Skip to main content

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 165 Accesses

Abstract

Alzheimer’s disease is characterized clinically by progressive and inevitable decline and loss of all higher cognitive functions over a period of years. This clinical decline is accompanied by the spread across cerebral cortical and subcortical regions of two salient neuropathological features: intraneuronal neurofibrillary tangles and complex neuritic β-amyloid-containing plaques (1,2). These plaques contain extracellular deposits of β-amyloid and a number of other proteins (3–6) as well as degenerating (dystrophic) neuritic processes and — importantly — activated glia elaborating a number of neurotrophic and immunomodulatory cytokines that drive and orchestrate the inception and evolution of these plaques (7–10). These cardinal neuropathological features are, in turn, accompanied by progressive neuronal loss and decreased density of synaptic elements within the cerebral cortical neuropil (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzheimer, A. (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Allgemeine. Z. Psychiatrie 64, 146–148.

    Google Scholar 

  2. Alzheimer, A. (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Zentralbi. Gsante. Neurol. Psychiatrie 18, 177–179.

    Google Scholar 

  3. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82, 4245–4249.

    Article  PubMed  CAS  Google Scholar 

  4. Abraham, C. R., Selkoe, D. J., and Potter, H. (1988) Immunochemical identification of the serine protease inhibitor al-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52, 487–501.

    Article  PubMed  CAS  Google Scholar 

  5. McComb, R. D., Miller, K. A., and Carson, S. D. (1991) Tissue factor antigen in senile plaques of Alzheimer’s disease. Am. J. Pathol. 139, 491–494.

    PubMed  CAS  Google Scholar 

  6. McGeer, P. L., Akiyama, H., Itagaki, S., and McGeer, E. G. (1989) Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci. Lett. 107, 341–346.

    Article  PubMed  CAS  Google Scholar 

  7. Griffin, W. S. T., Stanley, L. C., Ling, C., White, L., MacLeod, V., Perrot, L. J., White, C. L., III, and Araoz, C. (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl. Acad. Sci. USA 86, 7611–7615.

    Article  PubMed  CAS  Google Scholar 

  8. Griffin, W. S. T., Sheng, J. G., Roberts, G. W., and Mrak, R. E. (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  9. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1994) S10013 protein expression in Alzheimer disease: potential role in the pathogenesis of neuritic plaques. J. Neurosci. Res. 39, 398–404.

    Article  PubMed  CAS  Google Scholar 

  10. Mrak, R. E., Sheng, J. G., and Griffin, W. S. T. (1996) Correlation of astrocytic S 100(3 expression with dystrophic neurites in amyloid plaques of Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 55, 273–279.

    Article  PubMed  CAS  Google Scholar 

  11. Terry, R. D., Masliah, E., Salmon, D. P., et al. (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.

    Article  PubMed  CAS  Google Scholar 

  12. Braak, H. and Braak, E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259.

    Article  PubMed  CAS  Google Scholar 

  13. Gomez-Isla, T., Price, J., McKeel, D., Morris, J., Greenberg, S., Petersen, R., et al. (1998) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci. 16, 4491–4500.

    Google Scholar 

  14. Gomez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J., Petersen, R., et al. (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 41, 17–24.

    Article  PubMed  CAS  Google Scholar 

  15. Mrak, R. E., Sheng, J. G., and Griffin, W. S. T. (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol. 26, 816–823.

    Article  PubMed  CAS  Google Scholar 

  16. Griffin, W. S. T., Sheng, J. G., Royston, M. C., Gentleman, S. M., McKenzie, J. E., Graham, D. I., et al. (1998) Glial—neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol. 8, 65–72.

    Article  PubMed  CAS  Google Scholar 

  17. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S. A. (1992) Identification of program cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    Article  PubMed  CAS  Google Scholar 

  18. Troncoso, J. C., Sukhov, R. R., Kawas, C. H., and Koliatsos, V. E. (1996) In situ labeling of dying cortical neurons in normal aging and in Alzheimer’s disease: correlations with senile plaques and disease progression. J. Neuropathol. Exp. Neurol. 55, 1134–1142.

    Article  PubMed  CAS  Google Scholar 

  19. Su, J. H., Anderson, A. J., Cummings, B. J., and Cotman, C. W. (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. NeuroReport 5, 2533.

    Google Scholar 

  20. Lassmann, H., Bancher, C., Breitschopf, H., Wegiel, J., Bobinski, M., Jellinger, K., and Wisniewski, H. M. (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol. 89, 35–41.

    Article  PubMed  CAS  Google Scholar 

  21. Smale, G., Nichols, N. R., Brady, D. R., Finch, C. E., and Horton, W. E., Jr. (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp. Neurol. 133, 225–230.

    Article  PubMed  CAS  Google Scholar 

  22. Anderson, A., Su, J. H., and Cotman, C. W. (1996) DNA damage and apoptosis in Alzheimer’s disease colocalization with cjun immunoreactivity, relationship to brain area and effect of postmortem delay. J. Neurosci. 16, 1710–1719.

    PubMed  CAS  Google Scholar 

  23. Mullaart, E., Boerrigter, M. E., Ravid, R., Swaab, D. F., and Vijg, J. (1990) Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol. Aging 11, 169–173.

    Article  PubMed  CAS  Google Scholar 

  24. Frankfurt, O. S., Robb, J. A., Sugarbaker, E. V., and Villa, L. (1996) Monoclonal antibody to single-stranded DNA is a specific and sensitive cellular marker of apoptosis. Exp. Cell Res. 226, 387–397.

    Article  PubMed  CAS  Google Scholar 

  25. Stadelmann, C., Bruck, W., Bancher, C., Jellinger, K., and Lassman, H. (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J. Neuropathol. Exp. Neurol. 57, 456–464.

    Article  PubMed  CAS  Google Scholar 

  26. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1998) Progressive neuronal DNA damage associated with neurofibrillary tangle formation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 323–328.

    Article  PubMed  CAS  Google Scholar 

  27. Sheng, J. G., Zhou, X. Q., Mrak, R. E., and Griffin, W. S. T. (1998) Progressive neuronal injury associated with amyloid plaque formation in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 57, 714–717.

    Article  PubMed  CAS  Google Scholar 

  28. Dinarello, C. A. and Wolff, S. M. (1993) The role of Interleukin-1 in disease. N. Engl. J. Med. 328, 106–113.

    Article  PubMed  CAS  Google Scholar 

  29. Rothwell, N. J. (1991) Functions and mechanisms of interleukin 1 in the brain. TiPS 12,430 /136.

    Google Scholar 

  30. Giulian, D., Woodward, J., Young, D. G., Krebs, J. F., and Lachman, L. B. (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J. Neurosci. 8, 2485–2490.

    PubMed  CAS  Google Scholar 

  31. Sheng, J. G., Ito, K., Skinner, R. D., Mrak, R. E., Rovnaghi, C. R., Van, Eldik, L. J., et al. (1996) In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol. Aging 17, 761–766.

    Article  PubMed  CAS  Google Scholar 

  32. Kligman, D. and Marshak, D. R. (1985) Purification and characterization of a neurite extension factor from bovine brain. Proc. Natl. Acad. Sci. USA 82, 7136–7139.

    Article  PubMed  CAS  Google Scholar 

  33. Barger, S. W. and Van Eldik, L. J. (1992) S100 stimulates calcium fluxes in glial and neuronal cells. J. Biol. Chem. 267, 9689–9694.

    PubMed  CAS  Google Scholar 

  34. Arriagada, P. V., Growden, J. H., Hedley-White, E. T., and Hyman, B. T. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity in Alzheimer’s disease. Neurology 42, 639.

    Google Scholar 

  35. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1997) Glial-neuronal interactions in Alzheimer disease: progressive association of IL-la+ microglia and S l00(3+ astrocytes with neurofibrillary tangle stages. J. Neuropathol. Exp. Neurol. 56, 285–290.

    Article  PubMed  CAS  Google Scholar 

  36. Cotman, C. W., Pike, C. J., and Copani, A. (1992) 13-Amyloid neurotoxicity: a discussion of in vitro findings. Neurobiol. Aging 13, 587–590.

    Google Scholar 

  37. Manelli, A. M. and Puttfarcken, P. S. (1995) 13-Amyloid-induced toxicity in rat hippocampal cells: in vitro evidence for the involvement of free radicals. Brain Res. Bull. 38, 569–576.

    Google Scholar 

  38. Stein-Behrens, B., Adams, K., Yeh, M., and Sapolsky, R. (1992) Failure of 13-amyloid protein fragment 25–35 to cause hippocampal damage in the rat. Neurobiol. Aging 13, 577–579.

    Article  PubMed  CAS  Google Scholar 

  39. McKee, A. C., Kowall, N. W., Schumacher, J. S., and Beal, M. F. (1998) The neurotoxicity of amyloid ß protein in aged primates. Amyloid Int. J. Exp. Clin. Invest. 5, 1–9.

    CAS  Google Scholar 

  40. Crystal, H., Dickson, D., Fuld, P., Masur, D., Scott, R., Mehler, M., et al. (1988) Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38, 1682–1168.

    Article  PubMed  CAS  Google Scholar 

  41. Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., et al. (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann. Neurol. 23, 138–144.

    Article  PubMed  CAS  Google Scholar 

  42. Knowles, R. B., Gomez-Isla, T., and Hyman, B. T. (1998) A(3 associated neuropil changes: correlation with neuronal loss and dementia. J. Neuropathol. Exp. Neurol. 57, 1122–1130.

    Article  PubMed  CAS  Google Scholar 

  43. Mackenzie, I. R., Hao, C., and Munoz, D. G. (1995) Role of microglia in senile plaque formation. Neurobiol. Aging 16, 797–804.

    Article  PubMed  CAS  Google Scholar 

  44. Marshak, D. R., Pesce, S. A., Stanley, L. C., and Griffin, W. S. T. (1992) Increased S100 neurotrophic activity in Alzheimer disease temporal lobe. Neurobiol. Aging 13, 1–7.

    Article  PubMed  CAS  Google Scholar 

  45. Das, S. and Potter, H. (1995) Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 14, 447–456.

    Article  PubMed  CAS  Google Scholar 

  46. Forloni, G., Demicheli, F., Giorgi, S., Bendotti, C., and Angaretti, N. (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukinl. Brain Res. Mol. Brain Res. 16, 128–134.

    Article  PubMed  CAS  Google Scholar 

  47. Goldgaber, D., Harris, H. W., Hla, T., Maciag, T., Donnelly, R. G., Jacobsen, J. S., et al. (1989) Interleukin 1 regulates synthesis of amyloid B-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. USA 86, 7606–7610.

    Article  PubMed  CAS  Google Scholar 

  48. Buxbaum, J. D., Oishi, M., Chen, H. I., Pinkas-Kramarski, R., Jaffe, E. A., Gandy, S. E., et al. (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer 13/A4 amyloid protein precursor. Proc. Natl. Acad. Sci. USA 89, 10075–10078.

    Article  PubMed  CAS  Google Scholar 

  49. Barger, S. W. and Harmon, A. D. (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388, 878–881.

    Article  CAS  Google Scholar 

  50. Ganter, S., Northoff, H., Mannel, D., and Gebicke-Harter, P. J. (1992) Growth control of cultured microglia. J. Neurosci. Res. 33, 218–230.

    Article  PubMed  CAS  Google Scholar 

  51. Lee, S. C., Liu, W., Dickson, D. W., Brosnan, C. F., and Berman, J. W. (1993) Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and ILlß. J. Immunol. 150, 2659–2667.

    PubMed  CAS  Google Scholar 

  52. Sebire, G., Emilie, D., Wallon, C., Hery, C., Devergne, O., Delfraissy, J. F., et al. (1993) In vitro production of IL6, IL1(3, and tumor necrosis factor a by human embryonic microglial and neural cells. J. Immunol. 150, 1517–1523.

    PubMed  CAS  Google Scholar 

  53. Marshak, D. R. (1990) S100 as a neurotrophic factor. Prog. Brain Res. 86, 169–181.

    Article  PubMed  CAS  Google Scholar 

  54. Hu, J., Castets, F., Guevara, J. L., and Van Eldik, L. J. (1996) S10013 stimulates inducible nitric oxide synthase activity and mRNA levels in rat cortical astrocytes. J. Biol. Chem. 271, 2543–2547.

    Article  PubMed  CAS  Google Scholar 

  55. Li, Y., Barger, S. W., Liu, L., Mrak, R. E., and Griffin, W. S. T. (1999) S100 induction of the pro-inflammatory cytokine interleukin-6 in neurons: implications for Alzheimer pathogenesis. Neurochem. 74, 143–150.

    Google Scholar 

  56. Sheng, J. G., Mrak, R. E., Rovnaghi, C. R., Kozlowska, E., Van, E., LI, and Griffin, W. S. T. (1996) Human brain S10013 and S 100(3 mRNA expression increases with age: pathogenic implications for Alzheimer’s disease. Neurobiol. Aging 17, 359–363.

    CAS  Google Scholar 

  57. Griffin, W. S. T., Sheng, J. G., and Mrak, R. E. (1998) Senescence-accelerated overexpression of S100ß in brain of SAMP6 mice. Neurobiol. Aging 19, 71–76.

    Article  PubMed  CAS  Google Scholar 

  58. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1998) Enlarged and phagocytic, but not primed, interleukin-1 a-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol. 95, 229–234.

    Article  PubMed  CAS  Google Scholar 

  59. Sheng, J. G., Mrak, R. E., and Griffin, W. S. T. (1995) Microglial interleukin1 a expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution. Neuropathol. Applied Neurobiol. 21, 290–301.

    Article  CAS  Google Scholar 

  60. Sheng, J. G., Griffin, W. S. T., Royston, M. C., and Mrak, R. E. (1998) Distribution of IL-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 24, 278–283.

    Article  PubMed  CAS  Google Scholar 

  61. Wisniewski, K. E., Wisniewski, H. M., and Wen, G. Y. (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17, 278–282.

    Article  PubMed  CAS  Google Scholar 

  62. Brugge, K. L., Nichols, S. L., Salmon, D. P., Hill, L. R., Delis, D. C., Aaron, L., et al. (1994) Cognitive impairment in adults with Down’s syndrome: similarities to early cognitive changes in Alzheimer’s disease. Neurology 44, 232–238.

    Article  PubMed  CAS  Google Scholar 

  63. Soininen, H., Partanen, J., Jousmaki, V., Helkala, E. L., Vanhanen, M., Majuri, S., et al. (1993) Age-related cognitive decline and electroencephalogram slowing in Down’s syndrome as a model of Alzheimer’s disease. Neuroscience 53, 57–63.

    Article  PubMed  CAS  Google Scholar 

  64. Hof, P. R., Bouras, C., Perl, D. P., Sparks, D. L., Mehta, N., and Morrison, J. H. (1995) Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch. Neurol. 52, 379–391.

    Article  PubMed  CAS  Google Scholar 

  65. Griffin, W. S. T., Sheng, J. G., McKenzie, J., Royston, M. C., Gentleman, S. M., Brumback, R. A.,et al. (1998) Life-long overexpression of S100 in Down’s syndrome: implications for Alzheimer pathogenesis. Neurobiol. Aging 2, 35–42.

    Google Scholar 

  66. Royston, M. C., McKenzie, J. E., Gentleman, S. M., Sheng, J. G., Mann, D. M. A., Griffin, W. S. T., et al. (1999) Overexpression of the neuritotrophic cytokine S 100(3 in Down’s syndrome: correlation with patient age and 13-amyloid deposition. Neuropathol. Appl. Neurobiol. 25, 387–393.

    Article  PubMed  CAS  Google Scholar 

  67. Gautrin, D. and Gauthier, S. (1989) Alzheimer’s disease: environmental factors and etiologic hypotheses. Can. J. Neurol. Sci. 16, 375–387.

    PubMed  CAS  Google Scholar 

  68. Gentleman, S. M. and Roberts, G. W. (1991) Risk factors in Alzheimer’s disease. Br. Med. J. 304, 118–119.

    Article  Google Scholar 

  69. Griffin, W. S. T., Sheng, J. G., Gentleman, S. M., Graham, D. I., Mrak, R. E., and Roberts, G. W. (1994) Microglial interleukin-la expression in human head injury: correlations with neuronal and neuritic 13-amyloid precursor protein expression. Neurosci. Lett. 176, 133–136.

    Article  PubMed  CAS  Google Scholar 

  70. Gentleman, S. M., Graham, D. I., and Roberts, G. W. (1993) Molecular pathology of head injury: altered 13-APP metabolism and the aetiology of Alzheimer’s disease. Prog. Brain Res. 96, 237–246.

    Article  PubMed  CAS  Google Scholar 

  71. Breteler, M. M., de Groot, R. R., van Romunde, L. K., and Hofman, A. (1994) Risk of dementia in patients with Parkinson’s disease epilepsy and severe head trauma: a register-based followup study. Am. J. Epidemiol. 142, 1300–1305.

    Google Scholar 

  72. Mackenzie, I. R. and Miller, L. A. (1994) Senile plaques in temporal lobe epilepsy. Acta Neuropathol. 87, 504–510.

    Article  PubMed  CAS  Google Scholar 

  73. Gouras, G. K., Relkin, N. R., Sweeney, D., Munoz, D. G., Mackenzie, I. R., and Gandy, S. (1997) Increased apolipoprotein E epsilon 4 in epilepsy with senile plaques. Ann. Neurol. 41, 402–404.

    CAS  Google Scholar 

  74. Sheng, J. G., Boop, F. A., Mrak, R. E., and Griffin, W. S. T. (1994) Increased neuronal 13-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-la immunoreactivity. J. Neurochem. 63, 1872–1879.

    Article  PubMed  CAS  Google Scholar 

  75. Griffin, W. S. T., Yeralan, O., Sheng, J. G., Boop, F. A., Mrak, R. E., Rovnaghi, C. R., et al. (1995) Overexpression of the neurotrophic cytokine S100ß in human temporal lobe epilepsy. J. Neurochem. 65, 228–233.

    Article  PubMed  CAS  Google Scholar 

  76. Esiri, M. M., Biddolph, S. C., and Morris, C. S. (1 998) Prevalence of Alzheimer plaques in AIDS. J. Neurol. Neurosurg. Psychiatry 65, 29–33.

    Google Scholar 

  77. Stanley, L. C., Mrak, R. E., Woody, R. C., Perrot, L. J., Zhang, S., Marshak, D. R., et al. (1994) Glial cytokines as neuropathogenic factors in HIV infection: pathogenic similarities to Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 53, 231–238.

    Article  PubMed  CAS  Google Scholar 

  78. Mrak, R. E. and Griffin, W. S. T. (1997) The role of chronic self-propagating glial responses in neurodegeneration: implications for long-lived survivors of human immunodeficiency virus. J. NeuroVirol. 3, 241–246.

    Article  PubMed  CAS  Google Scholar 

  79. Lewis, D. A., Campbell, M. J., Terry, R. D., and Morrison, J. H. (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J. Neurosci. 7, 1799–1808.

    PubMed  CAS  Google Scholar 

  80. Clinton, J., Roberts, G. W., Gentleman, S. M., and Royston, M. C. (1993) Differential pattern of (3-amyloid protein deposition within cortical sulci and gyri in Alzheimer’ s disease. Neuropathol. Applied Neurobiol. 19, 277–281.

    Article  CAS  Google Scholar 

  81. Rogers, J. and Morrison, J. H. (1985) Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J. Neurosci. 5, 2801–2808.

    PubMed  CAS  Google Scholar 

  82. Ito, K., Ishikawa, Y., Skinner, R. D., Mrak, R. E., Morrison-Bogorad, M., Mukawa, J., et al. (1997) Lesioning of the inferior olive using a ventral surgical approach: characterization of temporal and spatial responses at the lesion site and in cerebellum. Mol. Chem. Neuropathol. 31, 245–264.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mrak, R.E., Griffin, W.S.T. (2001). Glial Cells in Alzheimer’s Disease. In: Molecular Mechanisms of Neurodegenerative Diseases. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-006-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-006-3_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-197-4

  • Online ISBN: 978-1-59259-006-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics