Skip to main content

Roles of Integrins CR3 and CR4 in Disease and Therapeutic Strategies

  • Chapter
  • 147 Accesses

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

CR3 and CR4 have important functions in host defense against microbial infection in mediating both intercellular adhesion and phagocytosis and/or cytotoxic degranulation. These membrane glycoproteins act first as adhesion molecules to promote the diapedesis of leukocytes into sites of infection or injury, and then work secondarily as trigger molecules to initiate phagocytosis and degranulation responses that kill microbial pathogens. Although CR4 is structurally and functionally similar to CR3, there is little information about the specific contributions of CR4 to disease, and accordingly, intervention strategies have focused primarily on CR3. The diverse functions of CR3 have led to strategies for therapeutic intervention designed either to block or to prime CR3 in specific diseases. Antagonists function by preventing unwanted neutrophil damage of normal tissue at sites of inflammation, whereas agonists prime CR3 for cytotoxic recognition of iC3b-opsonized tumors. Although these functions of CR3 appear distinct, novel intervention strategies have been suggested by recent research showing the cellular mechanisms that regulate CR3 adhesion vs cytotoxic degranulation through formation of lectin-dependent membrane complexes with either CD87 (uPAR) or CD 16 (FcγRIIIB).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gardiner, K., Watkins, P., Munke, M., Drabkin, H., Jones, C., and Patterson, D. (1988) Partial physical map of human chromosome 21. Somat. Cell Mol. Genet. 14, 623–637.

    Article  PubMed  CAS  Google Scholar 

  2. Corbi, A. L., Larson, R. S., Kishimoto, T. K., Springer, T. A., and Morton, C. C. (1988) Chromosomal location of the genes encoding the leukocyte adhesion receptors LFA-1, Mac-1, and p150,95. J. Exp. Med. 167, 1597–1607.

    Article  PubMed  CAS  Google Scholar 

  3. Lu, C. F., Oxvig, C., and Springer, T. A. (1998) The structure of the β3-propeller domain and C-terminal region of the integrin aM subunit dependence on β subunit association and prediction of domains. J. Biol. Chem. 273, 15138–15147.

    Article  PubMed  CAS  Google Scholar 

  4. Corbi, A. L., Kishimoto, T. K., Miller, L. J., and Springer, T. A. (1988) The human leukocyte adhesion glycoprotein Mac-1 (complement receptor type 3, CD11b) α subunit. Cloning, primary structure, and relation to the integrins, von Willebrand factor and factor B. J. B.ol. Chem. 263, 12,403–12,411.

    Google Scholar 

  5. Diamond, M. S., Garcia-Aguilar, J., Bickford, J. K., Corbi, A. L., and Springer, T. A. (1993) The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031–1043.

    Article  PubMed  CAS  Google Scholar 

  6. Muchowski, P. J., Zhang, L., Chang, E. R., Soule, H. R., Plow, E. F., and Moyle, M. (1994) Functional interaction between the integrin antagonist neutrophil inhibitory factor and the I domain of CD11b/CD18. J. Biol. Chem. 269, 26,419–423.

    Google Scholar 

  7. Thornton, B. P., Vĕtvička, V., Pitman, M., Goldman, R. C., and Ross, G. D. (1996) Analysis of the sugar specificity and molecular location of the β-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol. 156, 1235–1246.

    PubMed  CAS  Google Scholar 

  8. Lee, J.-O., Rieu, P., Arnaout, M. A., and Liddington, R. (1995) Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–638.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, E. and Hogg, N. (1996) Where the outside meets the inside: integrins as activators and targets of signal transduction cascades. Immunol. Lett. 54, 189–193.

    Article  PubMed  CAS  Google Scholar 

  10. Newton, R. A., Thiel, M., and Hogg, N. (1997) Signaling mechanisms and the activation of leukocyte integrins. J. Leukocyte Biol. 61, 422–426.

    PubMed  CAS  Google Scholar 

  11. Ross, G. D., Cain, J. A., Myones, B. L., Newman, S. L., and Lachmann, P. J. (1987) Specificity of membrane complement receptor type three (CR3) for 1β-glucans. Compl. Inflamm. 4, 61–74.

    CAS  Google Scholar 

  12. Cain, J. A., Newman, S. L., and Ross, G. D. (1987) Role of complement receptor type three and serum opsonins in the neutrophil response to yeast. Compl. Inflamm. 4, 75–86.

    CAS  Google Scholar 

  13. Ueda, T., Rieu, P., Brayer, J., and Arnaout, M. A. (1994) Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. USA 91, 10,680–684.

    Google Scholar 

  14. Zhou, L., Lee, D. H. S., Plescia, J., Lau, C. Y., and Altieri, D. C. (1994) Differential ligand binding specificities of recombinant CD11b/CD18 integrin I-domain. J. Biol. Chem. 269, 17075–17079.

    PubMed  CAS  Google Scholar 

  15. Diamond, M. S., Alon, R., Parkos, C. A., Quinn, M. T., and Springer, T. A. (1995) Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD18). J. Cell Biol. 130, 1473–1482.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, L. and Plow, E. F. (1996) Overlapping, but not identical, sites are involved in the recognition of C3bi, neutrophil inhibitory factor, and adhesive ligands by the αMβ2 integrin. J. Biol. Chem. 271, 18211–18216.

    Article  PubMed  CAS  Google Scholar 

  17. Balsam, L. B., Liang, T. W., and Parkos, C. A. (1998) Functional mapping of CD11b/CD18 epitopes important in neutrophil-epithelial interactions: a central role of the I domain. J. Immunol. 160, 5058 – 5065.

    PubMed  CAS  Google Scholar 

  18. Kamata, T., Wright, R., and Takada, Y. (1995) Critical threonine and aspartic acid residues within the I domains of β2 integrins for interactions with intercellular adhesion molecule 1 (ICAM-1) and C3bi. J. Biol. Chem. 270, 12,531–12,535.

    Google Scholar 

  19. Lee, J. O., Bankston, L. A., Arnaout, M. A., and Liddington, R. C. (1995) Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure3, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  20. Oxvig, C. and Springer, T. A. (1998) Experimental support for aβ-propeller domain in integrin α-subunits and a calcium binding site on its lower surface. Proc. Natl. Acad. Sci. USA 95, 4870–4875.

    Article  PubMed  CAS  Google Scholar 

  21. Xia, Y. and Ross, G. D. (1998) Mapping the β-glucan-binding lectin site of human CR3 (CD11b/CD18) with recombinant fragments of CD11b. FASEB J. 12, A907 (Abstr).

    Google Scholar 

  22. Xia, Y. and Ross, G. D. (1999) Generation of recombinant fragments of CD11b expressing the functional β-glucan-binding lectin site of CR3 (CD11b/CD18). J. Immunol. 162, 7285–7293.

    PubMed  CAS  Google Scholar 

  23. Forsyth, C. B. and Mathews, H. L. (1996) Lymphocytes utilize CD11b/CD18 for adhesion to Candida albicans. Cell. Immunol. 170, 91–100.

    Article  CAS  Google Scholar 

  24. Fradin, C., Jouault, T., Mallet, A., Mallet, J. M., Camus, D., Sinaÿ, P., and Poulain, D. (1996) β-1,2- linked oligomannosides inhibit Candida albicans binding to murine macrophage. J. Leukocyte Biol. 60, 81–87.

    PubMed  CAS  Google Scholar 

  25. Xia, Y., Vĕtvička, V., Yan, J., Hanikýřová, M., Mayadas, T. N., and Ross, G. D. (1999) The β-glucan- binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol. 162, 2281–2290.

    PubMed  CAS  Google Scholar 

  26. Corbi, A. L., Miller, L. J., O’Connor, K., Larson, R. S., and Springer, T.A. (1987) cDNA cloning and complete primary structure of the alpha subunit of a leukocyte adhesion glycoprotein, p150,95. EMBO J. 6, 4023–4028.

    PubMed  CAS  Google Scholar 

  27. Arnaout, M. A. (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood 75, 1037–1050.

    PubMed  CAS  Google Scholar 

  28. Bilsland, C. A. G., Diamond, M. S., and Springer, T. A. (1994) The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b: activation by a heterologous β subunit and localization of a ligand recognition site to the I domain. J. Immunol. 152, 4582–4589.

    PubMed  CAS  Google Scholar 

  29. Vĕtvička, V., Thornton, B. P., and Ross, G. D. (1996) Soluble β-glucan polysaccharide binding to the lectin site of neutrophil or NK cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J. Clin. Invest. 98, 50–61.

    Article  PubMed  Google Scholar 

  30. Petty, H. R. and Todd, R. F., III (1996) Integrins as promiscuous signal transduction devices. Immunol. Today 17, 209–212.

    Article  PubMed  CAS  Google Scholar 

  31. Kindzelskii, A. L., Eszes, M. M., Todd, R. F., III, and Petty, H. R. (1997) Proximity oscillations of complement type 4 (αXβ2) and urokinase receptors on migrating neutrophils. Biophys. J. 73, 1777–1784.

    Article  PubMed  CAS  Google Scholar 

  32. Yan, J., Vĕtvička, V., Xia, Y., Mayadas, T. N., and Ross, G. D. (1999) Critical role of Kupffer cell CR3 (CD11b/CD18) in the clearance of IgM-opsonized erythrocytes or soluble β-glucan. Immunopharmacology 46, 39–54.

    Article  Google Scholar 

  33. Diamond, M. S. and Springer, T. A. (1993) A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J. Cell Biol. 120, 545–556.

    Article  PubMed  CAS  Google Scholar 

  34. Berger, M., O’Shea, J., Cross, A. S., Folks, T. M., Chused, T. M., Brown, E. J., and Frank, M. M. (1984) Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. J. Clin. Invest. 74, 1566–1571.

    Article  PubMed  CAS  Google Scholar 

  35. Jones, D. H., Anderson, D. C., Burr, B. L., Rudloff, H. E., Smith, C. W., Krater, S. S., and Schmalstieg, F. C. (1988) Quantitation of intracellular Mac-1 (CD11b/CD18) pools in human neutrophils. J. Leukocyte Biol. 44, 535–544.

    PubMed  CAS  Google Scholar 

  36. Witthaut, R., Farhood, A., Smith, C. W., and Jaeschke, H. (1994) Complement and tumor necrosis factor-α contribute to Mac-1 (CD11b/CD18) up-regulation and systemic neutrophil activation during endotoxemia in vivo. J. Leukocyte Biol. 55, 105–111.

    PubMed  CAS  Google Scholar 

  37. Pryzwansky, K. B., Wyatt, T., Reed, W., and Ross, G. D. (1991) Phorbol ester induces transient focal concentrations of functional, newly expressed CR3 in neutrophils at sites of specific granule exocytosis. Eur. J. Cell Biol. 54, 61–75.

    PubMed  CAS  Google Scholar 

  38. Buyon, J. P., Abramson, S. B., Philips, M. R., Slade, S. G., Ross, G. D., Weissmann, G., and Winchester, R. J. (1988) Dissociation between increased surface expression of gp165/95 and homotypic neutrophil aggregation. J. Immunol. 140, 3156–3160.

    PubMed  CAS  Google Scholar 

  39. Philips, M. R., Buyon, J. P., Winchester, R., Weissmann, G., and Abramson, S. B. (1988) Up-regulation of the iC3b receptor (CR3) is neither necessary nor sufficient to promote neutrophil aggregation. J. Clin. Invest. 82, 495–501.

    Article  PubMed  CAS  Google Scholar 

  40. Graham, I. L., Gresham, H. D., and Brown, E. J. (1989) An immobile subset of plasma membrane CD11b/CD18 (Mac-1) is involved in phagocytosis of targets recognized by multiple receptors. J. Immunol. 142, 2352–2358.

    PubMed  CAS  Google Scholar 

  41. Ross, G. D., Reed, W., Dalzell, J. G., Becker, S. E., and Hogg, N. (1992) Macrophage cytoskeleton association with CR3 and CR4 regulates receptor mobility and phagocytosis of iC3b-opsonized erythrocytes. J. Leukocyte Biol. 51, 109–117.

    PubMed  CAS  Google Scholar 

  42. Rosen, H. (1990) Role of CR3 in induced myelomonocytic recruitment: insights from in vivo monoclonal antibody studies in the mouse. J. Leukocyte Biol. 48, 465–469.

    PubMed  CAS  Google Scholar 

  43. Smith, C. W. (1993) Leukocyte-endothelial cell interactions. Semin. Hematol. 30 (Suppl. 4), 45–55.

    PubMed  CAS  Google Scholar 

  44. Springer, T. A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314.

    Article  PubMed  CAS  Google Scholar 

  45. Coxon, A., Rieu, P., Barkalow, F. J., Askari, S., Sharpe, A. H., Von Andrian, U. H., Arnaout, M. A., and Mayadas, T. N. (1996) A novel role for the β32 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5, 653–666.

    Article  PubMed  Google Scholar 

  46. Lu, H. F., Smith, C. W., Perrard, J., Bullard, D., Tang, L. P., Shappell, S. B., Entman, M. L., Beaudet, A. L., and Ballantyne, C. M. (1997) LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J. Clin. Invest. 99, 1340–1350.

    Article  PubMed  CAS  Google Scholar 

  47. Walzog, B., Jeblonski, F., Zakrzewicz, A., and Gaehtgens, P. (1997) β2 integrins (CD11/CD18) promote apoptosis of human neutrophils. FASEB J. 11, 1177–1186.

    PubMed  CAS  Google Scholar 

  48. May, A. E., Kanse, S. M., Lund, L. R., Gisler, R. H., Imhof, B. A., and Preissner, K. T. (1998) Urokinase receptor (CD87) regulates leukocyte recruitment via 1β2 integrins in vivo. J. Exp. Med. 188, 1029–1037.

    Article  PubMed  CAS  Google Scholar 

  49. Sitrin, R. G., Todd, R. F., III, Petty, H. R., Brock, T. G., Shollenberger, S. B., Albrecht, E., and Gyetko, M. R. (1996) The urokinase receptor (CD87) facilitates CD11b/CD18-mediated adhesion of human monocytes. J. Clin. Invest. 97, 1942–1951.

    Article  PubMed  CAS  Google Scholar 

  50. Wong, W. S. F., Simon, D. I., Rosoff, P. M., Rao, N. K., and Chapman, H. A. (1996) Mechanisms of pertussis toxin-induced myelomonocytic cell adhesion: Role of Mac-1(CD11b/CD18) and urokinase receptor (CD87). Immunology 88, 90–97.

    Article  PubMed  CAS  Google Scholar 

  51. Ross, G. D. (1985) Characterization of phagocytic and cytotoxic abnormalities in patients who have an inherited deficiency of neutrophil complement receptor type three (CR3) and the related membrane antigens LFA-1 and p150,95, in Recent Advances in Primary and Acquired Immunodeficiencies, Serono Symposia, vol. 28 (Aiuti, F., Rosen, F., and Cooper, M. D., eds.), Raven Press, New York, pp. 119–127.

    Google Scholar 

  52. Anderson, D. C. and Springer, T. A. (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu. Rev. Med. 38, 175–194.

    Article  PubMed  CAS  Google Scholar 

  53. Anderson, D. C. (1994) Leukocyte adhesion deficiency, in The Metabolic Basis of Inherited Diseases (Shriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 3955–3994.

    Google Scholar 

  54. Wilson, I., Gillinov, A. M., Curtis, W. E., Dinatale, J., Burch, R. M., Gardner, T. J., and Cameron, D. E. (1993) Inhibition of neutrophil adherence improves postischemic ventricular performance of the neonatal heart. Circulation 88, II372–II379

    Article  Google Scholar 

  55. Kurose, I., Anderson, D. C., Miyasaka, M., Tamatani, T., Paulson, J. C., Todd, R. F., Rusche, J. R., and Granger, D. N. (1994) Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ. Res. 74, 336–343.

    Article  PubMed  CAS  Google Scholar 

  56. Wright, S. D. and Silverstein, S. C. (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158, 2016–2023.

    Article  PubMed  CAS  Google Scholar 

  57. Tang, T., Rosenkranz, A., Assmann, K. J., Goodman, M. J., Gutierrez Ramos, J. C., Carroll, M. C., Cotran, R. S., and Mayadas, T. N. (1997) A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcγ receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J. Exp. Med. 186, 1853–1863.

    Article  PubMed  CAS  Google Scholar 

  58. Xue, W., Kindzelskii, A. L., Todd, R. F., III, and Petty, H. R. (1994) Physical association of complement receptor type 3 and urokinase-type plasminogen activator receptor in neutrophil membranes. J. Immunol. 152, 4630–4641.

    PubMed  CAS  Google Scholar 

  59. Cramer, R., Pausa, M., Rapagna, F., and Tedesco, F. (1998) Cross-linking of CD59 promotes CR3 dependent adherence of PMN to fibronectin and endothelial cells. Mol. Immunol. 35, 407 (Abstr).

    Article  Google Scholar 

  60. Forsyth, C. B., Plow, E. F., and Zhang, L. (1998) Interaction of the fungal pathogen Candida albicans with integrin CD11b/CD18: recognition by the I domain is modulated by the lectin-like domain and theCD18 subunit. J. Immunol. 161, 6198–6205.

    PubMed  CAS  Google Scholar 

  61. Zhou, M. and Brown, E. J. (1994) CR3 (Mac-1, αMβ2, CD11b/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRII and tyrosine phosphorylation. J. Cell Biol. 125, 1407–1416.

    Article  PubMed  CAS  Google Scholar 

  62. Zhou, M., Todd, R. F., III, Van de Winkel, J. G. J., and Petty, H. R. (1993) Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fcγ receptor III on human neutrophils: possible role of lectin-like interactions. J. Immunol. 150, 3030–3041.

    PubMed  CAS  Google Scholar 

  63. Krauss, J. C., Poo, H., Xue, W., Mayo-Bond, L., Todd, R. F., III, and Petty, H. R. (1994) Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fcγ receptor IIIB and the complement receptor type 3. J. Immunol. 153, 1769–1777.

    PubMed  CAS  Google Scholar 

  64. Ross, G. D., Vĕtvička, V., Yan, J., Xia, Y., and Vĕtvička, J. (1999) Therapeutic intervention with complement and β-glucan in cancer. Immunopharmacology 42, 61–74.

    Article  PubMed  CAS  Google Scholar 

  65. Perlmann, P., Perlmann, H., and Müller-Eberhard, H. J. (1975) Cytolytic lymphocytic cells with complement receptor in human blood. Induction of cytolysis by IgG antibody but not by target cell-bound C3. J. Exp. Med. 141, 287–296.

    Article  PubMed  CAS  Google Scholar 

  66. Schreiber, R. D., Pangburn, M. K., Bjornson, A. B., Brothers, M. A., and Müller-Eberhard, H. J. (1982) The role of C3 fragments in endocytosis and extracellular cytotoxic reactions by polymorphonuclear leukocytes. Clin. Immunol. Immunopathol. 23, 335–357.

    Article  PubMed  CAS  Google Scholar 

  67. Wright, S. D., Craigmyle, L. S., and Silverstein, S. C. (1983) Fibronectin and serum amyloid P component stimulate C3b- and C3bi-mediated phagocytosis in cultured human monocytes. J. Exp. Med. 158, 1338–1343.

    Article  PubMed  CAS  Google Scholar 

  68. Wright, S. D. (1985) Cellular strategies in receptor-mediated phagocytosis. Rev. Infect. Dis. 7, 395–397.

    Article  PubMed  CAS  Google Scholar 

  69. Vĕtvička, V., Thornton, B. P., Wieman, T. J., and Ross, G. D. (1997) Targeting of NK cells to mammary carcinoma via naturally occurring tumor cell-bound iC3b and β-glucan-primed CR3 (CD11b/CD18). J. Immunol. 159, 599–605.

    PubMed  Google Scholar 

  70. Schifferli, J. A., Ng, Y. C., Estreicher, J., and Walport, M. J. (1988) The clearance of tetanus toxoid/anti-tetanus toxoid immune complexes from the circulation of humans. Complement- and erythrocyte complement receptor 1-dependent mechanisms. J. Immunol. 140, 899–904.

    PubMed  CAS  Google Scholar 

  71. Walport, M. J. and Davies, K. A. (1996) Complement and immune complexes. Res. Immunol. 147, 103–109.

    Article  PubMed  CAS  Google Scholar 

  72. Taylor, R. P., Kujala, G., Wilson, K., Wright, E., and Harbin, A. (1985) In vivo and in vitro studies of the binding of antibody/dsDNA immune complexes to rabbit and guinea pig platelets. J. Immunol. 134, 2550–2558.

    PubMed  CAS  Google Scholar 

  73. Schreiber, A. D. and Frank, M. M. (1972) Role of antibody and complement in the immune clearance and destruction of erythrocytes. I. In vivo effects of IgG and IgM complement-fixing sites. J. Clin. Invest. 51, 575–582.

    Article  PubMed  CAS  Google Scholar 

  74. Emlen, W., Carl, V., and Burdick, G. (1992) Mechanism of transfer of immune complexes from red blood cell CR1 to monocytes. Clin. Exp. Immunol. 89, 8–17.

    Article  PubMed  CAS  Google Scholar 

  75. Altieri, D. C., Bader, R., Mannucci, P. M., and Edgington, T. S. (1988) Oligospecificity of the cellular adhesion receptor MAC-1 encompasses an inducible recognition specificity for fibrinogen. J. Cell Biol. 107, 1893–1900.

    Article  PubMed  CAS  Google Scholar 

  76. Trezzini, C., Schüepp, B., Maly, F. E., and Jungi, T. W. (1991) Evidence that exposure to fibrinogen or to antibodies directed against Mac-1 (CD11b/CD18; CR3) modulates human monocyte effector functions. Br. J. Haematol. 77, 16–24.

    Article  PubMed  CAS  Google Scholar 

  77. Altieri, D. C., Plescia, J., and Plow, E. F. (1993) The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (αMβ2, Mac-1) and promotes leukocyte adhesion. J. Biol. Chem. 268, 1847–1853.

    PubMed  CAS  Google Scholar 

  78. Plescia, J., Conte, M. S., Vanmeter, G., Ambrosini, G., and Altieri, D. C. (1998) Molecular identification of the cross-reacting epitope on αMβ2 integrin I domain recognized by anti-αIIbβ3 monoclonal antibody 7E3 and its involvement in leukocyte adherence. J. Biol. Chem. 273, 20372–20377.

    Article  PubMed  CAS  Google Scholar 

  79. Davis, G. E. (1992) The Mac-1 and p150,95 β2 integrins bind denatured proteins to mediate leukocyte cell-substrate adhesion. Exp. Cell Res. 200, 242–252.

    Article  PubMed  CAS  Google Scholar 

  80. Thompson, H. L. and Matsushima, K. (1992) Human polymorphonuclear leucocytes stimulated by tumour necrosis factor-alpha show increased adherence to extracellular matrix proteins which is mediated via the CD11b/18 complex. Clin. Exp. Immunol. 90, 280–285.

    Article  PubMed  CAS  Google Scholar 

  81. Walzog, B., Schuppan, D., Heimpel, C., Hafezi-Moghadam, A., Gaehtgens, P., and Ley, K. (1995) The leukocyte integrin Mac-1(CD11b/CD18) contributes to binding of human granulocytes to collagen. Exp. Cell Res. 218, 28–38.

    Article  PubMed  CAS  Google Scholar 

  82. Altieri, D. C., Morrissey, J. H., and Edgington, T. S. (1988) Adhesive receptor Mac-1 coordinates the activation of factor X on stimulated cells of monocytic and myeloid differentiation: an alternative initiation of the coagulation protease cascade. Proc. Natl. Acad. Sci. USA 85, 7462–7466.

    Article  PubMed  CAS  Google Scholar 

  83. El Ghmati, S. M., Van Hoeyveld, E. M., Van Strijp, J. A. G., Ceuppens, J. L., and Stevens, E. A. M. (1996) Identification of haptoglobin as an alternative ligand for CD11b/CD18. J. Immunol. 156, 2542–2552.

    PubMed  Google Scholar 

  84. DiScipio, R. G., Daffern, P. J., Schraufstätter, I. U., and Sriramarao, P. (1998) Human polymorphonuclear leukocytes adhere to complement factor H through an interaction that involves α αMβ2 (CD11b/CD18). J. Immunol. 160, 4057–4066.

    PubMed  CAS  Google Scholar 

  85. Galon, J., Gauchat, J. F., Mazières, N., Spagnoli, R., Storkus, W., Lötze, M., Bonnefoy, J. Y., Fridman, W. H., and Sautès, C. (1996) Soluble Fcγreceptor type III (FcγRIII, CD16) triggers cell activation through interaction with complement receptors. J. Immunol. 157, 1184–1192.

    PubMed  CAS  Google Scholar 

  86. Benimetskaya, L., Loike, J. D., Khaled, Z., Loike, G., Silverstein, S. C., Cao, L., Khoury, J. E., Cai, T. Q., and Stein, C. A. (1997) Mac-1 (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nat. Med. 3, 414–420.

    Article  PubMed  CAS  Google Scholar 

  87. Myones, B. L., Dalzell, J. G., Hogg, N., and Ross, G. D. (1988) Neutrophil and monocyte cell surface p150,95 has iC3b-receptor (CR4) activity resembling CR3. J. Clin. Invest. 82, 640–651.

    Article  PubMed  CAS  Google Scholar 

  88. Stacker, S. A. and Springer, T. A. (1991) Leukocyte integrin P150,95 (CD11c/CD18) functions as an adhesion molecule binding to a counterreceptor on stimulated endothelium. J. Immunol. 146, 648–655.

    PubMed  CAS  Google Scholar 

  89. Blackford, J., Reid, H. W., Pappin, D. J. C., Bowers, F. S., and Wilkinson, J. M. (1996) A monoclonal antibody, 3/22, to rabbit CD11c which induces homotypic T cell aggregation: evidence that ICAM-1 is a ligand for CD11c/CD18. Eur. J. Immunol. 26, 525–531.

    Article  PubMed  CAS  Google Scholar 

  90. Loike, J. D., Sodeik, B., Cao, L., Leucona, S., Weitz, J. I., Detmers, P. A., Wright, S. D., and Silverstein, S. C. (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the Aα chain of fibrinogen. Proc. Natl. Acad. Sci. USA 88, 1044–1048.

    Article  PubMed  CAS  Google Scholar 

  91. Shaya, S., Kindzelskii, A. L., Minor, J., Moore, E. C., Todd, R. F., III, and Petty, H. R. (1998) Aberrant integrin (CR4; αXβ2; CD11c/CD18) oscillations on neutrophils in a mild form of pyoderma gangrenosum. J. Invest. Dermatol. 111, 154–158.

    Article  PubMed  CAS  Google Scholar 

  92. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J., and Mathison, J. C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433.

    Article  PubMed  CAS  Google Scholar 

  93. Vogel, S. N., Perera, P. Y., Detore, G. R., Bhat, N., Carboni, J. M., Haziot, A., and Goyert, S. M. (1998) CD14 dependent and independent signaling pathways in murine macrophages from normal and CD14 “knockout” (CD14KO) mice stimulated with LPS or Taxol. Prog. Clin. Biol. Res. 397, 137–146.

    PubMed  CAS  Google Scholar 

  94. Wright, S. D., Levin, S. M., Jong, M. T. C., Chad, Z., and Kabbash, L. G. (1989) CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Aspcontaining peptides and a second site for bacterial lipopolysaccharide. J. Exp. Med. 169, 175–183.

    Article  PubMed  CAS  Google Scholar 

  95. Medvedev, A. E., Flo, T., Ingalls, R. R., Golenbock, D. T., Teti, G., Vogel, S. N., and Espevik, T. (1998) Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-κβ activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J. Immunol. 160, 4535–4542.

    PubMed  CAS  Google Scholar 

  96. Zarewych, D. M., Kindzelskii, A. L., Todd, R. F., III, and Petty, H. R. (1996) LPS induces CD14 association with complement receptor type 3, which is reversed by neutrophil adhesion. J. Immunol. 156, 430–433.

    PubMed  CAS  Google Scholar 

  97. Ross, G. D., Yan, J., Vĕtvička, V., Xia, Y., Hanikýřová, M., Carroll, M. C., and Mayadas, T. N. (1998) Therapeutic intervention with complement and complement receptors in cancer. Mol. Immunol. 35, 395 (abstract).

    Article  Google Scholar 

  98. Yan, J., Vĕtvička, V., Xia, Y., Coxon, A., Carroll, M. C., Mayadas, T. N., and Ross, G. D. (1999) β-Glucan, a “specific” biologic response modifier that target tumors for recognition by complement receptor type 3 (CD11b/CD18). J. Immunol. 163, 3045–3052.

    PubMed  CAS  Google Scholar 

  99. Mold, C., Nemerow, G. R., Bradt, B. M., and Cooper, N. R. (1988) CR2 is a complement activator and the covalent binding site for C3 during alternative pathway activation by Raji cells. J. Immunol. 140, 1923–1929.

    PubMed  CAS  Google Scholar 

  100. Schwendinger, M. G., Spruth, M., Schoch, J., Dierich, M. P., and Prodinger, W. M. (1997) A novel mechanism of alternative pathway complement activation accounts for the deposition of C3 fragments on CR2-expressing homologous cells. J. Immunol. 158, 5455–5463.

    PubMed  CAS  Google Scholar 

  101. Irie, K., Irie, R. F., and Morton, D. L. (1974) Evidence for in vivo reaction of antibody and complement to surface antigens of human cancer cells. Science 186, 454–456.

    Article  PubMed  CAS  Google Scholar 

  102. Seegal, B. C., Hsu, K. C., Lattimer, J. K., Habif, D. V., and Tannenbaum, M. (1976) Immunoglobulins, complement and foreign antigens in human tumor cells. Int. Arch. Allergy Immunol. 52, 205–211.

    Article  CAS  Google Scholar 

  103. Niculescu, F., Rus, H. G., Retegan, M., and Vlaicu, R. (1992) Persistent complement activation on tumor cells in breast cancer. Am. J. Pathol. 140, 1039–1043.

    PubMed  CAS  Google Scholar 

  104. Cheung, N.-K. V., Walter, E. I., Smith-Mensah, W. H., Ratnoff, W. D., Tykocinski, M. L., and Medof, M. E. (1988) Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J. Clin. Invest. 81, 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  105. Seya, T., Hara, T., Matsumoto, M., Sugita, Y., and Akedo, H. (1990) Complement-mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46). J. Exp. Med. 172, 1673–1680.

    Article  PubMed  CAS  Google Scholar 

  106. Venneker, G. T., Vodegel, R. M., Okada, N., Westerhof, W., Bos, J. D., and Asghar, S. S. (1998) Relative contributions of decay accelerating factor (DAF), membrane cofactor protein (MCP) and CD59 in the protection of melanocytes from homologous complement. Immunobiology 198, 476–484.

    Article  PubMed  CAS  Google Scholar 

  107. Kim, C. J., Parkinson, D. R., and Marincola, F. (1998) Immunodominance across HLA polymorphism: implications for cancer immunotherapy. J. Immunother. 21, 1–16.

    Article  PubMed  Google Scholar 

  108. Seliger, B., Maeurer, M. J., and Ferrone, S. (1997) TAP off–Tumors on. Immunol. Today 18, 292–299.

    PubMed  CAS  Google Scholar 

  109. Hicklin, D. J., Wang, Z. G., Arienti, F., Rivoltini, L., Parmiani, G., and Ferrone, S. (1998) β2-microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J. Clin. Invest. 101, 2720–2729.

    Article  PubMed  CAS  Google Scholar 

  110. Khanna, R. (1998) Tumour surveillance: missing peptides and MHC molecules. Immunol. Cell Biol. 76, 20–26.

    Article  PubMed  CAS  Google Scholar 

  111. Ferrone, S. and Marincola, F. M. (1995) Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol. Today 16, 487–494.

    Article  PubMed  CAS  Google Scholar 

  112. Porgador, A., Mandelboim, O., Restifo, N. P., and Strominger, J. L. (1997) Natural killer cell lines kill autologous β2-microglobulin-deficient melanoma cells: implications for cancer immunotherapy. Proc. Natl. Acad. Sci. USA 94, 13140–13145.

    Article  PubMed  CAS  Google Scholar 

  113. Vitale, M., Rezzani, R., Rodella, L., Zauli, G., Grigolato, P., Cadei, M., Hicklin, D. J., and Ferrone, S. (1998) HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions. Cancer Res. 58, 737–742.

    PubMed  CAS  Google Scholar 

  114. Vĕtvička, V., Hanikýčová, M., Vĕtvičkova, J., and Ross, G. D. (1999) Regulation of CR3 (CD11b/CD18)-dependent natural killer (NK) cell cytotoxicity by tumour target cell MHC class I molecules. Clin. Exp. Immunol. 115, 229–235.

    Article  PubMed  Google Scholar 

  115. Bohn, J. A. and BeMiller, J. N. (1995) (1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym. 28, 3–14.

    Article  CAS  Google Scholar 

  116. Misaki, A. and Kakuta, M. (1997) Fungal (1–3)-β-d-glucans: Chemistry and antitumor activity, in Carbohydrates in Drug Design, Marcel Dekker, New York, pp. 655–689.

    Google Scholar 

  117. Maeda, Y. Y., Watanabe, S. T., Chihara, C., and Rokutanda, M. (1988) Denaturation and renaturation of a (1→ 3)-β-d-glucan, lentinan, associated with expression of T-cell-mediated responses. Cancer Res. 48, 671–675.

    PubMed  CAS  Google Scholar 

  118. Saito, H., Yoshioka, Y., Uehara, N., Aketagawa, J., Tanaka, S., and Shibata, Y. (1991) Relationship between conformation and biological response for (1 → 3)-β-d-glucans in the activation of coagulation factor G from limulus amebocyte lysate and host-mediated antitumor activity. Demonstration of single-helix conformation as a stimulant. Carbohydr. Res. 217, 181–190.

    Article  PubMed  CAS  Google Scholar 

  119. Ross, G. D., Vĕtvička, V., and Thornton, B. P. (1998) Analysis of the phagocyte membrane lectin CR3 (CD11b/CD18) using fluorescence-labeled polysaccharides and flow cytometry, in Phagocyte Functions: A Guide for Research and Clinical Evaluation (Robinson, J. P. and Babcock, G. F., eds.), John Wiley, New York, pp. 1–17.

    Google Scholar 

  120. Diller, I. C., Mankowski, Z. T., and Fisher, M. E. (1963) The effect of yeast polysaccharides on mouse tumors. Cancer Res. 23, 201–208.

    PubMed  CAS  Google Scholar 

  121. Chihara, G., Maeda, Y., Hamuro, J., Sasaki, T., and Fukuoka, F. (1969) Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing. Nature 222, 687–688.

    Article  PubMed  CAS  Google Scholar 

  122. Di Luzio, N. R., Williams, D. L., McNamee, R. B., Edwards, B. F., and Kitahama, A. (1979) Comparative tumor-inhibitory and anti-bacterial activity of soluble and particulate glucan. Int. J. Cancer 24, 773–779.

    Article  PubMed  Google Scholar 

  123. Williams, D. L., Browder, I. W., and Di Luzio, N. R. (1983) Immunotherapeutic modification of Escherichia coli—induced experimental peritonitis and bacteremia by glucan. Surgery 93, 448–454.

    PubMed  CAS  Google Scholar 

  124. Ohno, N., Suzuki, I., Oikawa, S., Sato, K., Miyazaki, T., and Yadomae, T. (1984) Antitumor activity and structural characterization of glucans extracted from cultured fruit bodies of Grifola frondosa. Chem. Pharm. Bull. (Tokyo) 32, 1142–1151.

    Article  CAS  Google Scholar 

  125. Seljelid, R. (1986) A water-soluble aminated β1-;3d-glucan derivative causes regression of solid tumors in mice. Biosci. Rep. 6, 845–851.

    Article  PubMed  CAS  Google Scholar 

  126. Kurachi, K., Ohno, N., and Yadomae, T. (1990) Preparation and antitumor activity of hydroxyethylated derivatives of 6-branched ((1–3)-β-d-glucan, SSG, obtained from the culture filtrate of Sclerotinia sclerotiorum IFO 9395. Chem. Pharm. Bull. (Tokyo) 38, 2527–2531.

    Article  CAS  Google Scholar 

  127. Kitamura, S., Hori, T., Kurita, K., Takeo, K., Hara, C., Itoh, W., Tabata, K., Elgsaeter, A., and Stokke, B. T. (1994) An antitumor, branched(1 → 3)-β-d-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr. Res. 263, 111–121.

    Article  PubMed  CAS  Google Scholar 

  128. Sveinbjornsson, B., Rushfeldt, C., Seljelid, R., and Smedsrød, B. (1998) Inhibition of establishment and growth of mouse liver metastases after treatment with interferon gamma and β-1,3-d-glucan. Hepatology 27,1241–1248.

    Article  PubMed  CAS  Google Scholar 

  129. Komatsu, N., Okubo, S., Kikumoto, S., Kimura, K., Saito, G., and Sakai, S. (1969) Host-mediated antitumor action of schizophyllan, a glucan produced by Schizophyllum commune. Gann 60, 137–144.

    CAS  Google Scholar 

  130. Mansell, P. W. A., Rowden, G., and Hammer, C. (1978) Clinical experiences with the use of glucan, in Immune Modulation and Control of Neoplasia by Adjuvant Therapy, Progress in Cancer Research and Therapy, vol. 7 (Chirigos, M. A., ed.), Raven Press, New York, pp. 255–280.

    Google Scholar 

  131. Nakao, I., Uchino, H., Orita, K., Kaido, I., Kimura, T., Goto, Y., Kondo, T., Takino, T., Taguchi, T., Nakajima, T., Fujimoto, S., Miyazaki, T., Miyoshi, A., Yachi, A., Yoshida, K., Ogawa, N., and Furue, H. (1983) Clinical evaluation of schizophyllan (SPG) in advanced gastric cancer—a randomized comparative study by an envelop method. Jpn. J. Cancer Chemother. 10, 1146–1159.

    CAS  Google Scholar 

  132. Wakui, A., Kasai, M., Konno, K., Abe, R., Kanamaru, R., Takahashi, K., Nakai, Y., Yoshida, Y., Koie, H., Masuda, H., Kaito, S., Ishikawa, M., Shoji, T., Yokomori, T., Watanabe, K., and Ito, K. (1986) Randomized study of lentinan on patients with advanced gastric and colorectal cancer. Tohoku Lentinan Study Group. Jpn. J. Cancer Chemother. 13, 1050–1059.

    CAS  Google Scholar 

  133. Fujimoto, S. (1989) Clinical efficacies of schizophyllan (SPG) on advanced gastric cancer. Nippon Geka Gakkai Zasshi 90, 1447–1450.

    PubMed  CAS  Google Scholar 

  134. Tari, K., Satake, I., Nakagomi, K., Ozawa, K., Oowada, F., Higashi, Y., Negishi, T., Yamada, T., Saito, H., and Yoshida, K. (1994) Effect of lentinan for advanced prostate carcinoma. Acta Urol. Jpn. 40, 119 – 123.

    CAS  Google Scholar 

  135. Nakano, T., Oka, K., Hanba, K., and Morita, S. (1996) Intratumoral administration of sizofiran activates langerhans cell and T-cell infiltration in cervical cancer. Clin. Immunol. Immunopathol. 79, 79–86.

    Article  PubMed  CAS  Google Scholar 

  136. Matsuoka, H., Seo, Y., Wakasugi, H., Saito, T., and Tomoda, H. (1997) Lentinan potentiates immunity and prolongs the survival time of some patients. Anticancer Res. 17, 2751–2755.

    PubMed  CAS  Google Scholar 

  137. Doita, M., Rasmussen, L. T., Seljelid, R., and Lipsky, P. E. (1991) Effect of soluble aminated β-1,3-d polyglucose on human monocytes: stimulation of cytokine and prostaglandin E2 production but not antigen-presenting function. J. Leukocyte Biol. 49, 342–351.

    PubMed  CAS  Google Scholar 

  138. Ljungman, A. G., Leanderson, P., and Tagesson, C. (1998) (1→3)-β-d-Glucan stimulates nitric oxide generation and cytokine mRNA expression in macrophages. Environ. Toxicol. Pharmacol. 5, 273–281.

    Article  PubMed  CAS  Google Scholar 

  139. Williams, D. L., Sherwood, E. R., Browder, I. W., McNamee, R. B., Jones, E. L., and Di Luzio, N. R. (1988) Pre-clinical safety evaluation of soluble glucan. Int. J. Immunopharmacol. 10, 405–414.

    Article  PubMed  CAS  Google Scholar 

  140. Williams, D. L., Pretus, H. A., McNamee, R. B., Jones, E. L., Ensley, H. E., Browder, I. W., and Di Luzio, N. R. (1991) Development, physicochemical characterization and preclinical efficacy evaluation of a water soluble glucan sulfate derived from Saccharomyces cerevisiae. Immunopharmacology 22, 139–156.

    Article  CAS  Google Scholar 

  141. Diller, I. C., Fisher, M. E., and Gable, D. (1964) Effect of glucan on mouse sarcoma 37. Proc. Soc. Exp. Biol. Med. 117, 107–110.

    PubMed  CAS  Google Scholar 

  142. Cook, J. A., Taylor, D., Cohen, C., Rodrique, J., Malshet, V., and Di Luzio, N. R. (1978) Comparative evaluation of the role of macrophages and lymphocytes in mediating the antitumor action of glucan, in Immune Modulation and Control of Neoplasma by Adjuvant Therapy, Progress in Cancer Research and Therapy, vol. 7 (Chirigos, M. A., ed.), Raven Press, New York., pp. 183–193.

    Google Scholar 

  143. Mimura, H., Ohno, N., Suzuki, I., and Yadomae, T. (1985) Purification, antitumor activity, and structural characterization of β-1,3-glucan from Peziza vesiculosa. Chem. Pharm. Bull. (Tokyo) 33, 5096–5099.

    Article  CAS  Google Scholar 

  144. Seljelid, R., Figenschau, Y., Bogwald, J., Rasmussen, L. T., and Austgulen, R. (1989) Evidence that tumor necrosis induced by aminated β-1,3d polyglucose is mediated by a concerted action of local and systemic cytokines. Scand. J. Immunol. 30, 687–694.

    Article  PubMed  CAS  Google Scholar 

  145. Mizuno, T., Kinoshita, T., Zhuang, C., Ito, H., and Mayuzumi, Y. (1995) Antitumor-active heteroglycans from niohshimeji mushroom, Tricholoma giganteum. Biosci. Biotechnol. Biochem. 59, 568–571.

    Article  PubMed  CAS  Google Scholar 

  146. Katsuoka, Y. and deKernion, J. B. (1983) Response of tumors to biologic modifiers and chemotherapeutic agents. Tokai J. Exp. Clin. Med. 8, 175–185.

    PubMed  CAS  Google Scholar 

  147. Taguchi, T., Furue, H., Kimura, T., Kondo, T., Hattori, T., and Ogawa, N. (1983) Clinical efficacy of lentinan on neoplastic diseases. Adv. Exp. Med. Biol. 166, 181–187.

    PubMed  CAS  Google Scholar 

  148. Furue, H., Uchino, H., Orita, K., Kimura, T., Goto, Y., Kondo, T., Sato, S., Takino, T., Taguchi, T., and Nakao, I. (1985) Clinical evaluation of schizophyllan (SPG) in advanced gastric cancer (the second report)—a randomized controlled study. Jpn. J. Cancer Chemother. 12, 1272–1277.

    CAS  Google Scholar 

  149. Tanabe, H., Imai, N., and Takechi, K. (1990) Studies on usefulness of postoperative adjuvant chemotherapy with lentinan in patients with gastrointestinal cancer. J. Jpn. Soc. Cancer Ther. 25, 1657 – 1667.

    CAS  Google Scholar 

  150. Kimura, Y., Tojima, H., Fukase, S., and Takeda, K. (1994) Clinical evaluation of sizofilan as assistant immunotherapy in treatment of head and neck cancer. Acta Otolaryngol. (Stockh) Suppl.511, 192–195.

    Article  CAS  Google Scholar 

  151. Fujimoto, S., Furue, H., Kimura, T., Kondo, T., Orita, K., Taguchi, T., Yoshida, K., and Ogawa, N. (1984) Clinical evaluation of schizophyllan adjuvant immunochemotherapy for patients with resectable gastric cancer—a randomized controlled trial. Jpn. J. Surg. 14, 286–292.

    Article  PubMed  CAS  Google Scholar 

  152. Okamura, K., Suzuki, M., Chihara, T., Fujiwara, A., Fukuda, T., Goto, S., Ichinohe, K., Jimi, S., Kasamatsu, T., and Kawai, N. (1986) Clinical evaluation of schizophyllan combined with irradiation in patients with cervical cancer. A randomized controlled study. Cancer 58, 865–872.

    Article  PubMed  CAS  Google Scholar 

  153. Rieu, P., Ueda, T., Haruta, I., Sharma, C. P., and Arnaout, M. A. (1994) The A-domain of β2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J. Cell Biol. 127, 2081–2091.

    Article  PubMed  CAS  Google Scholar 

  154. Moyle, M., Foster, D. L., McGrath, D. E., Brown, S. M., Laroche, Y., De Meutter, J., Stanssens, P., Bogowitz, C. A., Fried, V. A., Ely, J. A., Soule, H. R., and Vlasuk, G. P. (1994) A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. J. Biol. Chem. 269, 10008–10015.

    PubMed  CAS  Google Scholar 

  155. Rieu, P., Sugimori, T., Griffith, D. L., and Arnaout, M. A. (1996) Solventaccessible residues on the metal ion-dependent adhesion site face of integrin CR3 mediate its binding to the neutrophil inhibitory factor. J. Biol. Chem. 271, 15858–15861.

    Article  PubMed  CAS  Google Scholar 

  156. Barnard, J. W., Biro, M. G., Lo, S. K., Ohno, S., Carozza, M. A., Moyle, M., Soule, H. R., and Malik, A. B. (1995) Neutrophil inhibitory factor prevents neutrophil-dependent lung injury. J. Immunol. 155, 4876–4881.

    PubMed  CAS  Google Scholar 

  157. Jiang, N., Moyle, M., Soule, H. R., Rote, W. E., and Chopp, M. (1995) Neutrophil inhibitory factor is neuroprotective after focal ischemia in rats. Ann. Neurol. 38, 935–942.

    Article  PubMed  CAS  Google Scholar 

  158. Rote, W. E., Dempsey, E., Maki, S., Vlasuk, G. P., and Moyle, M. (1996) The role of CD11/CD18 integrins in the reverse passive Arthus reaction in rat dermal tissue. J. Leukocyte Biol. 59, 254–261.

    PubMed  CAS  Google Scholar 

  159. Jiang, N., Chopp, M., and Chahwala, S. (1998) Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat. Brain Res. 788, 25–34.

    Article  PubMed  CAS  Google Scholar 

  160. Zhou, M. Y., Lo, S. K., Bergenfeldt, M., Tiruppathi, C., Jaffe, A., Xu, N., and Malik, A. B. (1998) In vivo expression of neutrophil inhibitory factor via gene transfer prevents lipopolysaccharide-induced lung neutrophil infiltration and injury by a β2 integrin-dependent mechanism. J. Clin. Invest.101, 2427–2437.

    Article  PubMed  CAS  Google Scholar 

  161. Price, T. H., Beatty, P. G., and Corpuz, S. R. (1987) In vivo inhibition of neutrophil function in the rabbit using monoclonal antibody toCD18. J. Immunol. 139, 4174–4177.

    PubMed  CAS  Google Scholar 

  162. Vedder, N. B., Winn, R. K., Rice, C. L., Chi, E. Y., Arfors, K.-E., and Harlan, J. M. (1990) Inhibition of leukocyte adherence by anti-CD18 monoclonal antibody attenuates reperfusion injury in the rabbit ear. Proc. Natl. Acad. Sci. USA 87, 2643–2646.

    Article  PubMed  CAS  Google Scholar 

  163. Sharar, S. R., Mihelcic, D. D., Han, K.-T., Harlan, J. M., and Winn, R. K. (1994) Ischemia reperfusion injury in the rabbit ear is reduced by both immediate and delayedCD18 leukocyte adherence blockade. J. Immunol. 153, 2234–2238.

    PubMed  CAS  Google Scholar 

  164. Tanaka, M., Brooks, S. E., Richard, V. J., Fitz Harris, G. P., Stoler, R. C., Jennings, R. B., Arfors, K.-E., and Reimer, K. A. (1993) Effect of antiCD18 antibody on myocardial neutrophil accumulation and infarct size after ischemia and reperfusion in dogs. Circulation 87, 526–535.

    Article  PubMed  CAS  Google Scholar 

  165. Kaslovsky, R. A., Horgan, M. J., Lum, H., McCandless, B. K., Gilboa, N., Wright, S. D., and Malik, A. B. (1990) Pulmonary edema induced by phagocytosing neutrophils: protective effect of monoclonal antibody against phagocyteCD18 integrin. Circ. Res. 67, 795–802.

    Article  PubMed  CAS  Google Scholar 

  166. Lefer, D. J., Shandelya, S. M. L., Serrano, C. V., Jr., Becker, L. C., Kuppusamy, P., and Zweier, J. L. (1993) Cardioprotective actions of a monoclonal antibody against CD-18 in myocardial ischemia-reperfusion injury. Circulation 88, 1779–1787.

    Article  PubMed  CAS  Google Scholar 

  167. Argenbright, L. W., Letts, L. G., and Rothlein, R. (1991) Monoclonal antibodies to the leukocyte membraneCD18 glycoprotein complex and to intercellular adhesion molecule-1 inhibit leukocyte-endothelial adhesion in rabbits. J. Leukocyte Biol. 49, 253–257.

    PubMed  CAS  Google Scholar 

  168. Sims, M. J., Hassal, D. G., Brett, S., Rowan, W., Lockyer, M. J., Angel, A., Lewis, A. P., Hale, G., Waldmann, H., and Crowe, J. S. (1993) A humanizedCD18 antibody can block function without cell destruction. J. Immunol. 151, 2296–2308.

    PubMed  CAS  Google Scholar 

  169. Choi, M., Rabb, H., Arnaout, M. A., and Ehrlich, H. P. (1995) Preventing the infiltration of leukocytes by monoclonal antibody blocks the development of progressive ischemia in rat burns. Plast. Reconstr. Surg. 96, 1177–1185.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Xia, Y., Ross, G.D. (2000). Roles of Integrins CR3 and CR4 in Disease and Therapeutic Strategies. In: Lambris, J.D., Holers, V.M. (eds) Therapeutic Interventions in the Complement System. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-017-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-017-9_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9612-3

  • Online ISBN: 978-1-59259-017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics