Skip to main content

Experimental Models of Arteriovenous Grafting

  • Chapter
Book cover Vascular Disease and Injury

Abstract

Venous tissue remains the most widely used arterial conduit for the treatment of occlusive coronary and peripheral vascular disease. However, neointima formation and the accelerated rate of atherosclerosis in these grafts leads to an unacceptably high failure rate, necessitating reoperation or revision in 50% of patients within 10 yr. Other conduit systems have proven to be less reliable because of limitations in availability or higher rates of thrombogenicity. Prosthetic arteriovenous (AV) conduits have become the predominant mode of long-term access for patients who require chronic hemodialysis. Expanded polytetrafluoroethylene (ePTFE) is the most commonly used prosthetic material in the construction of these grafts. The increased use of prosthetic conduits over the past 20 yr has accompanied an increase in the ages of patients on dialysis, and an increase both in the length of time patients are on dialysis and the severity of their vascular disease (1). With the increased use of prosthetic conduits comes an increase in graft complications. Thrombosis of the graft, which is usually caused by venous outflow obstruction, is the most common complication, followed by infection and false aneurysm formation (1,2). As a result, much emphasis has been placed on improving our understanding of the pathobiological effects of venous and prosthetic grafting, with the goal of improving long-term graft patency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zibari GB, Rohr MS, Landreneau MD, et al. Complications from permanent hemodialysis vascular access. Surgery 1988; 104: 681–686.

    PubMed  CAS  Google Scholar 

  2. Seshadri R. PTFE Grafts for Hemodialysis Access: techniques for insertion and management of complications. Ann Surg 1987; 206 (5): 666–673.

    Google Scholar 

  3. Faries PL, Marin ML, Veith FJ, et al. Immunolocalization and temporal distribution of cytokine expression during the development of vein graft intimal hyperplasia in an experimental model. J Vasc Surg 1996; 24: 463–471.

    Article  PubMed  CAS  Google Scholar 

  4. Hoch JR, Stark VK, Turnispeed WD. The temporal relationship between the development of vein graft intimal hyperplasia and growth factor gene expression. J Vasc Surg 1995; 22: 51–58.

    Article  PubMed  CAS  Google Scholar 

  5. Liu SQ. Prevention of focal intimal hyperplasia in rat vein grafts by using a tissue engineering approach. Atherosclerosis 1998; 140 (2): 365–377.

    Article  PubMed  CAS  Google Scholar 

  6. Sterpetti AV, Cucina A, Randone B, et al. Growth factor production by arterial and vein grafts: relevance to coronary artery bypass grafting. Surgery 1996; 120: 460–467.

    Article  PubMed  CAS  Google Scholar 

  7. Lipman NS, Marini RP, Flecknell PA. Anesthesia and Analgesia in Rabbits. In: Kohn DF, Wixon SK, White WJ, Benson GJ, eds. Anesthesia and Analgesia in Laboratory Animals. Academic Press, 1997; 205–232.

    Google Scholar 

  8. Mann MJ, Gibbons GH, Kernoff RS, et al. Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci USA 1995; 92: 4502–4506.

    Article  PubMed  CAS  Google Scholar 

  9. Zwolak RM, Adams MC, Clowes AW. Kinetics of vein graft hyperplasia: association with tangential stress. J Vasc Surg 1987; 5: 126–136.

    PubMed  CAS  Google Scholar 

  10. Davies MG, Klyachkin ML, Dalen H, et al. Regression of intimal hyperplasia with restoration of endothelium-dependent relaxing factor-mediated relaxation in experimental vein grafts. Surgery 1993; 114: 258–271.

    PubMed  CAS  Google Scholar 

  11. Yoshida K, Sugimoto K. Morphological and cytoskeletal changes in endothelial cells of vein grafts under arterial hemodynamic conditions in vivo. J Electron Microsc 1996; 45: 428–435.

    Article  CAS  Google Scholar 

  12. Harvey RC, Paddleford RP, Popilskis SJ, et al. Anesthesia and Analgesia in Dogs, Cats, and Ferrets. In: Kohn DF, Wixon SK, White WJ, Benson GJ, eds. Anesthesia and Analgesia in Laboratory Animals. Academic Press, 1997; 257–280.

    Google Scholar 

  13. Dunlop CI, Hoyt RF. Anesthesia and Analgesia in Ruminants. In: Kohn DF, Wixon SK, White WJ, Benson GJ, eds. Anesthesia and Analgesia in Laboratory Animals. Academic Press, 1997; 281–312.

    Google Scholar 

  14. Smith AC, Ehler WJ, Swindle MM. Anesthesia and Analgesia in Swine. In: Kohn DF, Wixon SK, White WJ, Benson GJ, eds. Anesthesia and Analgesia in Laboratory Animals. Academic Press, 1997; 313–336.

    Google Scholar 

  15. Lumsden AB, Chen C, Coyle KA, et al. Nonporous silicone polymer coating of expanded polytetrafluoroethylene grafts reduces graft neointimal hyperplasia in dog and baboon models. J Vasc Surg 1996; 24: 825–833.

    Article  PubMed  CAS  Google Scholar 

  16. Drasler WJ, Wilson GJ, Stenoien MD, et al. A spun elastomeric graft for dialysis access. ASAIO Journal 1993; 39: 114–119.

    PubMed  CAS  Google Scholar 

  17. Trerotola SO, Fair JH, Davidson D, et al. Comparison of Gianturco Z stents and wallstents in hemodialysis access graft animal model. J Vasc Interv Rad 1995; 6: 387–396.

    Article  CAS  Google Scholar 

  18. Chen C, Ofenloch JC, Yiannakis YP, et al. Phosphorylcholine coating of ePTFE reduces platelet deposition and neointimal hyperplasia in arteriovenous grafts. J Surg Res 1998; 77: 119–125.

    Article  PubMed  CAS  Google Scholar 

  19. Fillinger MF, Kerns DB, Bruch D, et al. Does the end-to-end anastomosis offer a functional advantage over the end-to-side venous anastomosis in high-output grafts? J Vasc Surg 1990; 12: 676–690.

    Article  PubMed  CAS  Google Scholar 

  20. Lelah MD, Lambrecht LK, Cooper SL. A canine ex vivo series shunt for evaluating thrombus deposition on polymer surfaces. J Biomed Mat Res 1984; 18: 475–496.

    Article  CAS  Google Scholar 

  21. McCoy TJ, Wabers HD, Cooper SL. Series shunt evaluation of polyurethane vascular graft materials in chronically AV-shunted canines. J Biomed Mat Res 1990; 24: 107–129.

    Article  CAS  Google Scholar 

  22. Miller VM, Reigel MM, Hollier LH, et al. Endothelium-dependent responses in autogenous femoral veins grafted into the arterial circulation of the dog. J Clin 1987; 80: 1350–1357.

    CAS  Google Scholar 

  23. Landymore RW, MacAulay MA, Fris J. Effect of aspirin on intimal hyperplasia and cholesterol uptake in experimental bypass grafts. Can J Cardiol 1991; 7 (2): 87–90.

    PubMed  CAS  Google Scholar 

  24. Quist WC, LoGerfo FW. Prevention of smooth muscle cell phenotypic modulation in vein grafts: a histomorphometric study. J Vasc Surg 1992; 16: 225–231.

    Article  PubMed  CAS  Google Scholar 

  25. Kenney DA, Tu R, Peterson RC, et al. Performance of a longitudinally compliant PTFE vascular prosthesis in an ovine A-V fistula model. ASAIO Trans 1990; 35: M761–M763.

    Google Scholar 

  26. Neville RF, Bartorelli AL, Sidway AN, et al. Vascular stent deployment in vein bypass grafts: observations in an animal model. Surgery 1994; 116: 55–61.

    PubMed  Google Scholar 

  27. Esquivel CO, Bjorck C-G, Bergentz S-E, et al. Reduced thrombogenic characteristics of expanded polytetrafluoroethylene and polyurethane arterial grafts after heparin bonding. Surgery 1984; 95: 102–107.

    PubMed  CAS  Google Scholar 

  28. Lannerstad O, Dougan P, Bergqvist D. Effects of different graft preparation techniques on the acute thrombogenicity of autologous vein grafts. An experimental study in sheep. Eur Surg Res 1987; 19: 395–399.

    Article  PubMed  CAS  Google Scholar 

  29. Lannerstad O, Bjorck C-G, Dougan P, et al. The acute thrombogenicity of a compliant polyurethane arterial graft compared with autologous vein. An experimental study in sheep. Acta Chir Scand 1986; 152: 187–190.

    PubMed  CAS  Google Scholar 

  30. Angelini GD, Bryan AJ, Williams HMJ, et al. Distension promotes platelet and leukocyte adhesion and reduces short-term patency in pig arteriovenous bypass grafts. J Thorac Cardiovasc Surg 1990; 99: 433–439.

    PubMed  CAS  Google Scholar 

  31. Angelini GD, Izzat MB, Bryan AJ, et al. External stenting reduces early Cardiovgasc medial and neointimal thickening in a pig model of arteriovenous bypass grafting. J Thorac Cardiovasc Surg 1996; 112: 79–84.

    Article  PubMed  CAS  Google Scholar 

  32. Mehta D, George SJ, Jeremy JY, et al. External stenting reduces long-term medial and neointimal thickening and platelet derived growth factor expression in a pig model of arteriovenous bypass grafting. Nat Med 1998; 4 (2): 235–239.

    Article  PubMed  CAS  Google Scholar 

  33. Young FA. Primate Control Systems. Proc Anim Care Panel 1957; 7: 127–137.

    Google Scholar 

  34. Hanson SR, Kotze HF, Savage B, et al. Platelet interactions with dacron vascular grafts: a model of acute thrombosis in baboons. Arteriosclerosis 1985; 5: 595–603.

    Article  PubMed  CAS  Google Scholar 

  35. Hanson SR, Harker LA, Ratner BD, et al. In vivo evaluation of artificial surfaces with a nonhuman primate model of arterial thrombosis. J Lab Clin Med 1980; 95: 289–303.

    PubMed  CAS  Google Scholar 

  36. Harker LA, Hanson SR, Kirkman TR. Experimental arterial thromboembolism in baboons: mechanisms, quantitation, and pharmacologic prevention. J Clin Invest 1979; 64: 559–569.

    Article  PubMed  CAS  Google Scholar 

  37. Kotze HF, Lamprecht S, Badenhorst PN, et al. Transient interruption of arterial thrombosis by inhibition of factor Xa results in long-term antithrombotic effects in baboons. Thromb Haemostasis 1997; 77: 1137–1142.

    CAS  Google Scholar 

  38. Morishita R, Gibbons GH, Ellison KE, et al. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA 1993; 93: 1458–1464.

    Google Scholar 

  39. Mann MJ, Kernoff R, Dzau VJ. Vein graft gene therapy using E2F decoy oligonucleotides: target gene inhibition in human veins and long term resistance to atherosclerosis in rabbits. Surgical Forum Volume, 1997; 48: 242–244.

    CAS  Google Scholar 

  40. Mann MJ, Whittemore AD, Donaldson MC, et al. The PREVENT trial of vein graft genetic engineering: preliminary molecular and clinical findings. Circ 1998; 98: I321.

    Google Scholar 

  41. Wilson JM, Birinyi LK, Salomon RN, et al. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 1989; 244: 1344–1346.

    Article  PubMed  CAS  Google Scholar 

  42. Zou Y, Dietrich H, Hu Y, et al. Mouse model of venous bypass graft atherosclerosis. Amer J Path 1998; 153 (4): 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  43. Popilskis SJ, Kohn DF. Anesthesia and Analgesia in Nonhuman Primates. In: Kohn DF, Wixon SK, White WJ, Benson GJ, Anesthesia and Analgesia in Laboratory Animals. Academic Press, 1997; 233–256.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehsan, A., Mann, M.J., Dzau, V.J. (2001). Experimental Models of Arteriovenous Grafting. In: Simon, D.I., Rogers, C. (eds) Vascular Disease and Injury. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-003-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-003-2_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-169-1

  • Online ISBN: 978-1-59259-003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics