Skip to main content

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 172 Accesses

Abstract

In 1991, a novel mutational mechanism in human genetics was discovered: the expansion of an unstable trinucleotide repeat (Fu et al., 1991; La Spada et al., 1991). To date, trinucleotide repeat expansions have been found to be associated with 16 neurological disorders. Although the sequence of the unstable repeat and its location within the affected gene varies among these disorders, by far the largest category of disorders are those in which the neurodegenerative disease results from the expansion of a CAG repeat. Because the CAG tract is located in the coding region of each gene and encodes a polyglutamine stretch in each respective protein, these disorders are often designated as polyglutamine diseases (Ross, 1997). The eight polyglutamine repeat diseases currently include Kennedy disease or spinobulbar muscular atrophy (SBMA), Huntington disease (HD), and the spinocerebellar ataxias (SCA1, SCA2, SCA3, Machado-Joseph disease [MJD], SCA6, and SCA7), including dentatorubropallidoluysian atrophy (DRPLA). Except for Kennedy disease (SBMA), these neurodegenerative disorders are dominantly inherited. All eight polyglutamine disorders are progressive, often with an onset in mid-life with an increase in neuronal dysfunction and eventual neuronal loss 10–20 yr after onset. Other features that characterize this group of diseases are (1) an inverse relationship between the number of CAG repeats on expanded alleles and age of onset and severity of disease and (2) an intergenerational instability that leads to repeat expansions and earlier age of onset and more rapid disease progression in affected offspring of affected parents. Most interesting, despite the widespread expression of the relevant protein throughout the brain and other tissues, only a subset of neurons that is unique to each disease appears to be vulnerable to the mutation in each of these diseases. This review focuses on one of these polyglutamine disorders, spinocerebellar ataxia type 1 (SCA1). The reader is referred to other chapters for reviews on some of the other polyglutamine disorders: Huntington disease (Chapters 9–11 and 13), Kennedy disease (Chapter 14), and SCA3/MJD (Chapter 15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banfi, S., Servadio, A., Chung, M.-Y., Capozzoli, F., Duvick, L. A., Elde, R., et al. (1996) Cloning and developmental expression analysis of the murine homolog of the spinocerebellar ataxia type 1 gene (SCA1). Hum. Mol. Genet. 5, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Banfi, S., Servadio, A., Chung, M.-Y,. Kwiatkowski, T. J., Jr., McCall, A. E., Duvick, L. A., et al. (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genet. 7, 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Burright, E. N., Clark, H. B., Servadio, A., Matilla, T., Feddersen, R. M., Yunis, W. S., et al. (1995) SCAT transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948.

    Article  PubMed  CAS  Google Scholar 

  • Burright, E. N., Davidson, J. D., Duvick, L. A., Koshy, B., Zoghbi, H. Y., and On, H. T. (1997) Identification of a self-association region within the SCA1 gene product, ataxin-1. Hum. Mol. Genet. 6, 513–518.

    Article  PubMed  CAS  Google Scholar 

  • Bunight, E. N., On, H. T., and Clark, H. B. (1997b) Mouse models of human CAG repeat disorders. Brain Pathol. 7, 965–977.

    Article  Google Scholar 

  • Chung, M.-Y., Ranum, L. P. W., Duvick, L., Servadio, A., Zoghbi, H. Y., and On, H. T. (1993) Analysis of the CAG repeat expansion in spinocerebellar ataxia type I: evidence for a possible mechanism predisposing to instability. Nature Genet. 5, 254–258.

    Article  PubMed  CAS  Google Scholar 

  • Clark, H. B., Burright, E. N., Yunis, W. S., Larson, S., Wilcox, C., Hartman, B. et al. (1997) Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17, 7385–7395.

    PubMed  CAS  Google Scholar 

  • Cummings, C. J., Mancini, M. A., Antalffy, B., DeFranco, D. B., On, H. T., and Zoghbi, H. Y. (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genet. 19, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, C. J., Reinstein, E., Sun, Y., Antalffy, B., Jiang, Y.-H., Ciechanover, A., et al. (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 transgenic mice. Neuron, 24, 879–892..

    Google Scholar 

  • Davidson, J. D., Riley, B., Bunight, E. N., Duvick, L. A., Zoghbi, H. Y., and Orr, H. T. Identification and characterization of an ataxin-1 interacting proteins: Al Up a ubiquitin-like nuclear protein, submitted.

    Google Scholar 

  • Davies, A. F., Mirza, G., Sekhon, G., Turnpenny, P., Leroy, F., Speleman, F., et al. (1999) Delineation of two distinct 6p deletion syndromes. Hum. Genet. 104, 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y.-H., Kuhl, D. P. A., Pizutti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., et al. (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb, L. G., Vasconcelos, O., Platonov, F. A., Lunkes, A., Kipnis, V., Kononova, S., et al. (1996) Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann. Neurol. 39, 500–506.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, J. G. (1954) The Spino-cerebellar Degenerations. Charles C Thomas, Springfield, IL.

    Google Scholar 

  • Guzder, S. M., Bailly, V., Sung, P., Prakash, L., and Prakash, S. (1995) Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD 14. J. Biol. Chem. 270, 8385–8388.

    Article  PubMed  CAS  Google Scholar 

  • Harding, A. E. (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. Brain 105, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse, J. M., Scheffner, M., Beaudenon, S., and Howley, P. M. (1995) A family of proteins structurally and functionally related tot he E6-AP ubiquitinprotein ligase. Proc. Natl. Acad. Sci. USA 92, 2563–2567.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y. H., Armstrong, D., Albrecht, U., Atkins, C. M., Noebels, J. L., Eichele, G., et al. (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and longterm potentiation. Neuron 21, 799–811.

    Article  PubMed  CAS  Google Scholar 

  • Jodice, C., Malaspina, P., Persichetti, F., Novelletto, A., Spadaro, M., Giuinti, P., et al. (1994) Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia 1. Am. J. Hum. Genet. 54, 959–965.

    PubMed  CAS  Google Scholar 

  • Klement, I. A., Skinner, P. J., Kaytor, M. D., Yi, H., Hersch, S. M., Clark, H. B., et al. (1998) Ataxin-1 nuclear localization and aggregation: Role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Koeppen, A. H. (1998) The herediatary ataxias. J. Neuropathol. Exp. Neurol. 57, 531–543.

    Article  PubMed  CAS  Google Scholar 

  • La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fischbeck, H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79.

    Article  PubMed  Google Scholar 

  • Lin, X., Antalffy, B., Kang, D., Orr, H. T., and Zoghbi, H. Y. (2000) Polyglutamine expansion in ataxin-1 downregulates specific neuronal genes prior to any known pathogenic changes in spinocerebellar ataxia type 1. Nature Neurosci. 3, 137–163.

    Article  Google Scholar 

  • Matilla, T., Koshy, B., Cummings, C. J., Isobe, T., Orr, H. T., and Zoghbi, H. Y. (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin1. Nature 389, 974–978.

    Article  PubMed  CAS  Google Scholar 

  • Matilla, A., Roberson, E. D., Banfi, S., Morales, J., Armstrong, D. L., Burright, E. N., et al. (1998) Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J. Neurosci. 18, 5508–5516.

    PubMed  CAS  Google Scholar 

  • Matsuoka, K., Taoka, M., Satozawa, N., Nakayama, H., Ichimura, T., Takahashi, N., et al. (1994) A nuclear factor containing the leucine-rich repeats expresses in murine cerebellar neurons. Proc. Natl. Acad. Sci. USA 91, 9670–9674.

    Article  PubMed  CAS  Google Scholar 

  • Orr, H. T., Chung, M.-Y., Banfi, S., Kwiatkowski, T. J., Jr., Servadio, A., Beaudet, A. L., et al. (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Quan, F., Janas, J., and Popovich, B. W. (1995) A novel CAG repeat configuration in the SCA1 gene: implication for the molecular diagnosis of spinocerebellar ataxia type 1. Hum. Mol. Genet. 4, 2411–2413.

    Article  PubMed  CAS  Google Scholar 

  • Roitaille, Y., Schut, L., and Kish, S. J. (1995) Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol. 90, 572–581.

    Article  Google Scholar 

  • Ross, C. A. (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  • Saudou, F., Finkbeiner, S., Devys, D., and Greenberg, M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W., et al. (1998) Rad23 Links DNA Repair to the ubiquitin/proteasome pathway. Nature 391, 715–718.

    Article  PubMed  CAS  Google Scholar 

  • Schut, L. and Haymaker, W. (1951) Hereditary ataxia: a pathological study of five cases of common ancestry. J. Neuropathol. Clin. Neurol. 1, 183–213.

    Google Scholar 

  • Servadio, A., Koshy, B., Armstrong, D., Antalfy, B., Orr, H. T., and Zoghbi, H. Y. (1995) Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nature Genet. 10, 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Skinner, P. J., Koshy, B., Cummings, C., Klement, I. A., Helin, K., Servadio, A., et al. (1997) Ataxin-1 with extra glutamines induces alterations in nuclear matrix-associated structures. Nature 389, 971–974.

    Article  PubMed  CAS  Google Scholar 

  • Ueki, N., Oda, T., Kondo, M., Yano, K., Noguchi, T., and Muramatsu. M. (1998) Selection system for genes encoding nuclear targeted proteins. Nature Biotech. 16, 1338–1342.

    Article  CAS  Google Scholar 

  • Zoghbi, H. Y. and Ballabio, A. (1995) Spinocerebellar ataxia type 1, In The Metabolic and Molecular Bases of Inherited Disease. 7th ed., ( Scriver, C. R., Beaudet, A. L., Sly, W. S. et al., eds.), McGraw-Hill, New York, pp. 4559–4567.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Orr, H.T., Zoghbi, H.Y. (2001). Pathophysiology of SCA1. In: Molecular Mechanisms of Neurodegenerative Diseases. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-006-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-006-3_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-197-4

  • Online ISBN: 978-1-59259-006-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics