicella-zoster virus: overview and clinical manifestations. Semin Dermatol 1996; 15: 4–7.

    PubMed  CAS  Google Scholar 

  27. Arvin AM, Gershon A. Live attenuated varicella vaccine. Annu Rev Microbiol 1996; 50: 59–100.

    Article  PubMed  CAS  Google Scholar 

  28. Krause PR, Klinman DM. Efficacy, immunogenicity, safety, and use of live attenuated chickenpox vaccine. J Pediatr 1995; 127: 518–525.

    Article  PubMed  CAS  Google Scholar 

  29. Baringer JR, Swoveland P. Recovery of herpes simplex virus from human trigeminal ganglions. N Engl J Med 1973; 228: 648.

    Article  Google Scholar 

  30. Bastian FO, Rabson AS, Yee CL. Herpesvirus hominis: isolation from human trigeminal ganglion. Science 1972; 178: 306.

    Article  PubMed  CAS  Google Scholar 

  31. Stevens JG, Cook ML. Latent herpes simplex virus in spinal ganglia of mice. Science 1971; 173: 843–845.

    Article  PubMed  CAS  Google Scholar 

  32. Gilden DH, Rozenman Y, Murray R, Devlin M, Vafai A. Detection of varicella-zoster virus nucleic acid in neurons of normal tissue thoracic ganglia. Ann Neurol 1987; 22: 377–380.

    Article  PubMed  CAS  Google Scholar 

  33. Le Cleach L, Fillet A-M, Agut H, Chosidow O. Human herpesviruses 6 and 7. Arch Dermatol 1998; 134: 1156–1157.

    Google Scholar 

  34. Wechsler SL, Nesburn AB, Watson R, Slanina S, Ghiasi H. Fine mapping of the major latency-related RNA of herpes simplex virus type 1 in humans. J Gen Virol 1988; 69: 3101–3106.

    Article  PubMed  CAS  Google Scholar 

  35. Wagner EK, Devi-Rao G, Feldman LT, Dobson AT, Zhang YF, Flanagan WM, et al. Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J Virol 1988; 62: 1194–1202.

    PubMed  CAS  Google Scholar 

  36. Stevens JG, Haarr L, Porter DD, Cook ML, Wagner EK. Prominence of the herpes simplex virus latency-associated transcript in trigeminal ganglia from seropositive humans. J Infect Dis 1988; 158: 117–123.

    Article  PubMed  CAS  Google Scholar 

  37. Krause PR, Croen KD, Ostrove JM, Straus SE. Structural and kinetic analyses of herpes simplex virus type 1 latency-associated transcripts in human trigeminal ganglia and in cell culture. J Clin Invest 1990; 86: 235–241.

    Article  PubMed  CAS  Google Scholar 

  38. Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR, et al. Detection of latency-related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 1987; 62: 3820–3826.

    Google Scholar 

  39. Ho DY, Mocarski ES. Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc Natl Acad Sci USA 1989; 86: 7596–7600.

    Article  PubMed  CAS  Google Scholar 

  40. Steiner I, Spivack JG, Lirrete RP, Brown SM, MacLean AR, Subak-Sharpe J, et al. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J 1989; 8: 505–511.

    PubMed  CAS  Google Scholar 

  41. Natarajan R, Deshmane S, Valyi-Nagy T, Everett R, Fraser NW. A herpes simplex virus type 1 mutant lacking the ICPO introns reactivates with normal efficiency. J Virol 1991; 65: 5569–5573.

    PubMed  CAS  Google Scholar 

  42. Block TM, Spivack JG, Steiner I, Deshmane S, McIntosh MT, Lirette RP, et al. A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal kinetics from latent infection. J Virol 1990; 64: 3417–3426.

    PubMed  CAS  Google Scholar 

  43. Perng GC, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL. A 371-nucleotide region between the herpes simplex virus type 1 (HSV-1) LAT promoter and the 2-kilobase LAT is not essential for efficient spontaneous reactivation of latent HSV-1. J Virol 1996; 70: 2014–2018.

    PubMed  CAS  Google Scholar 

  44. Maggioncalda J, Mehta A, Fraser NW, Block TM. Analysis of a herpes simplex virus type 1 LAT mutant with a deletion between the putative promoter and the 5’ end of the 2.0 kilobase transcript. J Virol 1994; 68: 7816–7824.

    PubMed  CAS  Google Scholar 

  45. Whitley RJ. Herpes simplex virus infections. In: Glaser R, Jones JF (eds). Herpesvirus Infections. New York: Marcel Dekker, 1994, pp. 1–57.

    Google Scholar 

  46. Turner SL, Jenkins FJ. The role of herpes simplex virus in neuroscience. J Neurovirol 1997; 3: 110–125.

    Article  PubMed  CAS  Google Scholar 

  47. Croen KD, Ostrove JM, Dragovic LJ, Straus SE. Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella-zoster and herpes simplex viruses. Proc Natl Acad Sci USA 1988; 85: 9773–9777.

    Article  PubMed  CAS  Google Scholar 

  48. Cohrs R, Mahalingam R, Dueland AN, Wolf W, Wellish M, Gilden DH. Restricted transcription of varicella-zoster virus in latently infected human trigeminal and thoracic ganglia. J Infect Dis 1992; 166 (Suppl. 1): S24 - S29.

    Article  PubMed  CAS  Google Scholar 

  49. Vafai A, Murray RS, Wellish M, Devlin M, Gilden DH. Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia. Proc Natl Acad Sci USA 1988; 85: 2362–2366.

    Article  PubMed  CAS  Google Scholar 

  50. Kinchington PR. Latency of varicella zoster virus; a persistently perplexing state. Front Biosci 1999; 4: d200–211.

    Article  PubMed  CAS  Google Scholar 

  51. Rowe WP, Hartley JW, Waterman S, Turner HC, Huebner RJ. Cytopathogenic agent resembling human salivary gland virus recovered from tissue cultures of human adenoids. Proc Soc Exp Biol Med 1956; 92: 418–424.

    PubMed  CAS  Google Scholar 

  52. Smith MG. Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SVG) disease. Proc Soc Exp Biol Med 1956; 92: 424–430.

    PubMed  CAS  Google Scholar 

  53. Weller TH, Macauley JC, Craig JM, Wirth P. Isolation of intranuclear inclusion-producing agents from infants with illnesses resembling cytomegalic inclusion disease. Proc Soc Exp Biol Med 1957; 94: 4–12.

    PubMed  Google Scholar 

  54. Weller TH, Hanshaw JB. Virological and clinical observation of cytomegalic inclusion disease. N Engl J Med 1962; 266: 1233–1344.

    Article  PubMed  CAS  Google Scholar 

  55. Mocarski ES. Cytomegalovirus biology and replication. In: Roizman B, Whitley RJ, Lopez C (eds). The Human Herpesviruses. New York: Raven Press, 1993, pp. 173–226.

    Google Scholar 

  56. Greenberg MS. Herpesvirus infections. Dent Clin North Am 1996; 40: 359–368.

    PubMed  CAS  Google Scholar 

  57. Demmler GJ. Congenital cytomegalovirus infection and disease. Adv Pediatr Infect Dis 1996; 11: 135–162.

    PubMed  CAS  Google Scholar 

  58. Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 1986; 234: 596–601.

    Article  PubMed  CAS  Google Scholar 

  59. Frenkel N, Schirmer EC, Wyatt LS, et al. Isolation of a new herpesvirus from human CD4+ T cells. Proc Natl Acad Sci USA 1990; 87: 748–752.

    Article  PubMed  CAS  Google Scholar 

  60. Ablashi DV, Balachandran N, Josephs SF, Hung CL, Krueger GRF, Kramarsky B, et al. Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus6 isolates. Virology 1991; 184: 545–552.

    Article  PubMed  CAS  Google Scholar 

  61. Schirmer EC, Wyatt LS, Yamanishi K, Rodriguez WJ, Frenkel N. Differentiation between two distinct classes of viruses now classified as human herpesvirus 6. Proc Natl Acad Sci USA 1991; 88: 5922–5926.

    Article  PubMed  CAS  Google Scholar 

  62. Lusso P. Target cells for infection. In: Ablashi DV, Krueger GRF, Salahuddin SZ, (eds). Human Herpesvirus 6. Amsterdam. Elsevier, 1992, pp. 25–36.

    Google Scholar 

  63. Yamanishi K, Okuno T, Shiraki K, Takahashi M, Kondo T, Asano Y, et al. Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet 1988; i:1065–1067.

    Google Scholar 

  64. Hall CB, Long CE, Schnabel KC, et al. Human herpesvirus-6 infection in children: a prospective study of complications and reactivation. N Engl J Med 1994; 331: 432–438.

    Article  PubMed  CAS  Google Scholar 

  65. Okuno T, Higashi K, Shiraki K, Yamanishi K, Takahashi M, Kokado Y, et al. Human herpesvirus 6 infection in renal transplantation. Transplantation 1990; 49: 519–522.

    Article  PubMed  CAS  Google Scholar 

  66. Challoner PB, Smith KT, Parker JD. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA 1995; 92: 7440–7444.

    Article  PubMed  CAS  Google Scholar 

  67. Soldan SS, Berti R, Salem N, Secchiero P, Flamand L, Calabresi PA, et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response. Nat Med 1997; 3: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  68. Tanaka K, Kondo T, Torigoe S, Okada S, Mukai T, Yamanishi K. Human herpesvirus 7: another causal agent for roseola (exanthem subitum). J Pediatr 1994; 125: 1–5.

    Article  PubMed  CAS  Google Scholar 

  69. Hidaka Y, Okada K, Kusuhara K, Miyazaki C, Tokugawa K, Ueda K. Exanthem subitum and human herpesvirus 7 infection. Pediatr Infect Dis J 1994; 13: 1010–1011.

    Article  PubMed  CAS  Google Scholar 

  70. Ueda K, Kusuhara K, Okada K, et al. Primary human herpesvirus 7 infection and exanthema subitum. Pediatr Infect Dis J 1994; 13: 167–168.

    PubMed  CAS  Google Scholar 

  71. Briggs M, Fox J, Tedder RS. Age prevalence of antibody to human herpesvirus 6. Lancet 1988; i: 1058–1059.

    Google Scholar 

  72. Balachandra K, Ayuthaya PI, Auwanit W, Jayavasu C, Okuno T, Yamanishi K, et al. Prevalence of antibody to human herpesvirus 6 in women and children. Microbiol Immunol 1989; 33: 515–518.

    PubMed  CAS  Google Scholar 

  73. Wyatt LS, Rodriguez WJ, Balachandran N, Frenkel N. Human herpesvirus 7: Antigenic properties and prevalence in children and adults. J Virol 1991; 65: 6260–6265.

    PubMed  CAS  Google Scholar 

  74. Slobedman B, Mocarski ES. Quantitative analysis of latent human cytomegalovirus. J Virol 1999; 73: 4806–4812.

    PubMed  CAS  Google Scholar 

  75. Yao QY, Rickinson AB, Epstein MA. A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals. Int J Cancer 1985; 35: 35–42.

    Article  PubMed  CAS  Google Scholar 

  76. Sixbey JW, Nedrud JC, Raab-Traub N, Hanes RA, Pagano JS. Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med 1984; 310: 1225–1230.

    Article  PubMed  CAS  Google Scholar 

  77. Schwartzmann F, Jager M, Hornef M, Prang N, Wolf H. Epstein-Barr viral gene expression in B-lymphocytes. Leuk Lymphoma 1998; 30: 123–129.

    Google Scholar 

  78. Decker LL, Klaman LD, Thorley-Lawson DA. Detection of the latent form of Epstein-Barr virus DNA in peripheral blood of healthy individuals. J Virol 1996; 70: 3286–3289.

    PubMed  CAS  Google Scholar 

  79. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266: 1865–1869.

    Article  PubMed  CAS  Google Scholar 

  80. Su IJ, Hsu YS, Chang YC, Wang IW. Herpesvirus-like DNA sequence in Kaposi’s sarcoma from AIDS and non-AIDS patients in Taiwan. Lancet 1995; 345: 722–723.

    Article  PubMed  CAS  Google Scholar 

  81. Huang YQ, Li JJ, Kaplan MH, Poiesz B, Katabira E, Zhang WC, et al. Human herpesvirus-like nucleic acid in various forms of Kaposi’s sarcoma. Lancet 1995; 345: 759–761.

    Article  PubMed  CAS  Google Scholar 

  82. Dupin N, Grandadam M, Calvez V, Gorin I, Aubin JT, Havard S, et al. Herpesvirus-like DNA sequences in patients with Mediterranean Kaposi’s sarcoma. Lancet 1995; 345: 761–762.

    Article  PubMed  CAS  Google Scholar 

  83. Collandre H, Ferris S, Grau O, Montagnier L, Blanchard A. Kaposi’s sarcoma and a new herpesvirus. Lancet 1995; 345: 1043–1044.

    Article  PubMed  CAS  Google Scholar 

  84. Boshoff C, Whitby D, Hartziioannou T, Fisher C, van der Walt J, Hatzakis A, et al. Kaposi’s sarcoma-associated herpesvirus in HIV-negative Kaposi’s sarcoma. Lancet 1995; 345: 1043–1044.

    Article  PubMed  CAS  Google Scholar 

  85. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332: 1186–1191.

    Article  PubMed  CAS  Google Scholar 

  86. Nador RG, Cesarman E, Knowles DM, Said JW. Herpes-like DNA sequences in body-cavitybased lymphoma in HIV-negative patient. N Engl J Med 1995; 333: 943.

    Article  PubMed  CAS  Google Scholar 

  87. Ansari MQ, Dawson DB, Nador R, Rutherford C, Schneider NR, Latimer MJ, et al. Primary body cavity-based AIDS-related lymphomas. Am J Clin Pathol 1996; 105: 221–229.

    PubMed  CAS  Google Scholar 

  88. Evans AS. Infectious mononucleosis and related syndromes. Am J Med Sci 1978; 276: 325–339.

    Article  PubMed  CAS  Google Scholar 

  89. Blackbourn DJ, Osmond D, Levy JA, Lennette ET. Increased human herpesvirus 8 seroprevalence in young homosexual men who have multiple sex contacts with different partners. J Infect Dis 1999; 179: 237–239.

    Article  PubMed  CAS  Google Scholar 

  90. Grulich AE, Olsen SJ, Luo K, Hendry O, Cunningham P, Cooper DA, et al. Kaposi’s sarcoma-associated herpesvirus: a sexually transmissible infection? J Acquir Immune Defic Syndr 1999; 20: 387–393.

    Article  CAS  Google Scholar 

  91. Martin JN, Ganem DE, Osmond DH, Page-Shafer KA, Macrae D, Kedes DH. Sexual transmission and the natural history of human herpesvirus 8 infection. N Engl J Med 1998; 338: 948–954.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang X, Fitzpatrick L, Campbell TB, Badaro R, Schechter M, Melo M, et al. Comparison of the prevalence of antibodies to human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) in Brazil and Colorado. J Infect Dis 1998; 178: 1488–1491.

    Article  PubMed  CAS  Google Scholar 

  93. Chandran B, Smith MS, Koelle DM, Corey L, Horvat R, Goldstein E. Reactivities of human sera with human herpesvirus-8 infected BCBL-1 cells and indentification of HHV-8 specific proteins and glycoproteins and the encoding cDNAs. Virology 1998; 243: 208–217.

    Article  PubMed  CAS  Google Scholar 

  94. Gao SJ, Kingsley L, Hoover DR, Spira TJ, Rinaldo CR, Saah A, et al. Seroconversion to antibodies against Kaposi’s sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi’s sarcoma. N Engl J Med 1996; 335: 233–241.

    Article  PubMed  CAS  Google Scholar 

  95. Lennette ET, Blackbourn DJ, Levy JA. Antibodies to human herpesvirus type 8 in the general population and in Kaposi’s sarcoma patients. Lancet 1996; 348: 858–861.

    Article  PubMed  CAS  Google Scholar 

  96. Chatlynne LG, Lapps W, Handy M, Huang YQ, Masood R, Hamilton AS, et al. Detection and titration of human herpesvirus-8-specific antibodies in sera from blood donors, acquired immunodeficiency syndrome patients, and Kaposi’s sarcoma patients using a whole virus enzyme-linked immunosorbent assay. Blood 1998; 92: 53–58.

    PubMed  CAS  Google Scholar 

  97. Bourboulia D, Whitby D, Boshoff C, Newton R, Beral V, Carrara H, et al. Serologic evidence for mother-to-child transmission of Kaposi sarcoma-associated herpesvirus infection. JAMA 1999; 280: 31–32.

    Article  Google Scholar 

  98. Corbellino M, Bestetti G, Galli M, Parravicini C. Absence of HHV-8 in prostate and semen. N Engl J Med 1996; 335: 1237–1238.

    Article  PubMed  CAS  Google Scholar 

  99. Gupta P, Singh MK, Rinaldo C, Ding M, Farzadegan H, Saah A, et al. Detection of Kaposi’s sarcoma herpesvirus DNA in semen of homosexual men with Kaposi’s sarcoma. AIDS 1996; 10: 1596–1598.

    Article  PubMed  CAS  Google Scholar 

  100. Koelle DM, Huang ML, Chandran B, Vieira J, Piepkorn M, Corey L. Frequent detection of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) DNA in saliva of human immunodeficiency virus-infected men: clinical and immunologic correlates. J Infect Dis 1997; 176: 94–102.

    Article  PubMed  CAS  Google Scholar 

  101. Lefrere JJ, Meyohas MC, Mariotti M, Meynard JL, Thauvin M, Frottier J. Detection of human herpesvirus 8 DNA sequences before the appearance of Kaposi’s sarcoma in human immunodeficiency virus (HIV)-positive subjects with a known date of HIV seroconversion. J Infect Dis 1996; 174: 283–287.

    Article  PubMed  CAS  Google Scholar 

  102. Monini P, DeLellis L, Fabris M, Rigolin F, Cassai E. Kaposi’s sarcoma-associated herpesvirus DNA sequences in prostate tissue and human semen. N Engl J Med 1996; 334: 1168–1172.

    Article  PubMed  CAS  Google Scholar 

  103. Smith MS, Bloomer C, Horvat R, Goldstein E, Casparian JM, Chandran B. Detection of human herpesvirus 8 DNA in Kaposi’s sarcoma lesions and peripheral blood of human immunodeficiency virus-positive patients and correlation with serologic measurements. J Infect Dis 1997; 176: 84–93.

    Article  PubMed  CAS  Google Scholar 

  104. Lyons SF, Liebowitz DN. The roles of human viruses in the pathogenesis of lymphoma. Semin Oncol 1998; 25: 461–475.

    PubMed  CAS  Google Scholar 

  105. Mitterer M, Pescosta N, Fend F, Larcher C, Prang N, Schwartzmann F, et al. Chronic active Epstein-Barr virus disease in a case of persistent polyclonal B-cell lynphocytosis. Br J Haematol 1995; 90: 526–531.

    Article  PubMed  CAS  Google Scholar 

  106. Quintanilla-Martinez L, Lome-Maldonado C, Ott G, Gschwendtner A, Gredler E, Angeles-Angeles A, et al. Primary intestinal non-Hodgkin’s lymphoma and Epstein-Barr virus: high frequency of EBV-infection in T-cell lymphomas of Mexican origin. Leuk Lymphoma 1998; 30: 111–121.

    PubMed  CAS  Google Scholar 

  107. Okano M, Thiele GM, Davis JR, Grierson HL, Purtilo DT. Epstein-Barr virus and human diseases: recent advances in diagnosis. Clin Microbiol Rev 1988; 1: 300–312.

    PubMed  CAS  Google Scholar 

  108. Sarid R, Flore O, Bohenzky RA, Chang Y, Moore PS. Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 1998; 72: 1005–1012.

    PubMed  CAS  Google Scholar 

  109. Zhong W, Wang H, Herndier B, Ganem D. Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci 1997; 93: 6641–6646.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jenkins, F.J., Hoffman, L.J. (2000). Overview of Herpesviruses. In: Goedert, J.J. (eds) Infectious Causes of Cancer. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-024-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-024-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9621-5

  • Online ISBN: 978-1-59259-024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics