Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 161 Accesses

Abstract

The development of in vivo gene transfer technology has created a powerful new tool for the study of diseases by providing methods to overexpress or to inhibit specific local factors that are believed to contribute to a pathological process. In addition, this technology provides the opportunity for the development of novel therapeutic strategies such as gene replacement, gene correction, or gene augmentation paving the way for gene therapy as a therapeutic option for many diseases (1,2). The recombinant DNA “breakthrough” has provided us with a new and powerful approach to the questions that have intrigued and plagued humans for centuries (3). This paradigmatic shift in medicine led to a change of the view of pathophysiology from a more biochemical interpretation to the recognition of disease as a molecular event on the level of gene expression (4,5). New therapeutic approaches are moving from biochemically designed pharmaceuticals to genetically engineered tools for the treatment of diseases. The elucidation of molecular and cellular pathobiological processes of diseases has depended on (1) in vitro cell culture experiments, (2) studies of gene expression in experimental animal models or human specimens using Northern blot, reverse transcription-polymerase chain reaction (RT-PCR), or in situ hybridization, and (3) the development of transgenic animal models and the use of homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hawkins JW. A brief history of genetic therapy: gene therapy, antisense technology, and genomics. In: Wickstrom E, ed. Clinical Trials of Genetic Therapy with Antisense DNA and DNA Vectors. Marcel Dekker, New York, 1998, pp. 1–38.

    Google Scholar 

  2. von der Leyen H, Mann MJ, Dzau VJ. Gene therapy of cardiovascular disorders. In: Alexander RW, Schlant RC, Fuster V, eds. Hurst’s The Heart. McGraw-Hill, New York, 1998, pp. 213–225.

    Google Scholar 

  3. Berg P. Dissections and reconstructions of genes and chromosomes. Science 1981; 213: 296–303.

    Article  PubMed  CAS  Google Scholar 

  4. Katz AM. Molecular biology in cardiology, a paradigmatic shift. J Mol Cell Cardiol 1988; 20: 355–366.

    Article  PubMed  CAS  Google Scholar 

  5. Dzau VJ, Gibbons GH, Cooke JP, Omoigui N. Vascular biology and medicine in the. 1990s: scope, concepts, potentials, and perspectives. Circulation 1993; 87: 705–719.

    Article  PubMed  CAS  Google Scholar 

  6. Sambrook J, Fritsch EF, Maniatis T, eds. Molecular Cloning. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, pp. 16. 1–16. 81.

    Google Scholar 

  7. Feigner PL, Gader TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection: a highly efficient, lipid mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84: 7413–7417.

    Article  Google Scholar 

  8. Capecchi M. High efficiency transformation by direct microinjection of DNA into mammalian cells. Cell 1980; 22: 479–488.

    Article  PubMed  CAS  Google Scholar 

  9. Adams BA, Tanabe T, Mikami A, Numa S, Beam KG. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 1990; 346: 569–572.

    Article  PubMed  CAS  Google Scholar 

  10. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Feigner PL. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  PubMed  CAS  Google Scholar 

  11. Lin H, Parmacek MS, Morie G, Bolling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA. Circulation 1990; 82: 2217–2221.

    Article  PubMed  CAS  Google Scholar 

  12. Kitsis RN, Buttrick PM, McNally EM, Kaplan ML, Leinwand LA. Hormonal modulation of a gene injected into rat heart in vivo. Proc Natl Acad Sci USA 1991; 88: 4138–4142.

    Article  PubMed  CAS  Google Scholar 

  13. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 1990; 249: 1285–1288.

    Article  PubMed  CAS  Google Scholar 

  14. Morishita R, Gibbons GH, Ellison KE, Nakajima M, von der Leyen H, Zhang L, Kaneda Y, Dzau VJ. Intimal hyperplasia after vascular injury is inhibited by antisense cdk 2 kinase oligonucleotides. J Clin Invest 1994; 93: 1458–1464.

    Article  PubMed  CAS  Google Scholar 

  15. Peterson KR, Clegg CH, Huxley C, Josephson BM, Haugen HS, Furukawa T, Stamatoyannopoulos G. Transgenic mice containing a 248-kb yeast artificial chromosome carrying the human beta-globin locus display proper developmental control of human globin genes. Proc Natl Acad Sci USA 1993; 90: 7593–7597.

    Article  PubMed  CAS  Google Scholar 

  16. Schedl A, Montoliu L, Kelsey G, Schutz G. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 1993; 362: 258–261.

    Article  PubMed  CAS  Google Scholar 

  17. Brown WR. Mammalian artificial chromosomes. Curr Opin Gene Dey 1992; 2: 479–486.

    Article  CAS  Google Scholar 

  18. Huxley C. Mammalian artificial chromosomes: a new tool for gene therapy. Gene Ther 1994; 1: 7–12.

    PubMed  CAS  Google Scholar 

  19. Gibaldi M. What is nitric oxide and why are so many people studying it? J Clin Pharmacol 1993; 33: 488–496.

    PubMed  CAS  Google Scholar 

  20. Änggârd E. Nitric oxide: mediator, murderer, and medicine. Lancet 1994; 343: 1199–1206.

    Article  PubMed  Google Scholar 

  21. Schmidt HH, Walter U. NO at work. Cell 1994; 78: 919–925.

    CAS  Google Scholar 

  22. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 1992; 89: 6348–6352.

    Article  PubMed  CAS  Google Scholar 

  23. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell 1994; 78: 915–918.

    Article  PubMed  CAS  Google Scholar 

  24. Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH. Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci USA 1992; 89: 7611–6715.

    Article  Google Scholar 

  25. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994; 330: 1431–1438.

    Article  PubMed  CAS  Google Scholar 

  26. Davis AR. Current potential of antisense oligonucleotides as therapeutic drugs. Trends Cardiovasc Med 1994; 4: 51–55.

    Article  PubMed  CAS  Google Scholar 

  27. Phillips MI, Gyurko R. Antisense oligonucleotides: new tools for physiology. News Physiol Sci 1997; 12: 99–105.

    CAS  Google Scholar 

  28. Flanagan WM, Wagner RW. Potent and selective gene inhibition using antisense oligodeoxynucleotides. Mol Cell Biochem 1997; 172: 213–225.

    Article  PubMed  CAS  Google Scholar 

  29. Colman A Antisense strategies in cell and developmental biology. J Cell Sci 1990; 97: 399–409.

    Google Scholar 

  30. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  31. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376.

    Article  PubMed  CAS  Google Scholar 

  32. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.

    Article  PubMed  CAS  Google Scholar 

  33. Ignarro LJ. Endothlium-derived nitric oxide: actions and properties. FASEB J 1989; 3: 31–36.

    PubMed  CAS  Google Scholar 

  34. Channon KM, Blazing MA, Shetty GA, Potts KE, George SE. Adenoviral gene transfer of nitric oxide synthase: high level expression in human vascular cells. Cardiovasc Res 1996; 32: 962–972.

    PubMed  CAS  Google Scholar 

  35. Kullo IJ, Schwartz RS, Pompili VJ, Tsutsui M, Milstien S, Fitzpatrick LA, Katusic ZS, O’Brien T. Expression and function of recombinant endothelial NO synthase in coronary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 1997; 17: 2405–2412.

    Article  PubMed  CAS  Google Scholar 

  36. Dubey RK, Jackson EK, Lüscher TF. Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensinl receptors. J Clin Invest 1995; 96: 141–149.

    Article  PubMed  CAS  Google Scholar 

  37. Fang S, Sharma RV, Bhalla RC. Endothelial nitric oxide synthase gene transfer inhibits platelet-derived growth factor-BB stimulated focal adhesion kinase and paxillin phosphorylation in vascular smooth muscle. Biochem Biophys Res Commun 1997; 236: 706–711.

    Article  PubMed  CAS  Google Scholar 

  38. Tzeng E, Shears LL, Robins PD, Pitt BR, Geller DA, Watkins SC, Simmons RL, Billiar TR. Vascular gene transfer of the human inducible nitric oxide synthase: characterization of activity and effects on myointimal hyperplasia. Mol Med 1996; 2: 211–225.

    PubMed  CAS  Google Scholar 

  39. Tzeng E, Billiar TR, Robbins PD, Loftus M, Stuehr DJ. Expression of human inducible nitric oxide synthase in a tetrahydrobiopterin (H4B)-deficient cell line: H4B promotes assembly of enzyme subunits into an active dimer. Proc Natl Acad Sci USA 1995;92:11, 771–11, 775.

    Google Scholar 

  40. Tzeng E, Yoneyama T, Hatakeyama K, Shears LL, Billiar TR. Vascular inducible nitric oxide synthase gene therapy: requirement for guanosine triphosphate cyclohydrolase I. Surgery 1996; 120: 315–321.

    Article  PubMed  CAS  Google Scholar 

  41. Tzeng E, Kim YM, Pitt BR, Lizonova A, Kovesdi I, Billiar TR. Adenoviral transfer of the inducible nitric oxide synthase gene blocks endothelial cell apoptosis. Surgery 1997; 122: 255–263.

    Article  PubMed  CAS  Google Scholar 

  42. Tsao PS, McEvoy LM, Drexler H, Butcher EC, Cooke JP. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation 1994; 89: 2176–2182.

    Article  PubMed  CAS  Google Scholar 

  43. De Caterina R, Libby P, Peng HB, Thannickal J, Rajavashisth TB, Gimbrone MA, Shin WS, Liao JK. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96: 60–68.

    Article  PubMed  Google Scholar 

  44. Ross R. The pathogenesis of atherosclerosis: a perspective for the. 1990s. Nature 1993; 362: 801–809.

    Article  PubMed  CAS  Google Scholar 

  45. Buitrago R, von der Leyen H, Tsao PS, Mann MJ, Gibbons GH, Cooke JP, Dzau VJ. Superoxide generation from endothelial cells exposed to oxidized LDL can be reduced by nitric oxide synthase gene transfer in vitro (abstract). Circulation 1995; 92: I - 364.

    Google Scholar 

  46. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997; 100: 2153–2157.

    Article  PubMed  CAS  Google Scholar 

  47. Vane JR, Änggârd EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med 1990; 323: 27–36.

    Article  PubMed  CAS  Google Scholar 

  48. Mooradian DL, Hutsell TC, Keefer LK. Nitric oxide (NO) donor molecules: effect of NO release rates on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol 1995; 25: 674–678.

    Article  PubMed  CAS  Google Scholar 

  49. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation 1997; 96: 934–940.

    Article  PubMed  CAS  Google Scholar 

  50. von der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Kaneda Y, Cooke JP, Dzau VJ. Gene therapy inhibiting neointimal vascular lesion: In vivo transfer of endothelial-cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995; 92: 1137–1141.

    Article  PubMed  Google Scholar 

  51. Mann MJ, Morishita R, Gibbons GH, von der Leyen HE, Dzau VJ. DNA transfer into vascular smooth muscle using fusigenic Sendai virus (HVJ)-liposomes. Mol Cell Biochem 1997; 172: 3–12.

    Article  PubMed  CAS  Google Scholar 

  52. Clowes AW, Clowes MM, Reidy MA. Smooth muscle growth in the absence of endothelium. Lab Invest 1983; 49.

    Google Scholar 

  53. Simons M, Edelman ER, DeKeyser JL, Langer R, Rosenberg RD. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 1992; 359: 67–70.

    Article  PubMed  CAS  Google Scholar 

  54. Morishita R, Gibbons GH, Ellison KE, Nakajima M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci USA 1993; 90: 8474–8478.

    Article  PubMed  CAS  Google Scholar 

  55. Mann MJ, Gibbons GH, Kernoff RS, Diet FD, Tsao PS, Cooke JP, Kaneda Y, Dzau VJ. Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci USA 1995; 92: 4502–4506.

    Article  PubMed  CAS  Google Scholar 

  56. Dzau VJ, Horiuchi M. In vivo gene transfer and gene modulation in hypertension research. Hypertension 1996; 28: 1132–1137.

    Article  PubMed  CAS  Google Scholar 

  57. Janssens S, Flaherty D, Nong Z, Varenne O, van Pelt N, Haustermans C, Zoldhelyi P, Gerard R, Collen D. Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation 1998; 97: 1274–1281.

    Article  PubMed  CAS  Google Scholar 

  58. Varenne O, Pislaru S, Gillijns H, Van Pelt N, Gerard RD, Zoldhelyi P, Van de Werf F, Collen D, Janssens SP. Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 1998; 98: 919–926.

    Article  PubMed  CAS  Google Scholar 

  59. Kullo IJ, Mozes G, Schwartz RS, Gloviczki P, Tsutsui M, Katusic ZS, O’Brien T Enhanced endothelium-dependent relaxations after gene transfer of recombinant endothelial nitric oxide synthase to rabbit carotid arteries. Hypertension 1997; 30: 314–320.

    Article  PubMed  CAS  Google Scholar 

  60. Kullo IJ, Mozes G, Schwartz RS, Gloviczki P, Crotty TB, Barber DA, Katusic ZS, O’Brien T. Adventitial gene transfer of recombinant endothelial nitric oxide synthase to rabbit carotid arteries alters vascular reactivity. Circulation 1997; 96: 2254–2261.

    Article  PubMed  CAS  Google Scholar 

  61. Chen AF, O’Brien T, Tsutsui M, Kinoshita H, Pompili VJ, Crotty TB, Spector DJ, Katusic ZS. Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery. Circ Res 1997; 80: 327–335.

    Article  PubMed  CAS  Google Scholar 

  62. Ooboshi H, Chu Y, Rios CD, Faraci FM, Davidson BL, Heistad DD. Altered vascular function after adenovirus-mediated overexpression of endothelial nitric oxide synthase. Am J Physiol 1997; 273 (1 Pt 2): H265 - H270.

    PubMed  CAS  Google Scholar 

  63. Cable DG, O’Brien T, Kullo IJ, Schwartz RS, Schaff HV, Pompili VJ. Expression and function of a recombinant endothelial nitric oxide synthase gene in porcine coronary arteries. Cardiovasc Res 1997; 35: 553–559.

    Article  PubMed  CAS  Google Scholar 

  64. Cable DG, O’Brien T, Schaff HV, Pompili VJ. Recombinant endothelial nitric oxide synthase–transduced human saphenous veins: gene therapy to augment nitric oxide production in bypass conduits. Circulation 1997;96:11–173–1I–178.

    Google Scholar 

  65. Matsumoto T, Komori K, Yonemitsu Y, Morishita R, Sueishi K, Kaneda Y, Sugimachi K. Hemagglutinating virus ofJapan-liposome-mediated gene transfer of endothelial cell nitric oxide synthase inhibits intimai hyperplasia of canine vein grafts under conditions of poor runoff. J Vasc Surg 1998; 27: 135–144.

    Article  PubMed  CAS  Google Scholar 

  66. Davis SF, Yeung AC, Meredith IT, Charbonneau F, Ganz P, Selwyn AP, Anderson TJ. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation 1996; 93: 457–462.

    Article  PubMed  CAS  Google Scholar 

  67. Shears LL, Kawaharada N, Tzeng E, Billiar TR, Watkins SC, Kovesdi I, Lizonova A, Pham SM. Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis. J Clin Invest 1997; 100: 2035–2042.

    Article  PubMed  CAS  Google Scholar 

  68. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 1995; 182: 1683–1693.

    Article  PubMed  CAS  Google Scholar 

  69. Peresleni T, Noiri E, Bahou WF, Goligorsky MS. Antisense oligodeoxynucleotides to inducible NO synthase rescue epithelial cells from oxidative stress injury. Am J Physiol 1996; 270: F971 - F977.

    PubMed  CAS  Google Scholar 

  70. Kolyada AY, Savikovsky N, Madias NE. Transcriptional regulation of the human iNOS gene in vascular-smooth-muscle cells and macrophages: evidence for tissue specificity. Biochem Biophys Res Commun 1996; 220: 600–605.

    Article  PubMed  CAS  Google Scholar 

  71. Cartwright JE, Johnstone AP, Whitley GSJ. Inhibition of nitric oxide synthase by antisense techniques: investigations of the roles of NO produced by murine macrophages. Br J Pharmacol 1997; 120: 146–152.

    Article  PubMed  CAS  Google Scholar 

  72. Noiri E, Peresleni T, Miller F, Goligorsky MS. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 1996; 97: 2377–2383.

    Article  PubMed  CAS  Google Scholar 

  73. Rappaport J, Hanss B, Kopp JB, Copeland TD, Bruggeman LA, Coffman TM, Klotman PE. Transport of phosphorothioate oligonucleotides in kidney: implications for molecular therapy. Kidney Int 1995; 47: 1462–1469.

    Article  PubMed  CAS  Google Scholar 

  74. Thomae KR, Geller DA, Billiar TR, Davies P, Pitt BR, Simmons RL, Nakayama DK. Antisense oligodeoxynucleotide to inducible nitric oxide synthase inhibits nitric oxide synthesis in rat pulmonary artery smooth muscle cells in culture. Surgery 1993; 114: 272–277.

    PubMed  CAS  Google Scholar 

  75. Janssens SP, Bloch KD, Nong Z, Gerard RD, Zoldhelyi P, Collen D. Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats. J Clin Invest 1996; 98: 317–324.

    Article  PubMed  CAS  Google Scholar 

  76. Pepke-Zaba J, Higgenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 1991; 338: 1173, 1174.

    Google Scholar 

  77. Gödecke A, Decking UK, Ding Z, Hirchenhain J, Bidmon HJ, Gödecke S, Schrader J. Coronary hemodynamics in endothelial NO synthase knockout mice. Circulation 1998; 82: 186–194.

    Article  Google Scholar 

  78. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377: 239–242.

    Article  PubMed  CAS  Google Scholar 

  79. Koglin J Glysing-Jensen T, Mudgett JS, Russell ME. Exacerbated transplant arteriosclerosis in inducible nitric oxide-deficient mice. Circulation 1998;97:2059–2065.

    Google Scholar 

  80. Schaffer MR, Tantry U, Gross SS, Wasserberg HL, Barbul A. Nitric oxide regulates wound healing. J Surg Res 1996; 63: 237–240.

    Article  PubMed  CAS  Google Scholar 

  81. Yamasaki K, Edington HD, McClosky C, Tzeng E, Lizonova E, Kovesdi I, Steed DL, Billiar TR. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest 1998; 101: 967–971.

    Article  PubMed  CAS  Google Scholar 

  82. Hamilton TA, Major JA, Chisolm GM. The effects of oxidized low density lipoproteins on inducible mouse macrophage gene expression are gene and stimulus dependent. J Clin Invest 1995; 95: 2020–2027.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

von der Leyen, H.E. (2000). Gene Therapy and Nitric Oxide. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_28

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics