Skip to main content

Collagens

  • Chapter
  • 97 Accesses

Part of the book series: Current Molecular Medicine ((CMM,volume 1))

Abstract

The collagens comprise a family of specialized molecules with common structural features that provide an extracellular framework for all multicellular animals. The collagens are the most abundant body proteins, accounting for more than 20% of total-body mass. At least 20 different collagens (types I to XX) have been identified to date (Table 1) and it is likely that more will be discovered in the future. These different molecules represent homopolymers or heteropolymers of specific polypeptide products of at least 33 different collagen genes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, K. and Brodsky, B. (1998) Supercoiled protein motifs: the collagen triple-helix and the α-helical coiled coil. J. Struct. Biol. 122, 17–19.

    Article  PubMed  CAS  Google Scholar 

  2. Brodsky, B. and Ranshaw, J. A. (1997) The collagen triple-helix structure. Matrix Biol. 15, 545–554.

    Article  PubMed  CAS  Google Scholar 

  3. Gay, S. and Miller, E. J. (1983) What is collagen, what is not. Ultrastruct. Pathol. 4, 365–377.

    Article  PubMed  CAS  Google Scholar 

  4. Gordon, M. K. and Olsen, B. R. (1990) The contribution of collagenous proteins to tissuespecific matrix assemblies. Curr. Opin. Cell Biol. 2, 833–838.

    Article  PubMed  CAS  Google Scholar 

  5. Mayne, R. and Burgeson, R. E. (eds.) (1987) Structure and Function of Collagen Types. Academic, New York.

    Google Scholar 

  6. Miller, E. J. (1985) The structure of fibril-forming collagens. Ann. NY Acad. Sci. 460, 1–13.

    Article  PubMed  CAS  Google Scholar 

  7. Prockop, D. J. and Kivirikko, K. I. (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434.

    Article  PubMed  CAS  Google Scholar 

  8. Rosenbloom, J., Harsch, M., and Jimenez, S. A. (1973) Hydroxyproline determines the denaturation temperature of chick tendon collagen. Arch. Biochem. Biophys. 158, 478–484.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, J. C. and Timpl R. (1995) The collagen superfamily. Int. Arch. Allergy Immunol. 107, 484–490.

    Article  PubMed  CAS  Google Scholar 

  10. Bruckner, P. and van der Rest, M. (1994) Structure and function of cartilage collagens. Microsc. Res. Tech. 28, 378–384.

    Article  PubMed  CAS  Google Scholar 

  11. Burgeson, R. E. (1993) Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J. Invest. Dermatol. 101, 252–255.

    Article  PubMed  CAS  Google Scholar 

  12. Eyre, D. R., Wu, J. J., Woods, P. E., and Weis, M. A. (1991) The cartilage collagens and joint degeneration. Br. J. Rheumatol. 30, 10–15.

    Article  PubMed  Google Scholar 

  13. Fichard, A., Kleman, J. P., and Ruggiero, F. (1995) Another look at collagen V and XI molecules. Matrix Biol. 14, 515–531.

    Article  PubMed  CAS  Google Scholar 

  14. Fukai, N., Apte, S. S., and Olsen, B. R. (1994) Nonfibrillar collagens. Methods Enzymol. 245, 3–28.

    Article  PubMed  CAS  Google Scholar 

  15. Martin, G. R., Timpl, R., Müller, P. K., and Kühn, K. (1985) The genetically distinct collagens. Trends Biochem. Sci. 10, 285–287.

    Article  CAS  Google Scholar 

  16. Mayne, R. and Brewton, R. G. (1993) New members of the collagen superfamily. Curr. Opin. Cell Biol. 5, 883–890.

    Article  PubMed  CAS  Google Scholar 

  17. Pihlajaniemi, T. and Rehn, M. (1995) Two new collagen subgroups: membrane-associated collagens and types XV and XVII. Prog. Nucleic Acid Res. Mol. Biol. 50, 225–262.

    Article  PubMed  CAS  Google Scholar 

  18. Pulkinen, L. and Uitto, J. (1998) Hemidesmosomal variants of epidermolysis bullosa. Mutations in the a6ββ4 integrin and the 180-kD bullous pemphigoid antigen/type XVII collagen genes. Exp. Dermatol. 7, 46–64.

    Article  Google Scholar 

  19. Shaw, L. M. and Olsen, B. R. (1991) FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci. 16, 191–194.

    Article  PubMed  CAS  Google Scholar 

  20. Sutmuller, M., Bruijn, J. A., and deHeer, E. (1997) Collagen types VIII and X, two non-fibrillar, short-chain collagens. Structure homologies, functions and involvement in pathology. Histol. Histopathol. 12, 557–566.

    PubMed  CAS  Google Scholar 

  21. Thomas, J. T., Ayad, S., and Grant, M. E. (1994) Cartilage collagens: strategies for the study of their organization and expression in the extracellular matrix. Ann. Rheum. Dis. 53, 488–496.

    Article  PubMed  CAS  Google Scholar 

  22. van der Rest, M. and Garrone, R. (1991) Collagen family of proteins. FASEB J. 5, 2814–2823.

    PubMed  Google Scholar 

  23. Dalgleish, R. (1988) Collagen gene structure. Biochem. Soc. Trans. 16, 661–663.

    PubMed  CAS  Google Scholar 

  24. Jacenko, O., Olsen, B. R., and LuValle, P. (1991) Organization and regulation of collagen genes. Crit. Rev. Eukaryote Gene Express. 1, 327–353.

    CAS  Google Scholar 

  25. Krieg, T., Hein, R., Hatamochi, A., and Aumailley, M. (1988) Molecular and clinical aspects of connective tissue. Eur. J. Clin. Invest. 18, 105–123.

    PubMed  CAS  Google Scholar 

  26. Kuivaniemi, H., Tromp, G., and Prockop, D. J. (1997) Mutations in fibrillar collagens (types I, II, III and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum. Mutat. 9, 300–315.

    Article  PubMed  CAS  Google Scholar 

  27. Lee, B., D’Alessio, M., and Ramirez, F. (1991) Modifications in the organization and expression of collagen genes associated with skeletal disorders. Crit. Rev. Eukaryote. Gene Express. 1, 173–187.

    CAS  Google Scholar 

  28. Olsen, B. R. (1995) Mutations in collagen genes resulting in metaphyseal and epiphyseal dysplasias. Bone 17, 45S-49S.

    Article  Google Scholar 

  29. Olsen, B. R. (1995) New insights into the function of collagens from genetic analysis. Curr. Opin. Cell Biol. 7, 720–727.

    Article  PubMed  CAS  Google Scholar 

  30. Rimoin, D. L. (1996) Molecular defects in the chondrodysplasias. Am. J. Med. Genet. 63, 106–110.

    Article  PubMed  CAS  Google Scholar 

  31. Sado, Y., Kagawa, M., Naito, I., Ueki, Y., Seki, T., Momota, R., et al. (1998) Organization and expression of basement membrane collagen IV genes and their roles in human disorders. J. Biochem. 123, 767–776.

    Article  PubMed  CAS  Google Scholar 

  32. Sandell, L. J. (1996) Genes and gene regulation of extracellular matrix proteins: an introduction. Connect. Tissue Res. 35, 1–6.

    Article  PubMed  CAS  Google Scholar 

  33. Sandell, L. J. and Boyd, C. D. (eds.) (1990) Extracellular Matrix Genes. Academic Press, New York.

    Google Scholar 

  34. Vuorio, E. and deCrombrugge, B. (1990) The family of collagen genes. Annu. Rev. Biochem. 59, 837–872.

    Article  PubMed  CAS  Google Scholar 

  35. Peltonen, L., Halila, R., and Ryhanen, L. (1985) Enzymes converting procollagens to collagens. J. Cell Biochem. 28, 15–21.

    Article  PubMed  CAS  Google Scholar 

  36. Ramirez, F., Boast, S., D’Alessio, M., Prince, J., Su, M. W., and Vissing, H. (1989) Molecular pathobiology of human collagens. Connect. Tissue Res. 21, 79–88.

    Article  PubMed  CAS  Google Scholar 

  37. Adams, S. L. (1989) Collagen gene expression. Am. J. Respir. Cell Mol. Biol. 1, 161–168.

    PubMed  CAS  Google Scholar 

  38. Bienkowski, R. S. and Gotkin, M. G. (1995) Control of collagen deposition in mammalian lung. Proc. Soc. Exp. Biol. Med. 209, 118–140.

    PubMed  CAS  Google Scholar 

  39. Bornstein, P. (1996) Regulation of expression of the α1 (I) collagen gene: a critical appraisal of the role of the first intron. Matrix Biol. 15, 3–10.

    Article  PubMed  CAS  Google Scholar 

  40. Bornstein, P. and Sage, H. (1989) Regulation of collagen gene expression. Prog. Nucleic Acid Res. Mol. Biol. 37, 67–106.

    Article  PubMed  CAS  Google Scholar 

  41. Bornstein, P., Horlein, D., and McPherson, J. (eds.) (1984) Regulation of Collagen Synthesis, Myelofibrosis and the Biology of Connective Tissue. Alan R. Liss, New York.

    Google Scholar 

  42. Brenner, D. A., Rippe, R. A., Rhodes, K., Trotter, J. F., and Breindl, M. (1994) Fibrogenesis and type I collagen gene regulation. J. Lab. Clin. Med. 124, 755–760.

    PubMed  CAS  Google Scholar 

  43. Freundlich, B., Bomalaski, J. S., Neilson, E., and Jimenez, S. A. (1986) Regulation of fibroblast proliferation and collagen synthesis by cytokines. Immunol. Today 7, 303–307.

    Article  CAS  Google Scholar 

  44. Jimenez, S. A., Freundlich, B., and Rosenbloom, J. (1984) Selective inhibition of human diploid fibroblast collagen synthesis by interferons. J. Clin. Invest. 74, 1112–1116.

    Article  PubMed  CAS  Google Scholar 

  45. Jimenez, S. A., Hitraya, E., and Varga, J. (1996) Pathogenesis of scleroderma. Collagen. Rheum. Dis. Clin. North Am. 22, 647–674.

    Article  PubMed  CAS  Google Scholar 

  46. Karsenty, G. and Park, R. W. (1995) Regulation of type I collagen genes expression. Int. Rev. Immunol. 12, 177–185.

    Article  PubMed  CAS  Google Scholar 

  47. Raghow, R. and Thompson, J. P. (1989) Molecular mechanisms of collagen gene expression. Mol. Cell Biochem. 86, 5–18.

    Article  PubMed  CAS  Google Scholar 

  48. Slack, J. L., Liska, D. J., and Bornstein, P. (1993) Regulation of expression of the type I collagen genes. Am. J. Med. Genet. 45, 140–151.

    Article  PubMed  CAS  Google Scholar 

  49. Trojanowska, M., LeRoy, E. C., Eckes, B., and Krieg, T. (1998) Pathogenesis of fibrosis: type I collagen and the skin. J. Mol. Med. 76, 266–274.

    Article  PubMed  CAS  Google Scholar 

  50. Varga, J. and Jimenez, S. A. (1995) Modulation of collagen gene expression: its relation to fibrosis in systemic sclerosis and other disorders. Ann. Intern. Med. 122, 60–62.

    PubMed  CAS  Google Scholar 

  51. Varga, J., Rosenbloom, J., and Jimenez, S. A. (1987) Transforming growth factor β (TGF 3) causes a persistent increase in steady state amounts of type I and type III collagens and fibronectin mRNAs in normal human dermal fibroblasts. Biochem. J. 247, 597–604.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jiménez, S.A. (2000). Collagens. In: Tsokos, G.C. (eds) Principles of Molecular Rheumatology. Current Molecular Medicine, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-018-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-018-6_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-182-0

  • Online ISBN: 978-1-59259-018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics