Skip to main content

Anogenital Squamous Cell Cancer and Its Precursors

Natural History, Diagnosis, and Treatment

  • Chapter
Infectious Causes of Cancer

Part of the book series: Infectious Disease ((ID))

  • 233 Accesses

Abstract

Prior to the introduction of routine cervical cytology screening, the incidence of cervical cancer was 40–50/100,000. Currently the incidence of cervical cancer in the United States is approx 8/100,000 (1) and much of the reduction is attributed to the efficacy of cytology screening (Papanicolaou smears) to prevent cervical cancer. The corresponding decline in mortality from cervical cancer is seen vividly in the recently released atlas of US cancer mortality (http://www.nci.nih.gov/atlas). Despite the reduction, these data translate into the death of approx 4500 women each year in the United States of a disease that is preventable. Although some of the mortality can be attributed to failures in cervical cytology in the form of false-negative results, the majority of women diagnosed with cervical cancer in the United States were never screened at all. Thus, much of the mortality is concentrated in populations of women with inadequate access to health care, particularly minority populations such as Hispanic and African-American women. Consistent with this, the incidence of cervical cancer around the world is highest in those countries where there is no routine cervical cytology screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Qualters JR, Lee NC, Smith RA, Aubert RE. Breast and cervical cancer surveillance, United States, 1973–1987. Morbid Mortal Wkly Rep 1992; 41: 1–15.

    CAS  Google Scholar 

  2. Daling JR, Weiss NS, Hislop TG, et al. Sexual practices, sexually transmitted diseases, and the incidence of anal cancer. N Engl J Med 1987; 317: 973–977.

    Article  PubMed  CAS  Google Scholar 

  3. Goedert JJ, Cote TR, Virgo P, et al. Spectrum of AIDS-associated malignant disorders. Lancet 1998; 351: 1833–1839.

    Article  PubMed  CAS  Google Scholar 

  4. Bosch FX, Manos MM, Munoz N, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 1995; 87: 796–802.

    Article  PubMed  CAS  Google Scholar 

  5. Rylander E, Ruusuvaara L, Almströmer MW, Evander M, Wadell G. The absence of vaginal human papillomavirus 16 DNA in women who have not experienced sexual intercourse. Obstet Gynecol 1994; 83: 735–737.

    PubMed  CAS  Google Scholar 

  6. Burk RD, Ho GY, Beardsley L, Lempa M, Peters M, Bierman R. Sexual behavior and partner characteristics are the predominant risk factors for genital human papillomavirus infection in young women. J Infect Dis 1996; 174: 679–689.

    Article  PubMed  CAS  Google Scholar 

  7. Koutsky L, Kiviat NB. Genital human papillomavirus. In: Holmes KK, Sparling PF, Mardh PA, et al. (eds). Sexually Transmitted Diseases. New York: McGraw-Hill, 1998, pp. 347–359.

    Google Scholar 

  8. Schiffman MH. Recent progress in defining the epidemiology of human papillomavirus infection and cervical neoplasia. J Natl Cancer Inst 1992; 84: 394–398.

    Article  PubMed  CAS  Google Scholar 

  9. Kurman RJ, Solomon D. The Bethesda system for reporting cervical/vaginal cytologic diagnoses:definitions, criteria and explanatory notes for terminology and specimen adequacy. New York: Springer-Verlag, 1994, p. 81.

    Google Scholar 

  10. Richart RM, Barron BA. A follow-up study of patients with cervical dysplasia. Am J Obstet Gynecol 1969; 105: 383–393.

    Google Scholar 

  11. Koutsky LA, Holmes KK, Critchlow CW, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med 1992; 327: 1272–1278.

    Article  PubMed  CAS  Google Scholar 

  12. Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol 1992; 79: 328–337.

    Article  PubMed  CAS  Google Scholar 

  13. Wiggins C. Cancer in Western Washington State 1974–1991. 1993.

    Google Scholar 

  14. Centers for Disease Control and Prevention. Special focus: behavioral risk factor surveillance-United States, 1991. Morbid Mortal Wkly Rep 1993; 42: 1–23.

    Google Scholar 

  15. Spriggs AI, Boddington MM. Progression and regression of cervical lesions. Review of smears from women followed without initial biopsy or treatment. J Clin Pathol 1980; 33: 517–522.

    Article  PubMed  CAS  Google Scholar 

  16. Krone MR, et al. The epidemiology of cervical neoplasms. In: Luesley D, et al. (eds). Intraepithelial Neoplasia of the Lower Genital Tract. New York: Churchill-Livingstone, 1995, p. 49.

    Google Scholar 

  17. Miller BA, et al. (eds). SEER Cancer Statistics Review: 1973–1990. NIH Publication 93–2789, 1993.

    Google Scholar 

  18. Devesa SS. Descriptive epidemiology of cancer of the uterine cervix. Obstet Gynecol 1984; 63: 605–612.

    PubMed  CAS  Google Scholar 

  19. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p.53. Cell 1992; 70: 923–935.

    Article  PubMed  CAS  Google Scholar 

  20. Carder P, Wyllie AH, Purdie CA, et al. Stabilised p53 facilitates aneuploid clonal divergence in colorectal cancer. Oncogene 1993; 8: 1397–1401.

    PubMed  CAS  Google Scholar 

  21. Magnusson PK, Wilander E, Gyllensten U. Analysis of loss of heterozygosity in microdissected tumor cells from cervical carcinoma using fluorescent dUTP labeling of PCR products. Biotechniques 1996; 21: 844–847.

    PubMed  CAS  Google Scholar 

  22. Rader JS, Kamarasova T, Huettner PC, Li L, Li Y, Gerhard DS. Allelotyping of all chromosomal arms in invasive cervical cancer. Oncogene 1996; 13: 2737–2741.

    PubMed  CAS  Google Scholar 

  23. Douc-Rasy S, Barrois M, Fogel S, et al. High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene 1996; 12: 423–430.

    PubMed  CAS  Google Scholar 

  24. Bosch FX, Munoz N, de Sanjose S, et al. Risk factors for cervical cancer in Colombia and Spain. Int J Cancer 1992; 52: 750–758.

    Article  PubMed  CAS  Google Scholar 

  25. Eluf-Neto J, Booth M, Munoz N, Bosch FX, Meijer CJLM, Walboomers JMM. Human papillomavirus and invasive cancer in Brazil. Br J Cancer 1994; 69: 114–119.

    Article  PubMed  CAS  Google Scholar 

  26. Kwasniewska A, Tukendorf A, Semczuk M. Folate deficiency and cervical intraepithelial neoplasia. Eur J Gynaecol Oncol 1997; 18: 526–530.

    PubMed  CAS  Google Scholar 

  27. Butterworth CJ, Hatch KD, Macaluso M, et al. Folate deficiency and cervical dysplasia. JAMA 1992; 267: 528–533.

    Article  PubMed  Google Scholar 

  28. Butterworth CJ, Hatch KD, Soong SJ, et al. Oral folic acid supplementation for cervical dysplasia: a clinical intervention trial. Am J Obstet Gynecol 1992; 166: 803–809.

    PubMed  Google Scholar 

  29. Childers JM, Chu J, Voigt LF, et al. Chemoprevention of cervical cancer with folic acid: a phase III Southwest Oncology Group Intergroup study. Cancer Epidemiol Biomarker Prey 1995; 4: 155–159.

    CAS  Google Scholar 

  30. Ho GY, Palan PR, Basu J, et al. Viral characteristics of human papillomavirus infection and antioxidant levels as risk factors for cervical dysplasia. Int J Cancer 1998; 78: 594–599.

    Article  PubMed  CAS  Google Scholar 

  31. Goodman MT, Kiviat N, McDuffie K, et al. The association of plasma micronutrients with the risk of cervical dysplasia in Hawaii. Cancer Epidemiol Biomarker Prey 1998; 7: 537–544.

    CAS  Google Scholar 

  32. Behbakht K, DeGeest K, Turyk ME, Wilbanks GD. All-trans-retinoic acid inhibits the proliferation of cell lines derived from human cervical neoplasia. Gynecol Oncol 1996; 61: 31–39.

    Article  PubMed  CAS  Google Scholar 

  33. Seewaldt VL, Dietze EC, Johnson BS, Collins SJ, Parker MB. Retinoic acid-mediated GI-Sphase arrest of normal human mammary epithelial cells is independent of the level of p53 protein expression. Cell Growth Different 1999; 10: 49–59.

    CAS  Google Scholar 

  34. Hietanen S, Auvinen E, Syrjänen K, Syrjänen S. Anti-proliferative effect of retinoids and interferon-alpha-2a on vaginal cell lines derived from squamous intra-epithelial lesions. Int J Cancer 1998; 78: 338–345.

    Article  PubMed  CAS  Google Scholar 

  35. Shimizu H, Nagata C, Komatsu S, et al. Decreased serum retinol levels in women with cervical dysplasia. Br J Cancer 1996; 73: 1600–1604.

    Article  PubMed  CAS  Google Scholar 

  36. Siliman F, Stanek A, Sedlis A, et al. The relationship between human papillomavirus and lower genital intraepithelial neoplasia in immunosuppressed women. Am J Obstet Gynecol 1984; 150: 300–308.

    Google Scholar 

  37. Penn I. Cancers of the anogenital regions in renal transplant recipients. Cancer 1986; 58: 611–616.

    Article  PubMed  CAS  Google Scholar 

  38. Sun XW, Ellerbrock TV, Lungu O, Chiasson MA, Bush TJ, Wright TC Jr. Human papillomavirus infection in human immunodeficiency virus-seropositive women. Obstet Gynecol 1995; 85: 680–686.

    Article  PubMed  CAS  Google Scholar 

  39. Palefsky JM, Minkoff H, Kalish LA, et al. Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women. J Natl Cancer Inst 1999; 91: 226–236.

    Article  PubMed  CAS  Google Scholar 

  40. Sun XW, Kuhn L, Ellerbrock TV, Chiasson MA, Bush TJ, Wright TC Jr. Human papillomavirus infection in women infected with the human immunodeficiency virus. N Engl J Med 1997; 337: 1343–1349.

    Article  PubMed  CAS  Google Scholar 

  41. Siliman FH, Sedlis A. Anogenital papillomavirus infection and neoplasia in immunodeficient women. Obstet Gynecol Clin North Am 1987; 14: 537–558.

    Google Scholar 

  42. Maiman M, Fruchter RG, Serur E, Remy JC, Feuer G, Boyce J. Human immunodeficiency virus infection and cervical neoplasia. Gynecol Oncol 1990; 38: 377–382.

    Article  PubMed  CAS  Google Scholar 

  43. Vermund SH, Kelley KF, Klein RS, et al. High risk of human papillomavirus infection and cervical squamous intraepithelial lesions among women with symptomatic human immunodeficiency virus infection. Am J Obstet Gynecol 1991; 165: 392–400.

    PubMed  CAS  Google Scholar 

  44. Williams AB, Darragh TM, Vranizan K, Ochia C, Moss AR, Palefsky JM. Anal and cervical human papillomavirus infection and risk of anal and cervical epithelial abnormalities in human immunodeficiency virus-infected women. Obstet Gynecol 1994; 83: 205–211.

    PubMed  CAS  Google Scholar 

  45. Wright TC Jr, Sun XW. Anogenital papillomavirus infection and neoplasia in immunodeficient women. Obstet Gynecol Clin North Am 1996; 23: 861–893.

    Article  PubMed  Google Scholar 

  46. Massad LS, Riester KA, Anastos KM, et al. Prevalence and predictors of squamous cell abnormalities in Papanicolaou smears from women infected with HIV-1. Women’s Intergency HIV Study Group. J Acquir Immun Defic Syndr 1999; 21: 33–41.

    Article  CAS  Google Scholar 

  47. Nakagawa M, Stites D, Farhat S, et al. T cell response to human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. Clin Diagnost Lab Immunol 1996; 3: 205–210.

    CAS  Google Scholar 

  48. Tsukui T, Hildesheim A, Schiffman MH, et al. Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides: correlation with cervical pathology. Cancer Res 1996; 56: 3967–3974.

    PubMed  CAS  Google Scholar 

  49. Strang G, Hickling JK, McIndoe GA, et al. Human T cell responses to human papillomavirus type 16 Ll and E6 synthetic peptides: identification of T cell determinants, HLA-DR restriction and virus type specificity. J Gen Virol 1990; 71: 423–431.

    Article  PubMed  CAS  Google Scholar 

  50. Shepherd PS, Rowe A, Cridland J, Chapman M, Luxton J, Rayfield L. An immunodominant region in HPV 16.L 1 identified by T-cell responses in patients with cervical dysplasias. In: Stanley MA (ed). Immunology of Human Papillomaviruses. New York: Plenum Press, 1994, pp. 169–174.

    Google Scholar 

  51. Shepherd PS, Rowe AJ, Cridland JC, Coletart T, Wilson P, Luxton JC. Proliferative T cell responses to human papillomavirus type 16 Ll peptides in patients with cervical dysplasia. J Gen Virol 1996; 77: 593–602.

    Article  PubMed  CAS  Google Scholar 

  52. de Gruijl TD, Bontkes HJ, Walboomers JM, et al. Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res 1998; 58: 1700–1706.

    PubMed  Google Scholar 

  53. Nakagawa M, Stites DP, Farhat S, et al. Cytotoxic T lymphocyte responses to E6 and E7 proteins of human papillomavirus type 16: relationship to cervical intraepithelial neoplasia. J Infect Dis 1997; 175: 927–931.

    Article  PubMed  CAS  Google Scholar 

  54. Frazer IH, Fernando GJ, Fowler N, et al. Split tolerance to a viral antigen expressed in thymic epithelium and keratinocytes. Eur J Immunol 1998; 28: 2791–2800.

    Article  PubMed  CAS  Google Scholar 

  55. Doan T, Chambers M, Street M, et al. Mice expressing the E7 oncogene of HPV16 in epithelium show central tolerance, and evidence of peripheral anergising tolerance, to E7-encoded cytotoxic T-lymphocyte epitopes. Virology 1998; 244: 352–364.

    Article  PubMed  CAS  Google Scholar 

  56. Doan T, Herd K, Street M, Bryson G, Fernando G, Lambert P, Tindle R. Human papillomavirus type 16 E7 oncoprotein expressed in peripheral epithelium tolerizes E7-directed cytotoxic T-lymphocyte precursors resticted through human (and mouse) major histocompatibility complex class I alleles. J Virol 1999; 73: 6166–6170.

    PubMed  CAS  Google Scholar 

  57. Nimako M, Fiander AN, Wilkinson GW, Borysiewicz LK, Man S. Human papillomavirus-specific cytotoxic T lymphocytes in patients with cervical intraepithelial neoplasia grade III. Cancer Res 1997; 57: 4855–4861.

    PubMed  CAS  Google Scholar 

  58. Feltkamp MC, Smits HL, Vierboom MP, et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–2249.

    Article  PubMed  CAS  Google Scholar 

  59. Feltkamp MC, Vreugdenhil GR, Vierboom MP, et al. Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16-induced tumors. Eur J Immunol 1995; 25: 2638–2642.

    Article  PubMed  CAS  Google Scholar 

  60. Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM, Wheeler CM. HLA DR-DQ associations with cervical carcinoma show papillomavirus-type specificity. Nat Genet 1994; 6: 157–162.

    Article  PubMed  CAS  Google Scholar 

  61. Helland A, Olsen AO, Gjcen K, et al. An increased risk of cervical intra-epithelial neoplasia grade II-III among human papillomavirus positive patients with the HLA-DQA1*0102DQB 1 *0602 haplotype: a population-based case-control study of Norwegian women. Int J Cancer 1998; 76: 19–24.

    Article  PubMed  CAS  Google Scholar 

  62. Barillari G, Gendelman R, Gallo RC, Ensoli B. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc Natl Acad Sci USA 1993; 90: 7941–7945.

    Article  PubMed  CAS  Google Scholar 

  63. Buonaguro L, Barillari G, Chang HK, et al. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol 1992; 66: 7159–7167.

    PubMed  CAS  Google Scholar 

  64. Vernon SD, Hart CE, Reeves WC, Icenogle JP. The HIV-1 tat protein enhances E2-dependent human papillomavirus 16 transcription. Virus Res 1993; 27: 133–145.

    Article  PubMed  CAS  Google Scholar 

  65. Townsend DE, Ostergard DR, Mishell DR, Jr., Hirose FM. Abnormal Papanicolaou smears. Evaluation by colposcopy, biopsies, and endocervical curettage. Am J Obstet Gynecol 1970; 108: 429–434.

    PubMed  CAS  Google Scholar 

  66. Staff A. Colposcopy in diagnosis of cervical neoplasia. Am J Obstet Gynecol 1973; 115: 286–287.

    Google Scholar 

  67. Spitzer M. Cervical screening adjuncts: recent advances. Am J Obstet Gynecol 1998; 179: 544–556.

    Article  PubMed  CAS  Google Scholar 

  68. Hutchinson ML, Zahniser DJ, Sherman ME, et al. Utility of liquid-based cytology for cervical carcinoma screening: results of a population-based study conducted in a region of Costa Rica with a high incidence of cervical carcinoma. Cancer 1999; 87: 48–55.

    Article  PubMed  CAS  Google Scholar 

  69. Team PPM. Assessment of automated primary screening on PAPNET of cervical smears in the PRISMATIC trial. Lancet 1999; 353: 1381–1385.

    Article  Google Scholar 

  70. Abulafia O, Sherer DM. Automated cervical cytology: meta-analyses of the performance of the PAPNET system. Obstet Gynecol Sury 1999; 54: 253–264.

    Article  CAS  Google Scholar 

  71. Poljak M, Brencic A, Seme K, Vince A, Marin IJ. Comparative evaluation of first-and second-generation digene hybrid capture assays for detection of human papillomaviruses associated with high or intermediate risk for cervical cancer. J Clin Microbiol 1999; 37: 796–797.

    PubMed  CAS  Google Scholar 

  72. Clavel C, Masure M, Putaud I, et al. Hybrid capture II, a new sensitive test for human papillomavirus detection. Comparison with hybrid capture I and PCR results in cervical lesions. J Clin Pathol 1998; 51: 737–740.

    Article  PubMed  CAS  Google Scholar 

  73. Nobbenhuis MAE, Walboomers JMM, Helmerhorst TJM, et al. Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study. Lancet 1999; 354: 20–25.

    Article  PubMed  CAS  Google Scholar 

  74. Manos MM, Kinney WK, Hurley LB, et al. Identifying women with cervical neoplasia: using human papillomavirus DNA testing for equivocal Papanicolaou results. JAMA 1999; 281: 1605–1610.

    Article  PubMed  CAS  Google Scholar 

  75. Kinney WK, Manos MM, Hurley LB, Ransley JE. Where’s the high-grade cervical neoplasia? The importance of minimally abnormal Papanicolaou diagnoses. Obstet Gynecol 1998; 91: 973–976.

    Article  PubMed  CAS  Google Scholar 

  76. Cox JT. Evaluating the role of HPV testing for women with equivocal Papanicolaou test findings. JAMA 1999; 281: 1645–1647.

    Article  PubMed  CAS  Google Scholar 

  77. Ferris DG, Wright TC, Jr., Litaker MS, et al. Triage of women with ASCUS and LSIL on Pap smear reports: management by repeat Pap smear, HPV DNA testing, or colposcopy? J Fam Pract 1998; 46: 125–134.

    PubMed  CAS  Google Scholar 

  78. Kirby AJ, Spiegelhalter DJ, Day NE, et al. Conservative treatment of mild/moderate cervical dyskaryosis: long-term outcome. Lancet 1992; 339: 828–831.

    Article  PubMed  CAS  Google Scholar 

  79. Fletcher A, Metaxas N, Grubb C, Chamberlain J. Four and a half year follow up of women with dyskaryotic cervical smears. Br Med J (Clin Res) 1990; 301: 641–644.

    Article  CAS  Google Scholar 

  80. Robertson JH, Woodend BE, Crozier EH, Hutchinson J. Risk of cervical cancer associated with mild dyskaryosis. Br Med J (Clin Res) 1988; 297: 18–21.

    Article  CAS  Google Scholar 

  81. Flannelly G, Anderson D, Kitchener HC, et al. Management of women with mild to moderate cervical dyskaryosis. Br Med J 1994; 308: 1399–1403.

    Article  CAS  Google Scholar 

  82. Prendiville W, Cullimore J, Norman S. Large loop excision of the transformation zone (LLETZ). A new method of management for women with cervical intraepithelial neoplasia. Br J Obstet Gynecol 1989; 96: 1054–1060.

    Article  CAS  Google Scholar 

  83. Wright TC, Jr., Gagnon S, Richart RM, Ferenczy A. Treatment of cervical intraepithelial neoplasia using the loop electrosurgical excision procedure. Obstet Gynecol 1992; 79: 173–178.

    PubMed  Google Scholar 

  84. Prendiville W. Large loop excision of the transformation zone. Baillieres Clin Obst Gynecol 1995; 9: 189–220.

    Article  CAS  Google Scholar 

  85. Bigrigg A, Haffenden DK, Sheehan AL, Codling BW, Read MD. Efficacy and safety of large-loop excision of the transformation zone. Lancet 1994; 343: 32.

    Article  PubMed  CAS  Google Scholar 

  86. Ferenczy A, Choukroun D, Arseneau J. Loop electrosurgical excision procedure for squamous intraepithelial lesions of the cervix: advantages and potential pitfalls. Obst Gynecol 1996; 87: 332–337.

    Article  CAS  Google Scholar 

  87. Bloomfield PI, Buxton J, Dunn J, Luesley DM. Pregnancy outcome after large loop excision of the cervical transformation zone. Am J Obstet Gynecol 1993; 169: 620–625.

    Google Scholar 

  88. Townsend DE, Ostergard DR. Cryocauterization for preinvasive cervical neoplasia. J Reprod Med 1971; 6: 171–176.

    PubMed  CAS  Google Scholar 

  89. Charles EH, Savage EW. Cryosurgical treatment of cervical intraepithelial neoplasia. Obstet Gynecol Sury 1980; 35: 539–548.

    Article  CAS  Google Scholar 

  90. Figge DC, Creasman WT. Cryotherapy in the treatment of cervical intraepithelial neoplasia. Obstet Gynecol 1983; 62: 353–358.

    Article  PubMed  CAS  Google Scholar 

  91. Stein DS, Ulrich SA, Hasiuk AS. Laser vaporization in the treatment of cervical intraepithelial neoplasia. J Reprod Med 1985; 30: 179–183.

    PubMed  CAS  Google Scholar 

  92. Jordan JA, Woodman CB, Mylotte MJ, et al. The treatment of cervical intraepithelial neoplasia by laser vaporization. Br J Obstet Gynecol 1985; 92: 394–398.

    Article  CAS  Google Scholar 

  93. Beutner KR, Reitano MV, Richwald GA, Wiley DJ. External genital warts: report of the American Medical Association Consensus Conference. AMA Expert Panel on External Genital Warts. Clin Infect Dis 1998; 27: 796–806.

    Article  PubMed  CAS  Google Scholar 

  94. Beutner KR, Wiley DJ, Douglas JM, et al. Genital warts and their treatment. Clin Infect Dis 1999; 28 (Suppl 1): S37–56.

    Article  PubMed  Google Scholar 

  95. Maiman M, Fruchter RG, Serur E, Levine PA, Arrastia CD, Sedlis A. Recurrent cervical intraepithelial neoplasia in human immunodeficiency virus-seropositive women. Obstet Gynecol 1993; 82: 170–174.

    PubMed  CAS  Google Scholar 

  96. Fruchter RG, Maiman M, Sedlis A, Bartley L, Camilien L, Arrastia CD. Multiple recurrences of cervical intraepithelial neoplasia in women with the human immunodeficiency virus. Obstet Gynecol 1996; 87: 338–344.

    Article  PubMed  CAS  Google Scholar 

  97. Holcomb K, Maiman M, Dimaio T, Gates J. Rapid progression to invasive cervix cancer in a woman infected with the human immunodeficiency virus. Obstet Gynecol 1998; 91: 848–850.

    Article  PubMed  CAS  Google Scholar 

  98. Maiman M. Management of cervical neoplasia in human immunodeficiency virus-infected women. J Natl Cancer Inst Monogr 1998; 68: 43–49.

    Article  Google Scholar 

  99. Schiller JT, Lowy DR. Papillomavirus-like particles and HPV vaccine development. Semin Cancer Biol 1996; 7: 373–382.

    Article  PubMed  CAS  Google Scholar 

  100. Nardelli-Haefliger D, Roden RB, Benyacoub J, et al. Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect Immun 1997; 65: 3328–3336.

    PubMed  CAS  Google Scholar 

  101. Balmelli C, Roden R, Potts A, Schiller J, De Grandi P, Nardelli-Haefliger D. Nasal immunization of mice with human papillomavirus type 16 virus-like particles elicits neutralizing antibodies in mucosal secretions. J Virol 1998; 72: 8220–8229.

    PubMed  CAS  Google Scholar 

  102. Lowe RS, Brown DR, Bryan JT, et al. Human papillomavirus type 11 (HPV-11) neutralizing antibodies in the serum and genital mucosal secretions of African green monkeys immunized with HPV-11 virus-like particles expressed in yeast. J Infect Dis 1997; 176: 1141–1145.

    Article  PubMed  CAS  Google Scholar 

  103. Schiller J, Lowy D. Papillomavirus-like particle vaccines for cervical cancer. Third National AIDS Malignancy Conference, Abstract S6, 1999.

    Google Scholar 

  104. Suzich JA, Ghim SJ, Palmer-Hill FJ, et al. Systemic immunization with papillomavirus Ll protein completely prevents the development of viral mucosal papillomas. Proc Natl Acad Sci USA 1995; 92: 11553–11557.

    Article  PubMed  CAS  Google Scholar 

  105. Greenstone HL, Nieland JD, de Visser KE, et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV 16 tumor model. Proc Natl Acad Sci USA 1998; 95: 1800–1805.

    Article  PubMed  CAS  Google Scholar 

  106. Borysiewicz LK, Fiander A, Nimako M, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 1996; 347: 1523–1527.

    Article  PubMed  CAS  Google Scholar 

  107. Palefsky J. Anal cancer in HIV-positive individuals: an emerging problem. AIDS 1994: 283–295.

    Google Scholar 

  108. Zaki SR, Judd R, Coffield LM, Greer P, Rolston F, Evatt BL. Human papillomavirus infection and anal carcinoma. Retrospective analysis by in situ hybridization and the polymerase chain reaction. Am J Pathol 1992; 140: 1345–1355.

    PubMed  CAS  Google Scholar 

  109. Frisch M, Glimelius B, van den Brule AJ, et al. Sexually transmitted infection as a cause of anal cancer. N Engl J Med 1997; 337: 1350–1358.

    Article  PubMed  CAS  Google Scholar 

  110. Frisch M, Fenger C, van den Brule AJ, et al. Variants of squamous cell carcinoma of the anal canal and perianal skin and their relation to human papillomaviruses. Cancer Res 1999; 59: 753–757.

    PubMed  CAS  Google Scholar 

  111. Critchlow CW, Holmes KK, Wood R, et al. Association of human immunodeficiency virus and anal human papillomavirus infection among homosexual men. Arch Intern Med 1992; 152: 1673–1676.

    Article  PubMed  CAS  Google Scholar 

  112. Palefsky JM, Holly EA, Ralston ML, Jay N. Prevalence and risk factors for human papillomavirus infection of the anal canal in human immunodeficiency virus (HIV)-positive and HIV-negative homosexual men. J Infect Dis 1998; 177: 361–367.

    Article  PubMed  CAS  Google Scholar 

  113. Melbye M, Smith E, Wohlfahrt J, et al. Anal and cervical abnormality in women-prediction by human papillomavirus tests. Int J Cancer 1996; 68: 559–564.

    Article  PubMed  CAS  Google Scholar 

  114. Critchlow CW, Surawicz CM, Holmes KK, et al. Prospective study of high grade anal squamous intraepithelial neoplasia in a cohort of homosexual men: influence of HIV infection, immunosuppression and human papillomavirus infection. AIDS 1995; 9: 1255–1262.

    Article  PubMed  CAS  Google Scholar 

  115. Palefsky JM, Holly EA, Ralston ML, et al. Anal squamous intraepithelial lesions in HIV-positive and HIV-negative homosexual and bisexual men: prevalence and risk factors. J Acquir Immune Defic Syndr 1998; 17: 320–326.

    Article  CAS  Google Scholar 

  116. Palefsky JM, Holly EA, Hogeboom CJ, et al. Virologie, immunologic, and clinical parameters in the incidence and progression of anal squamous intraepithelial lesions in HIV-positive and HIV-negative homosexual men. J Acquir Immune Defic Syndr 1998; 17: 314–319.

    Article  CAS  Google Scholar 

  117. Palefsky JM, Holly EA, Ralston ML, Jay N, Berry JM, Darragh TM. High incidence of anal high-grade squamous intra-epithelial lesions among HIV-positive and HIV-negative homosexual and bisexual men. AIDS 1998; 12: 495–503.

    Article  PubMed  CAS  Google Scholar 

  118. Moscicki AB, Hills NK, Shiboski S, et al. Risk factors for abnormal anal cytology in young heterosexual women. Cancer Epidemiol Biomarker Prey 1999; 8: 173–178.

    CAS  Google Scholar 

  119. Scholefield JH, Hickson WG, Smith JH, Rogers K, Sharp F. Anal intraepithelial neoplasia: part of a multifocal disease process. Lancet 1992; 340: 1271–1273.

    Article  PubMed  CAS  Google Scholar 

  120. Ogunbiyi OA, Scholefield JH, Raftery AT, et al. Prevalence of anal human papillomavirus infection and intraepithelial neoplasia in renal allograft recipients. Br J Surg 1994; 81: 365–367.

    Article  PubMed  CAS  Google Scholar 

  121. Ogunbiyi OA, Scholefield JH, Robertson G, Smith JH, Sharp F, Rogers K. Anal human papillomavirus infection and squamous neoplasia in patients with invasive vulvar cancer. Obstet Gynecol 1994; 83: 212–216.

    PubMed  CAS  Google Scholar 

  122. Jay N, Holly EA, Berry M, Hogeboom CJ, Darragh TM, Palefsky JM. Colposcopic correlates of anal squamous intraepithelial lesions. Dis Col Rectum 1997; 40: 919–928.

    Article  CAS  Google Scholar 

  123. Goldie SJ, Kuntz KM, Weinstein MW, Freedberg KA, Welton ML, Palefsky JM. The clinical-effectiveness and cost-effectiveness of screening for anal squamous intraepithelial lesions in homosexual and bisexual HlVpositive men. JAMA 1999; 281: 1822–1829.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palefsky, J.M. (2000). Anogenital Squamous Cell Cancer and Its Precursors. In: Goedert, J.J. (eds) Infectious Causes of Cancer. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-024-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-024-7_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9621-5

  • Online ISBN: 978-1-59259-024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics