Importance of Heart Rate in Determining Cardiovascular Risk

  • Paolo Palatini
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

A body of evidence indicates that subjects with tachycardia are more likely to develop hypertension (1–3) and atherosclerosis in future years (4–6). However, the connection between heart rate and the cardiovascular risk has long been neglected, on the grounds that tachycardia is often associated with the traditional risk factors for atherosclerosis, such as hypertension or metabolic abnormalities (7). A high heart rate is currently considered only an epiphenomenon of a complex clinical condition rather than an independent risk factor. However, most epidemiogic studies showed that the predictive power of a fast heart rate for cardiovascular disease remains significant even when its relative risk is adjusted for all major risk factors for atherosclerosis and other confounders (4–7). In this chapter, the results of the main studies that dealt with the relation between tachycardia and cardiovascular morbidity and mortality will be summarized, and the pathogenesis of the connection between fast heart rate and cardiovascular disease will be the focus.

Keywords

Heart Rate Acute Myocardial Infarction High Heart Rate Sympathetic Overactivity Fast Heart Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Selby JV, Friedman GD, Quesenberry CP Jr. Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Am J Epidemiol 1990:131:1017–1097Google Scholar
  2. 2.
    Reed D, McGee D, Yano K. Biological and social correlates of blood pressure among Japanese men in Hawaii. Hypertension 1982;4:406–414.PubMedCrossRefGoogle Scholar
  3. 3.
    Garrison RJ, Kannel WB, Stokes J III. Incidence and precursors of hypertension in young adults. Prev Med 1987;16:235–251.PubMedCrossRefGoogle Scholar
  4. 4.
    Dyer AR, Persky V, Stamler J, et al. Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am J Epidemio11980;112: 736–749.Google Scholar
  5. 5.
    Gillum RF, Makuc DM, Feldman JJ. Pulse rate, coronary heart disease, and death: the NHANES I epidemiologic follow-up study. Am Heart J 1991;121:172–177.PubMedCrossRefGoogle Scholar
  6. 6.
    Kannel WB, Wilson P, Blair SN. Epidemiologic assessment of the role of physical activity and fitness in development of cardiovascular disease. Am Heart J 1985;109:876–885.PubMedCrossRefGoogle Scholar
  7. 7.
    Palatini P, Julius S. Heart rate and the cardiovascular risk. J Hypertens 1997;15:3–17.PubMedCrossRefGoogle Scholar
  8. 8.
    Levy RL, White PD, Stroud WD, et al. Transient tachycardia: Prognostic significance alone and in association with transient hypertension. JAMA 1945;129:585–588.Google Scholar
  9. 9.
    Paffenbarger RS Jr, Thorne MC, Wing AL. Chronic disease in former college students-VIII. Characteristics in youth predisposing to hypertension in later years. Am J Epidemiol 1968;88: 25–32.PubMedGoogle Scholar
  10. 10.
    Schroll M, Hagerup LM. Risk factors of myocardial infarction and death in men aged 50 at entry. A ten-year prospective study from the Glostrup population studies. Dan Med Bull 1977; 24:252–255.PubMedGoogle Scholar
  11. 11.
    Medalie JH, Kahn HA, Neufeld HN, et al. Five-year myocardial infarction incidence-II. Association of single variables to age and birthplace. J Chronic Dis 1973;26:329–349.CrossRefGoogle Scholar
  12. 12.
    Goldberg RJ, Larson M, Levy D. Factors associated with survival to 75 years of age in middleaged men and women. The Framingham study. Arch Intem Med 1996;156:505–509.CrossRefGoogle Scholar
  13. 13.
    Palatini P, Casiglia E, Julius S, et al. Heart rate: a risk factor for cardiovascular mortality in elderly men. Arch Int Med 1999;159:585–592.CrossRefGoogle Scholar
  14. 14.
    Aronow WS, Ahn C, Mercando AD, et al. Association of average heart rate on 24-hour ambulatory electrocardiograms with incidence of new coronary events at 48-month followup in 1,311 patients (mean age 81 years) with heart disease and sinus rhythm. Am J Cardiol 1996;78:1175–1176.PubMedGoogle Scholar
  15. 15.
    Gillman MW, Kannel WB, Belanger A, et al. Influence of heart rate on mortality among persons with hypertension: The Framingham Study. Am Heart J 1993;125:1148–1154.PubMedCrossRefGoogle Scholar
  16. 16.
    Kannel WB, Kannel C, Paffenbarger RS Jr, et al. Heart rate and cardiovascular mortality: The Framingham Study. Am Heart J 1987;113:1489–1494.PubMedCrossRefGoogle Scholar
  17. 17.
    The Norwegian Multicenter Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981;304:801–807.CrossRefGoogle Scholar
  18. 18.
    Hjalmarson A, Gilpin EA, Kjekshus J, et al. Influence of heart rate on mortality after acute myocardial infarction. Am J Cardiol 1990;65:547–553.PubMedCrossRefGoogle Scholar
  19. 19.
    Disegni E, Goldbourt U, Reicher-Reiss H, et al. The predictive value of admission heart rate on mortality in patients with acute myocardial infarction. J Clin Epidemiol 1995;48: 1197–1205.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee KL, Woodlief LH, Topol EJ, et al. Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. Circulation 1995;91:1659–1668.PubMedCrossRefGoogle Scholar
  21. 21.
    Maggioni AP, Zuanetti G, Mantini L, et al. The predictive value of pre-discharge heart rate on 8-month mortality in 7,831 patients with acute myocardial infarction in the fibrinolytic era. Eur Heart J 1997;18(Abstract suppl):352A.Google Scholar
  22. 22.
    Gordon D, Guyton J, Karnovsky N. Intimal alterations in rat aorta induced by stressful stimuli. Lab Invest 1983;45:14–19.Google Scholar
  23. 23.
    Mangoni AA, Mircoli L, Giannattasio C, et al. Heart rate-dependence of arterial distensibility in vivo. J Hypertens 1996;14:897–901.PubMedCrossRefGoogle Scholar
  24. 24.
    Palatini P. Exercise haemodynamics in the normotensive and the hypertensive subject. Clin Sci 1994;87:275–287.PubMedGoogle Scholar
  25. 25.
    Beere PA, Glagov S, Zarins CK. Retarding effect of lowered heart rate on coronary atherosclerosis. Science 1984;226:180–182.PubMedCrossRefGoogle Scholar
  26. 26.
    Bassiouny HS, Zarins CK, Kadowaki MH, et al. Hemodynamic stress and experimental aortoiliac atherosclerosis. J Vasc Surg 1994;19:426–434.PubMedCrossRefGoogle Scholar
  27. 27.
    Kaplan JR, Manuck SB, Clarkson TB. The influence of heart rate on coronary artery atherosclerosis. J Cardiovasc Pharmacol 1987;10(Supp12):S100–S102.Google Scholar
  28. 28.
    Stamler J, Berkson DM, Dyer A, et al. Relationship of multiple variables to blood pressurefindings from four Chicago epidemiologic studies. In: Paul O, ed. Epidemiology and Control of Hypertension. Symposia Specialists, Miami, 1975, pp. 307–352.Google Scholar
  29. 29.
    Cirillo M, Laurenzi M, Trevisan M, et al. Hematocrit, blood pressure, and hypertension. The Gubbio Population Study. Hypertension 1992;20:319–326.PubMedCrossRefGoogle Scholar
  30. 30.
    Stern MP, Morales PA, Haffner SM, et al. Hyperdynamic circulation and the insulin resistance syndrome (“Syndrome X”). Hypertension 1992;20(6):802–808.PubMedCrossRefGoogle Scholar
  31. 31.
    Palatini P, Julius S. Association of tachycardia with morbidity and mortality: pathophysiological considerations. J Hum Hypertens 1997;11(Suppl 1):19–27.Google Scholar
  32. 32.
    Palatini P, Casiglia E, Pauletto P, et al. Relationship of tachycardia with high blood pressure and metabolic abnormalities. A study with mixture analysis in three populations. Hypertension 1997;30:1267–1273.PubMedCrossRefGoogle Scholar
  33. 33.
    Julius S, Gudbrandsson T, Jamerson K, et al. Hypothesis. The hemodynamic link between insulin resistance and hypertension. J Hypertens 1991;9:983–986.PubMedCrossRefGoogle Scholar
  34. 34.
    Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation 1971;44:413–418.PubMedCrossRefGoogle Scholar
  35. 35.
    Deibert DC, DeFronzo RA. Epinephrine-induced insulin resistance in man. J Clin Invest 1980; 65:717–721.PubMedCrossRefGoogle Scholar
  36. 36.
    Zeman RJ, Ludemann R, Easton TG, et al. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta-2-receptor agonist. Am J Physiol 1988;254:E726–E732.Google Scholar
  37. 37.
    Jamerson KA, Julius S, Gudbrandsson T, et al. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension 1993;21(5):618–623.PubMedCrossRefGoogle Scholar
  38. 38.
    Pollare T, Lithell H, Selinus I, et al. Application of prazosin is associated with an increase of insulin sensitivity in obese patients with hypertension. Diabetologia 1988;31:415–420.PubMedCrossRefGoogle Scholar
  39. 39.
    Palatini P, Visentin PA, Mormino P, et al. Left ventricular performance in the early stages of systemic hypertension. Am J Cardiol 1998;81:418–423.PubMedCrossRefGoogle Scholar
  40. 40.
    Julius S. Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension. Circ Res 1975;36–37(Suppl I):I-199-I-207.Google Scholar
  41. 41.
    Julius S, Li Y, Brant D, et al. Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension 1989;13:422–429.PubMedCrossRefGoogle Scholar
  42. 42.
    Palatini P, Maraglino G, Accurso V, et al. Impaired left ventricular filling in hypertensive left ventricular hypertrophy as a marker of the presence of an arrhytmogenic substrate. Br Heart J 1995;73:258–262.PubMedCrossRefGoogle Scholar
  43. 43.
    Palatini P. Heart rate as a cardiovascular risk factor. Eur Heart J 1999;20(Suppl B):B3–B9.Google Scholar
  44. 44.
    Palatini P. Need for a revision of the normal limits of resting heart rate. Hypertension 1999; 33:622–625.PubMedCrossRefGoogle Scholar
  45. 45.
    Coburn AF, Grey RM, Rivera SM. Observations on the relation of heart rate, life span, weight and mineralization in the digoxin-treated A/J mouse. Johns Hopkins Med J 1971;128:169–193.PubMedGoogle Scholar
  46. 46.
    Kaplan JR, Manuck SB, Adams MR, et al. Inhibition of coronary atherosclerosis by propranolol in behaviorally predisposed monkeys fed an atherogenic diet. Circulation 1987;76:1364–1372.PubMedCrossRefGoogle Scholar
  47. 47.
    Kjekshus JK. Importance of heart rate in determining beta-blocker efficacy in acute and longterm acute myocardial infarction intervention trials. Am J Cardiol 1986;57:43F–49F.CrossRefGoogle Scholar
  48. 48.
    Teo KK, Yusuf S, Furberg CD. Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction: an overview of results from randomized controlled trials. JAMA 1993; 270:1589–1595.PubMedCrossRefGoogle Scholar
  49. 49.
    The Goteborg Metoprolol Trial in Acute Myocardial Infarction. Am J Cardiol 1984;53: 10D–50D.CrossRefGoogle Scholar
  50. 50.
    The International Collaborative Study Group. Reduction of infarct size with the early use of timolol in acute myocardial infarction. N Engl J Med 1984;310:9–15.CrossRefGoogle Scholar
  51. 51.
    Taylor SH, Silke B, Ebbutt A, et al. A long-term prevention study with oxprenolol in coronary heart disease. N Engl J Med 1982;307:1293–1301.PubMedCrossRefGoogle Scholar
  52. 52.
    Kjekshus JK. Comments on beta-blockers: heart rate reduction, a mechanism of action. Eur Heart J 1985;6(Suppl A):29–30.CrossRefGoogle Scholar
  53. 53.
    MRC Working Party. Medical Research Council trial of treatment of hypertension in older adults: principal results. Br Med J 1992;304:405–412.CrossRefGoogle Scholar
  54. 54.
    Lehtonen A. Effect of beta blockers on blood lipid profile. Am Heart J 1985;109:1192–1198.PubMedCrossRefGoogle Scholar
  55. 55.
    Eichorn EJ, Bristow MR. Medical therapy can improve the biological properties of the chronically failing heart. Circulation 1996;94:2285–2296.CrossRefGoogle Scholar
  56. 56.
    Packer M, Bristow MR, Cohn JN, for the U.S. Carvedilol Heart Failure Study Group. The effect of Carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996;334:1349–1355.PubMedCrossRefGoogle Scholar
  57. 57.
    Stadler P, Leonardi L, Riesen W, et al. Cardiovascular effects of verapamil in essential hypertension. Clin Pharmacol Ther 1987;42:85–92.CrossRefGoogle Scholar
  58. 58.
    Kailasam MT, Parmer RJ, Cervenka JH, et al. Divergent effects of dihydropyridine and phenylalkylamine calcium channel antagonist classes on autonomic function in human hypertension. Hypertension 1995;26:143–149.PubMedCrossRefGoogle Scholar
  59. 59.
    The Danish Study Group on Verapamil in Myocardial Infarction. Effect of verapamil on mortality and major events after acute myocardial infarction. The Danish Verapamil Infarction Trial II (DAVIT-II). Am J Cardiol 1990;66:779–785.CrossRefGoogle Scholar
  60. 60.
    Alderman MH, Cohen H, Rogue R, et al. Effect of long-acting and short-acting calcium antagonists on cardiovascular outcomes in hypertensive patients. Lancet 1997;349:594–598.PubMedCrossRefGoogle Scholar
  61. 61.
    The Multicenter Diltiazem Postinfarction Trial Research Group. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med 1988;319:385–392.CrossRefGoogle Scholar
  62. 62.
    Luscher TF, Clozel JP, Noll G. Pharmacology of the calcium antagonist mibefradil. J Hypertens 1997;15(Suppl 3):S11–S18.CrossRefGoogle Scholar
  63. 63.
    Kung CF, Tschudi MR, Noll G, et al. Differential effects of the calcium antagonist mibefradil in epicardial and intramyocardial coronary arteries. J Cardiovasc Pharmacol 1995;26:312–318.PubMedCrossRefGoogle Scholar
  64. 64.
    Clozel J, Ertel EA, Ertel SI. Discovery and main pharmacological properties of mibefradil (Ro 40–5967), the first selective T-type calcium channel blocker. J Hypertens 1997;15(Suppl5): S17–S25.CrossRefGoogle Scholar
  65. 65.
    Van Zwieten PA. Centrally acting antihypertensives: a renaissance of interest. Mechanisms and haemodynamics. J Hypertens 1997;15(Suppl 1):S3–S8.CrossRefGoogle Scholar
  66. 66.
    Ernsberger P, Koletsky RJ, Collins LA, et al. Sympathetic nervous system in salt-sensitive and obese hypertension: amelioration of multiple abnormalities by a central sympatholitic agent. Cardiovasc Drugs Ther 1996;10:275–282.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosen P, Ohly P, Gleichmann H. Experimental benefit of moxonidine on glucose metabolism and insulin secretion in the fructose-fed rat. J Hypertens 1997;15(Suppl 1):S31–S38.CrossRefGoogle Scholar
  68. 68.
    Ernsberger P, Friedman JE, Koletsky RJ. The Il-Imidazoline receptor: from binding site to therapeutic target in cardiovascular disease. J Hypertens 1997;15(Suppl 1):S9–S23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Paolo Palatini

There are no affiliations available

Personalised recommendations