Skip to main content

How Does Cisplatin Kill Cells?

  • Chapter
  • 315 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cisplatin is widely used as a chemotherapeutic agent. The molecular details of how it causes cells to die are largely unknown, but it is clear that its effectiveness varies quite markedly in different tumor types. Some tumors such as seminoma are highly sensitive, whereas others, such as pancreatic carcinoma, are nearly completely resistant to tolerated doses. A variety of other tumor types, of which ovarian cancer serves as a good example, are typically responsive initially but acquire resistance during the course of therapy. Some insight into the mechanisms by which cisplatin kills cells has been obtained through the identification of factors that control sensitivity to this drug and its close analog carboplatin. Five biochemical alterations have been identified that can cause cisplatin resistance in specific model systems. These include: (1) decreased cellular accumulation of cisplatin; (2) increased levels of glutathione or of glutathione-S-transferase activity; (3) increased levels of intracellular metallothioneins; (4) enhanced DNA repair; and (5) loss of DNA mismatch repair (MMR) activity (1-5). However, it is likely that several of these mechanisms operate together in most resistant cells, and at present the dominant mechanism accounting for either de novo or clinically acquired resistance is unknown. It is not even clear that there is a single dominant mechanism even within a single tumor type.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P. A. and Howell, S. B. (1990) Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells 2, 35–43.

    PubMed  CAS  Google Scholar 

  2. Perez, R. P., Hamilton, T. C., and Ozols, R. F. (1990) Resistance to alkylating agents and cisplatin: insights from ovarian carcinoma model systems. Pharmacol. Ther. 48, 19–27.

    PubMed  Google Scholar 

  3. Timmer-Bosscha, H., Mulder, N. H., and de Vries, E. G. E. (1992) Modulation of cisdiamminedichloroplatinum(II) resistance: a review. Br. J. Cancer 66, 227–238.

    PubMed  CAS  Google Scholar 

  4. Anthoney, D. A., Mcllwrath, A. J., Gallagher, W. M., Edlin, A. R. M., and Brown, R. (1996) Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res. 56, 1374–1381.

    PubMed  CAS  Google Scholar 

  5. Aebi, S., Kurdi-Haidar, B., Gordon, R., Cenni, B., Zheng, H., Fink, D., et al. (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 56, 3087–3090.

    PubMed  CAS  Google Scholar 

  6. Gately, D. P., and Howell, S. B. (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br. J. Cancer 67, 1171–1176.

    PubMed  CAS  Google Scholar 

  7. Heminger, K. A., Hartson, S. D., Rogers, J., and Matts, R. L. (1997) Cisplatin inhibits protein synthesis in rabbit reticulocyte lysate by causing an arrest in elongation. Arch. Biochem. Biophys. 344, 200–207.

    PubMed  CAS  Google Scholar 

  8. Rosenberg, B., Renshaw, E., Van Camp, L, Hartwick, J., and Drobnik, J. (1967) Platinum-induced filamentous growth in Escherichia coli. J. Bacteriol. 93, 716–721.

    CAS  Google Scholar 

  9. Rosenberg, B., Van Camp, L, Grimley, E. B., and Thompson, A. J. (1967) The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J. Biol. Chem. 242, 1347–1352.

    PubMed  CAS  Google Scholar 

  10. Damia, G., Imperatori, L., Stefanini, M., and D’Incalci, M. (1996) Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents. Int. J. Cancer 66, 779–783.

    PubMed  CAS  Google Scholar 

  11. Li, L., Keating, M. J., Plunkett, W., and Yang, L. Y. (1997) Fludarabine-mediated repair inhibition of cisplatin-induced DNA lesions in chronic myelogenous leukemia-blast crisis K562 cells: induction of synergistic cytotoxicity independent of reversal of apoptosis resistance. Mol. Pharmacol. 52, 798–806.

    PubMed  CAS  Google Scholar 

  12. Pinto, A. L. and Lippard, S. J. (1985) Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim. Biophys. Acta 780, 167–180.

    PubMed  CAS  Google Scholar 

  13. Johnson, N. P., Hoeschele, J. D., and Rahn R. O. (1980) Kinetic analysis of the in vitro binding of radioactive cis-and trans-dichlorodiammineplatinum(II) to DNA. Chem. Biol. Interact. 30, 151–169.

    PubMed  CAS  Google Scholar 

  14. Fichtinger-Schepman, A. M., van der Veer, J. L., den Hartog, J. H., Lohman, P. H., and Reedijk, J. (1985) Adducts of the antitumor drug cis-dichlorodiammineplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24, 707–713.

    PubMed  CAS  Google Scholar 

  15. Blommaert, F. A., van Dijk-Knijnenburg, H. C., Dijt, F. J., den Engelse, L., Baan, R. A., Berends, F., et al. (1995) Formation of DNA adducts of the antitumor drug carboplatin: different nucleotide sequence preferences in vitro and in cells. Biochemistry 34, 8474–8480.

    PubMed  CAS  Google Scholar 

  16. Sorenson, C. M., Barry, M. A., and Eastman, A. (1990) Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. J. Natl. Cancer Inst. 83, 749–755.

    Google Scholar 

  17. Barry, M. A., Behnke, C. A., and Eastman, A. (1990) Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacol. 40, 2353–2362.

    PubMed  CAS  Google Scholar 

  18. Henkels, K. M. and Turchi, J. J. (1997) Induction of apoptosis in cisplatin-sensitive and -resistant human ovarian cancer cell lines. Cancer Res. 57, 4488–4492.

    PubMed  CAS  Google Scholar 

  19. Miyashita, T. and Reed, J. C. (1993) Bc1–2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81, 151–157.

    PubMed  CAS  Google Scholar 

  20. Minn, A. J., Rudin, C. M., Boise, L. H., and Thompson, C. B. (1995) Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86, 1903–1910.

    PubMed  CAS  Google Scholar 

  21. Christen, R. D., Horn, D. K., Porter, D. C., Andrews, P. A., MacLeod, C. L., Hafstrom, L., et al. (1990) Epidermal growth factor regulates the in vitro sensitivity of human ovarian carcinoma cells to cisplatin. J. Clin. Invest. 86, 1632–1640.

    PubMed  CAS  Google Scholar 

  22. Isonishi, S., Andrews, P. A., and Howell, S. B. (1990) Increased sensitivity to cisdiamminedichloroplatinum(II) in human ovarian carcinoma cells in response to treatment with 12-O-tetradecanoylphorbo1–13-acetate. J. Biol. Chem. 265, 3623–3627.

    PubMed  CAS  Google Scholar 

  23. Evans, D. L., Tilby, M., and Dive, C. (1994) Differential sensitivity to the induction of apoptosis by cisplatin in proliferating and quiescent immature rat thymocytes is independent of the levels of drug accumulation and DNA adduct formation. Cancer Res. 54, 1596–1603.

    PubMed  CAS  Google Scholar 

  24. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810.

    Google Scholar 

  25. Gibson, A. A., Harwood, F. G., Tillman, D. M., and Houghton, J. A. (1998) Selective sensitization to DNA-damaging agents in a human rhabdomyosarcoma cell line with inducible wild-type p53 overexpression. Clin. Cancer Res. 4, 145–152.

    PubMed  CAS  Google Scholar 

  26. Brown, R., Clugston, C., Burns, P., Edlin, A., Vasey, P., Vojtesek, B., et al. (1993) Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int. J. Cancer 55, 678–684.

    PubMed  CAS  Google Scholar 

  27. Fajac, A., Da Silva, J., Ahomadegbe, J. C., Rateau, J. G., Bernaudin, J. F., Riou, G., et al. (1996) Cisplatin-induced apoptosis and p53 gene status in a cisplatin-resistant human ovarian carcinoma cell line. Int. J. Cancer 68, 67–74.

    PubMed  CAS  Google Scholar 

  28. Sorenson, C. M. and Eastman, A. (1988) Influence of cis-diamminedichloroplatinum(II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells. Cancer Res. 48, 6703–6707.

    PubMed  CAS  Google Scholar 

  29. Shi, Y., Frankel, A., Radvanyi, L. G., Penn, L. Z., Miller, R. G., and Mills, G. B. (1995) Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res. 55, 1982–1988.

    CAS  Google Scholar 

  30. Fishel, R. and Kolodner, R. D. (1995) Identification of mismatch repair genes and their role in the development of cancer. Curr. Opin. Genet. Dev. 5, 382–395.

    PubMed  CAS  Google Scholar 

  31. Bhattacharyya, N. P., Skandalis, A., Ganesh, A., Groden, J., and Meuth, M. (1994) Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl. Acad. Sci. USA 91, 6319–6323.

    PubMed  CAS  Google Scholar 

  32. da Costa, L., Liu, B., El-Deiry, W. S., Hamilton, S. R., Kinzler, K. W., Vogelstein, B., et al. (1995) Polymerase S variants in RER colorectal tumours. Nature Genet. 9, 10–11.

    PubMed  Google Scholar 

  33. Modrich, P. (1994) Mismatch repair, genetic stability, and cancer. Science 266, 1959–1960.

    PubMed  CAS  Google Scholar 

  34. Johnson, R. E., Kovvali, G. K., Prakash, L., and Prakash S. (1994) Requirement of the yeast RTHI 5’ to 3’ exonuclease for the stability of simple repetitive DNA. Science 269, 238–240.

    Google Scholar 

  35. Parsons, R., Li, G-M., Longley, M. J., Fang, W-H., Papadopoulos, N., Jen, J., et al. (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236.

    PubMed  CAS  Google Scholar 

  36. Grilley, M., Griffith, J., and Modrich, P. (1993) Bidirectional excision in methyl-directed mismatch repair. J. Biol. Chem. 268, 11830–11837.

    PubMed  CAS  Google Scholar 

  37. Kolodner, R. (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10, 1433–1442.

    PubMed  CAS  Google Scholar 

  38. Palombo, F., Gallinari, P., Iaccarino, I., Lettieri, T., Hughes, M., D’Arrigo, A., et al. (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268, 1912–1914.

    PubMed  CAS  Google Scholar 

  39. Acharya, S., Wilson, T., Gradia, S., Kane, M. F., Guerrette, S., Marsischky, G. T., (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. USA 93, 13629–13634.

    Google Scholar 

  40. Li, G-M. and Modrich, P. (1995) Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc. Natl. Acad. Sci. USA 92, 1950–1954.

    PubMed  CAS  Google Scholar 

  41. Modrich, P. (1991) Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253.

    PubMed  CAS  Google Scholar 

  42. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D., and Perucho, M. (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561.

    PubMed  CAS  Google Scholar 

  43. Thibodeau, S. N., Bren, G., and Schaid, D. (1993) Microsatellite instability in cancer of the proximal colon. Science 260, 816–819.

    PubMed  CAS  Google Scholar 

  44. Strand, M., Prolla, T. A., Liskay, R. M., and Petes, T. D. (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276.

    PubMed  CAS  Google Scholar 

  45. Kunkel, T. A. (1993) Slippery DNA and diseases. Nature 365, 207–208.

    PubMed  CAS  Google Scholar 

  46. Wooster, R., Cleton-Jansen, A-M., Collins, N., Mangion, J., Cornelis, R. S., Cooper, C. S., et al. (1994) Instability of short tandem repeats (microsatellites) in human cancers. Nature Genet. 6, 152–156.

    PubMed  CAS  Google Scholar 

  47. Hess, P., Aquilina, G., Dogliotti, E., and Bignami, M. (1994) Spontaneous mutations at aprt locus in a mammalian cell line defective in mismatch recognition. Somat. Cell Mol. Genet. 20, 409–421.

    CAS  Google Scholar 

  48. Huang, J., Papadopoulos, N., McKinley, A. J., Farrington, S. M., Curtis, L. J., Wyllie, A. H., et al. (1996) APC mutations in colorectal tumors with mismatch repair deficiency. Proc. Natl. Acad. Sci. USA 93, 9049–9054.

    PubMed  CAS  Google Scholar 

  49. Markowitz, S., Wang, J., Myeroff, L., Parsons, R. E., Sun, L., Lutterbaugh, J., et al. (1995) Inactivation of the type II TGF-ß receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338.

    PubMed  CAS  Google Scholar 

  50. Rampino, N., Yamamoto, H., lonov, Y., Li, Y., Sawai, H., Reed, J. C., et al. (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969.

    Google Scholar 

  51. Fishel, R., Lescoe, M. K., Rao, M. R. S., Copeland, N. G., Jenkins, N. A., Garber, J., et al. (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038.

    PubMed  CAS  Google Scholar 

  52. Papadopoulos, N., Nicolaides, N. C., Wei, Y-F., Ruben, S. M., Carter, K. C., Rosen, C. A., et al. (1994) Mutations of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629.

    PubMed  CAS  Google Scholar 

  53. Leach, F. S., Nicolaides, N. C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., et al. (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225.

    PubMed  CAS  Google Scholar 

  54. Nicolaides, N. C., Papadopoulos, N., Liu, B., Wei, Y.-F., Carter, K. C., Ruben, S. M., et al. (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371, 75–80.

    PubMed  CAS  Google Scholar 

  55. Liu, B., Nicolaides, N. C., Markowitz, S., Willson, J. K. V., Parsons, R. E., Jen, J., et al. (1995) Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Genet. 9, 48–55.

    PubMed  CAS  Google Scholar 

  56. Baker, S. M., Plug, A. W., Prolla, T. A., Bronner, C. E., Harris, A. C., Yao, X., et al. (1996) Involvement of mouse MLHJ in DNA mismatch repair and meiotic crossing over. Nature Genet. 13, 336–342.

    PubMed  CAS  Google Scholar 

  57. Han, H.J. Yanagisawa, A., Kato, Y., Park, J-G., and Nakamura, Y. (1993) Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res. 53 5087–5089.

    Google Scholar 

  58. Risinger, J. I., Berchuck, A., Kohler, M. F., Watson, P., Lynch, H. T., and Boyd, J. (1993) Genetic instability of microsatellites in endometrial carcinoma. Cancer Res. 53, 5100–5103.

    PubMed  CAS  Google Scholar 

  59. Merlo, A., Mabry, M., Gabrielson, E., Vollmer, R., Baylin, S. B., and Sidransky, D. (1994) Frequent microsatellite instability in primary small cell lung cancer. Cancer Res. 54, 2098–2101.

    PubMed  CAS  Google Scholar 

  60. Wooster, R., Cleton-Jansen, A.-M., Collins, N., Mangion, J., Cornelis, R. S., Cooper, C. S., et al. (1994) Instability of short tandem repeats (microsatellites) in human cancers. Nature Genet. 6, 152–156.

    PubMed  CAS  Google Scholar 

  61. King, B. L., Carcangiu, M. L., Carter, D., Kiechle, M., Pfisterer, J., Pfleiderer, A., et al. (1995) Microsatellite instability in ovarian neoplasmas. Br. J. Cancer 72, 376–382.

    PubMed  CAS  Google Scholar 

  62. de Wind, N., Dekker, M., Berns, A., Radman, M., and to Riele, H. (1995) Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyper-recombination, and predisposition to cancer. Cell 82, 321–330.

    PubMed  Google Scholar 

  63. Reitmair, A. H., Schmits, R., Ewel, A., Bapat, B., Redston, M., Mitri, A., et al. (1995) MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nature Genet. 11, 64–70.

    CAS  Google Scholar 

  64. Baker, S. M., Bronner C. E., Zhang, L., Plug, A. W., Robatzek, M., Warren, G., et al. (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82, 309–319.

    PubMed  CAS  Google Scholar 

  65. Edelmann, W., Yang, K., Umar, A., Heyer, J., Lau, K., Fan, K., et al. (1997) Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91, 467–477.

    PubMed  CAS  Google Scholar 

  66. Griffin, S., Branch, P., Xu, Y.-Z., and Karran, P. (1994) DNA mismatch binding and incision at modified guanine bases by extracts of mammalian cells: implications for tolerance to DNA methylation damage. Biochemistry 33, 4787–4793.

    PubMed  CAS  Google Scholar 

  67. Kat, A., Thilly, W. G., Fang, W.-H., Longley, M. J., Li, G-M., and Modrich, P. (1993) An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc. Natl. Acad. Sci. USA 90, 6424–6428.

    PubMed  CAS  Google Scholar 

  68. Swann, P. F., Waters, T. R., Moulton, D. C., Xu, Y-Z., Zheng, Q., Edwards, M., et al. (1996) Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273, 1109–1111.

    PubMed  CAS  Google Scholar 

  69. Waters, T. R. and Swann, P. F. (1997) Cytotoxic mechanism of 6-thioguanine: hMutSu, the human mismatch binding heterodimer, binds to DNA containing S6-methylthioguanine. Biochemistry 36, 2501–2506.

    PubMed  CAS  Google Scholar 

  70. Fram, R. J., Cusick, P. S., Wilson, J. M., and Marinus, M. G. (1985) Mismatch repair of cis-diamminedichloroplatinum(II)-induced DNA damage. Mol. Pharmacol. 28, 51–55.

    PubMed  CAS  Google Scholar 

  71. Boyer, J. C., Umar, A., Risinger, J. I., Lipford, J. R., Kane, M., Yin, S., et al. (1995) Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 55, 6063–6070.

    PubMed  CAS  Google Scholar 

  72. Koi, M., Umar, A., Chauhan, D. P., Cherian, S. P., Carethers, J. M., Kunkel, T. A., et al. (1994) Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N’-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res. 54, 4308–4312.

    PubMed  CAS  Google Scholar 

  73. Umar, A., Koi, M., Risinger, J. I., Glaab, W. E., Tindall, K. R., Kolodner, R. D., et al. (1997) Correction of hypermutability, N-methyl-N’-nitro-N-nitrosoguanidine resistance, and defective DNA mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res. 57, 3949–3955.

    CAS  Google Scholar 

  74. Fink, D., Nebel, S., Aebi, S., Zheng, H., Cenni, B., Nehmé, A., et al. (1996) The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56, 4881–4886.

    PubMed  CAS  Google Scholar 

  75. Fink, D., Nebel, S., Aebi, S., Nehmé, A., and Howell, S. B. (1997) Loss of DNA mismatch repair due to knockout of MSH2 or PMS2 results in resistance to cisplatin and carboplatin. Int. J. Oncol. 11, 539–542.

    PubMed  CAS  Google Scholar 

  76. Aebi, S., Fink, D., Gordon, R., Kim, H. K., Zheng, H., Fink, J. L., et al. (1997) Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells. Clin. Cancer Res. 3, 1763–1767.

    PubMed  CAS  Google Scholar 

  77. Rode, P., Kupiec, N., Teicher, B., Emi, Y., and Bubley, G. (1996) The effect of a homozygous hMLHJ mutation on antitumor alkylating agent sensitivity. Proc. Am. Assoc. Cancer Res. 37, 380.

    Google Scholar 

  78. Zambie, D. B. and Lippard, S. J. (1995) Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem. Sci. 20, 435–439.

    Google Scholar 

  79. Naredi, P., Heath, D. D., Enns, R. E., and Howell, S. B. (1995) Cross-resistance between cisplatin, antimony potassium tartrate, and arsenite in human tumor cells. J. Clin. Invest. 95, 1193–1198.

    PubMed  CAS  Google Scholar 

  80. Aebi, S., Kurdi-Haidar, B., Gordon, R., Cenni, B., Zheng, H., Fink, D., et al. (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 56, 3087–3090.

    PubMed  CAS  Google Scholar 

  81. Anthoney, D. A., Mcllwrath, A. J., Gallagher, W. M., Edlin, A. R. M., and Brown, R. (1996) Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells. Cancer Res. 56, 1374–1381.

    PubMed  CAS  Google Scholar 

  82. Drummond, J. T., Anthoney, A., Brown, R., and Modrich, P. (1996) Cisplatin and Adriamycin resistance are associated with MutLa and mismatch repair deficiency in an ovarian tumor cell line. J. Biol. Chem. 271, 19645–19648.

    PubMed  CAS  Google Scholar 

  83. Mello, J. A., Acharya, S., Fishel, R., and Essigmann, J. M. (1996) The mismatch-repair protein hMSH2 binds selectively to DNA adducts of the anticancer drug cisplatin. Chem. Biol. 3, 579–589.

    PubMed  CAS  Google Scholar 

  84. Duckett, D. R., Drummond, J. T., Murchie, A. I. H., Reardon, J. T., Sancar, A., Lilley, D. M. J., et al. (1996) Human MutSa recognizes damaged DNA base pairs containing O6_methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc. Natl. Acad. Sci. USA 93, 6443–6447.

    PubMed  CAS  Google Scholar 

  85. Yamada, M., O’Regan, E., Brown, R., and Karran, P. (1997) Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins. Nucleic Acids Res. 25, 491–495.

    PubMed  CAS  Google Scholar 

  86. Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. (1997) Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol. Cell Biol. 17, 760–769.

    PubMed  CAS  Google Scholar 

  87. Nehmé, A., Baskaran, R., Aebi, S., Fink, D., Nebel, S., Cenni, B., et al. (1997) Differential induction of c-Jun NH2-terminal kinase and c-Abl kinase in DNA mismatch repair-proficient and -deficient cells exposed to cisplatin. Cancer Res. 57, 3253–3257.

    PubMed  Google Scholar 

  88. Carethers, J. M., Hawn, M. T., Chauhan, D. P., Luce, M. C., Marra, G., Koi, M., et al. (1996) Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N’-nitro-N-nitrosoguanidine. J. Clin. Invest. 98, 199–206.

    PubMed  CAS  Google Scholar 

  89. Hawn, M. T., Umar, A., Carethers, J. M., Marra, G., Kunkel, T. A., Boland, C. R., et al. (1995) Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res. 55, 3721–3725.

    PubMed  CAS  Google Scholar 

  90. Brown, R., Hirst, G. L., Gallagher, W. M., McIlwrath, A. J., Margison, G. P., van der Zee, A. G. J., (1997) hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene 15, 45–52.

    Google Scholar 

  91. Risinger, J. I., Umar, A., Boyd, J., Berchuck, A., Kunkel, T. A., and Barrett, J. C. (1996) Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair. Nature Genet. 14, 102–105.

    PubMed  CAS  Google Scholar 

  92. Fink, D., Zheng, H., Nebel, S., Norris, P. S., Aebi, S., Lin, T-P., et al. (1997) In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair. Cancer Res. 57, 1841–1845.

    CAS  Google Scholar 

  93. Richards, B., Zhang, H., Phear, G., and Meuth, M. (1997) Conditional mutator phenotypes in hMSH2-deficient tumor cell lines. Science 277, 1523–1526.

    PubMed  CAS  Google Scholar 

  94. Branch, P., Aquilina, G., Bignami, M., and Karran, P. (1993) Defective mismatch binding and a mutator phenotype in cells tolerant to DNA damage. Nature 362, 652–654.

    PubMed  CAS  Google Scholar 

  95. Fink, D., Nebel, S., Norris, P. S., Baergen, R. N., Wilczynski, S. P., Costa, M. J., et al. (1998) Enrichment for DNA mismatch repair-deficient cells during treatment with cisplatin. Int. J. Cancer 77, 741–746.

    PubMed  CAS  Google Scholar 

  96. Fink, D., Nebel, S., Norris, P. S., Aebi, S., Kim, H. K., Haas, M., et al. (1998) The effect of different chemotherapeutic agents on the enrichment of DNA mismatch repair-deficient tumour cells. Br. J. Cancer 77, 703–708.

    PubMed  CAS  Google Scholar 

  97. de las Alas, M. M., Aebi, S., Fink, D., Howell, S. B., and Los, G. (1997) Loss of DNA mismatch repair: effects on the rate of mutation to drug resistance. J. Natl. Cancer Inst. 89, 1537–1541.

    PubMed  Google Scholar 

  98. Kinzler, K. W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159–170.

    PubMed  CAS  Google Scholar 

  99. Skipper, H. E., Schabel, F. M., and Lloyd, H. H. (1978) Experimental therapeutics and kinetics: selection and overgrowth of specifically and permanently drug-resistant tumor cells. Semin. Hematol. 15, 207–219.

    PubMed  CAS  Google Scholar 

  100. Tomlinson, I. P. M., Novelli, M. R., and Bodmer, W. F. (1996) The mutation rate and cancer. Proc. Natl. Acad. Sci. USA 93, 14800–14803.

    PubMed  CAS  Google Scholar 

  101. Loeb, L. A. (1994) Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res. 54, 5059–5063.

    PubMed  CAS  Google Scholar 

  102. Ben-Yehuda, D., Krichevsky, S., Caspi, O., Rund, D., Polliack, A., Abeliovich, D., et al. (1996) Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood 88, 4296–4303.

    PubMed  CAS  Google Scholar 

  103. Fujita, M., Enomoto, T., Yoshino, K., Nomura, T., Buzard, G. S., Inoue, M. and Okudaira, Y. (1995) Microsatellite instability and alterations in the hMSH2 gene in human ovarian cancer. Int. J. Cancer 64, 361–366.

    PubMed  CAS  Google Scholar 

  104. Fink, D., Nebel, S., Aebi, S., Zheng, H., Kim, H. K., Christen, R. D. and Howell, S. B. (1997) Expression of the DNA mismatch repair proteins hMLH1 and hPMS2 in normal human tissues. Br. J. Cancer 76, 890–893.

    PubMed  CAS  Google Scholar 

  105. Thibodeau, S. N., French, A. J., Roche, P. C., Cunningham, J. M., Tester, D. J., Lindor, N. M., Moslein, G., Baker, S. M., Liskay, R. M., Burgart, L. J., Honchel, R. and Halling, K. C. (1996) Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res. 56, 4836–4840.

    PubMed  CAS  Google Scholar 

  106. Lim, P. C., Tester, D., Cliby, W., Ziesmer, S. C., Roche, P. C., Hartmann, L., Thibodeau, S. N., Podratz, K. C. and Jenkins, R. B. (1996) Absence of mutations in DNA mismatch repair genes in sporadic endometrial tumors with microsatellite instability. Clin. Cancer Res. 2, 1907–1911.

    PubMed  CAS  Google Scholar 

  107. Fink, D., Aebi, S. and Howell, S. B. (1998) The role of DNA mismatch repair in drug resistance. Clin. Cancer Res. 4, 1–6.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fink, D., Howell, S.B. (2000). How Does Cisplatin Kill Cells?. In: Kelland, L.R., Farrell, N.P. (eds) Platinum-Based Drugs in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-012-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-012-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-091-5

  • Online ISBN: 978-1-59259-012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics