Skip to main content

Coating Arterial and Blood-Contacting Surfaces with NO-Donating Compounds

  • Chapter
Nitric Oxide and the Cardiovascular System

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 157 Accesses

Abstract

Platelet activity is known to enhance the progression of coronary atherosclerosis and to precipitate platelet-mediated coronary thrombosis and acute ischemic events (1). Over the past 30 years, considerable research has been conducted to examine ways by which to inhibit abnormal platelet interaction with acutely damaged arterial walls, stents, and synthetic arterial grafts (1–3). These interactions contribute to the development of atherosclerosis, arterial thrombosis, and restenosis from intimal hyperplasia after interventional procedures, such as angioplasty or atherectomy, and also leads to failure of synthetic vascular grafts (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vogel JH. On passivation and stenosis: Restenosis in coronary artery disease and percutaneous trans-luminal coronary angioplasty. Am J Cardiol 1987; 60: 68B - 69B.

    Article  PubMed  CAS  Google Scholar 

  2. Leonard EF, Turitto VT, Vroman L, eds. Blood in Contact with Natural and Artificial Surfaces. New York Academy of Sciences, New York, 1987.

    Google Scholar 

  3. Fuster V, Stein B, Halperin JL, Chesebro JH. Antithrombotic therapy in cardiac disease: an approach based on pathogenesis and risk stratification. Am J Cardiol 1990; 65: 38C - 44C.

    Article  PubMed  CAS  Google Scholar 

  4. Hennekens CH, Burin JE, Sandercock P, Collins R, Peto R. Aspirin and other antiplatelet agents in the secondary and primary prevention of cardiovascular disease. Circulation 1989; 80: 749–756.

    Article  PubMed  CAS  Google Scholar 

  5. Faxon DP, ed. Practical Angioplasty. Raven Press, New York, 1993.

    Google Scholar 

  6. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.

    Article  PubMed  CAS  Google Scholar 

  7. Groves PH, Penny WJ, Cheadle HA, Lewis MJ. Exogenous nitric oxide inhibits in vivo platelet adhesion following balloon angioplasty. Cardiovasc Res 1992; 26: 615–619.

    Article  PubMed  CAS  Google Scholar 

  8. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987; 2: 1057, 1058.

    Google Scholar 

  9. Lam JY, Chesebro JH, Fuster V. Platelets, vasoconstriction and nitroglycerin during arterial wall injury. A new antithrombotic role of an old drug. Circulation 1988; 78: 712–716.

    Article  PubMed  CAS  Google Scholar 

  10. DeCaterina R, Giannessi D, Bernini W, Lazzerini G, Mazzone A, Lombardi M. In vivo actions of organic nitrates on platelet function in humans. Z Kardiol 1989; 78: 56–60.

    CAS  Google Scholar 

  11. Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol 1986; 88: 411–415.

    Article  PubMed  CAS  Google Scholar 

  12. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  13. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–4655.

    Article  PubMed  CAS  Google Scholar 

  14. Radomski MW, Palmer RM, Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 1990; 87: 5193–5197.

    Article  PubMed  CAS  Google Scholar 

  15. Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 1987; 92: 181–187.

    Article  PubMed  CAS  Google Scholar 

  16. Stamler JS, Loscalzo J. The antiplatelet effects of organic nitrates and related nitroso-compounds in vitro and in vivo and their relevance to cardiovascular disorders. J Am Coll Cardiol 1991; 18: 1529–1536.

    Article  PubMed  CAS  Google Scholar 

  17. Folts JD, Stamler JS, Loscalzo J. Intravenous nitroglycerin infusion inhibits cyclic blood flow responses caused by periodic platelet thrombus formation in stenosed canine coronary arteries. Circulation 1991; 83: 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  18. Rovin JD, Stamler JS, Loscalzo J, Folts JD. Sodium nitroprusside, an endothelium relaxing factor congener, increases platelet cyclic GMP levels and inhibits epinephrine-exacerbated in vivo platelet thrombus formation in stenosed canine coronary arteries. J Cardiovasc Pharmacol 1993; 22: 626–631.

    Article  PubMed  CAS  Google Scholar 

  19. Vita JA, Keaney JF, Loscalzo J. Endothelial dysfunction in vascular disease. In: Loscalzo J, Creager MA, Dzau VJ, eds. Vascular Medicine: A Textbook of Vascular Biology and Diseases. Little, Brown, Boston, MA, 1996, pp. 245, 246.

    Google Scholar 

  20. Korbut R, Lidbury PS, Vane JR. Prolongation of fibrinolytic activity of tissue plasminogen activator by nitrovasodialators. Lancet 1990; 335: 669.

    Article  PubMed  CAS  Google Scholar 

  21. Chester AH, O’Neil GS, Moncada S, Tadjkarimi S, Yacoub MH. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 1990; 336: 897–900.

    Article  PubMed  CAS  Google Scholar 

  22. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999;340:115–126. 22a. Gruentzig AR, Senning A, Siegenthaler WE. Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 1979; 301: 61–68.

    Google Scholar 

  23. Jonasson L, Holm J, Hansson GK. Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc Natl Acad Sci USA 1988; 85: 2303–2306.

    Article  PubMed  CAS  Google Scholar 

  24. Gravanis MB, Roubin GS. Histopathologic phenomena at the site of percutaneous transluminal coronary angioplasty: the problem of restenosis. Hum Pathol 1989; 20: 477–485.

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz L, Lesperance J, Bourassa MG, Eastwood C, Kazim F, Arafah M, et al. The role of antiplatelet agents in modifying the extent of restenosis following percutaneous transluminal coronary angioplasty. Am Heart J 1990; 119: 232–236.

    Article  PubMed  CAS  Google Scholar 

  26. Desmet W, Vrolix M, DeScheerder I, VanLierde J, Willems JL, Piessens J. Angiotensin-converting enzyme inhibition with fosinopril sodium in the prevention of restenosis after coronary angioplasty. Circulation 1994; 89: 385–392.

    Article  PubMed  CAS  Google Scholar 

  27. Ruygrok PN, Serruys PW. Intracoronary stenting: from concept to custom. Circulation 1996; 94: 882–890.

    Article  PubMed  CAS  Google Scholar 

  28. Goldberg S, Savage MP, Fischman DL. Coronary artery stents. Lancet 1995; 345: 1523, 1524.

    Google Scholar 

  29. DeFeyter PJ, DeJaegere PP, Murphy ES, Serruys PW. Abrupt coronary artery occlusion during percutaneous transluminal coronary angioplasty. Am Heart J 1992; 123: 1633–1642.

    Article  CAS  Google Scholar 

  30. Hirshfeld JW Jr, Schwartz JS, Jugo R, MacDonald RG, Goldberg S, Savage MP, et al. Restenosis after coronary angioplasty: a multivariate statistical model to relate lesion and procedure variables to restenosis. J Am Coll Cardiol 1991; 18: 647–656.

    Article  PubMed  Google Scholar 

  31. Roubin GS, Cannon AD, Agrawal SK, Macander PJ, Dean LS, Baxley WA, et al. Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation 1992; 85: 916–927.

    Article  PubMed  CAS  Google Scholar 

  32. Fischman DL, Leon MB, Bairn DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 1994; 331: 496–501.

    Article  PubMed  CAS  Google Scholar 

  33. Schomig A, Neumann F, Kastrati A, Schuhlen H, Blasini R, Hadamitzky M, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary artery stents. N Engl J Med 1996; 334: 1084–1089.

    Article  PubMed  CAS  Google Scholar 

  34. Veith H, Gupta SK, Ascer I. Six-year multicenter comparison of autologous vein and expanded PTFE grafts in infrainguinal reconstruction. J Vasc Surg 1986; 3: 104–107.

    PubMed  CAS  Google Scholar 

  35. Christenson JT, Al-Huneidi W, Owunwanne A. Early platelet deposition and distribution in various graft materials. Surg Res Corn 1987; 1: 151–158.

    Google Scholar 

  36. Lincoff AM, Topol EJ, Ellis SG. Local drug delivery for the prevention of restenosis. Fact, fancy, and future. Circulation 1994; 90: 2070–2084.

    Article  PubMed  CAS  Google Scholar 

  37. Van Der Giessen WJ, Van Beusekom HM, Van Houten CD, Van Woerkens LJ, Verdouw PD, Serruys PW. Coronary stenting with polymer-coated and uncoated self-expanding endoprotheses in pigs. Coron Artery Dis 1992; 3: 631–640.

    Article  Google Scholar 

  38. Waksman R, Robinson KA, Crocker IR, Gravanis MB, Palmer SJ, Wang C, et al. Intracoronary radiation before stent implantation inhibits neointima formation in stented porcine coronary arteries. Circulation 1995; 92: 1383–1386.

    Article  PubMed  CAS  Google Scholar 

  39. Dichek DA, Neville RF, Zwiebel JA, Freeman SM, Leon MB, Anderson WF. Seeding of intravasculara stents with genetically engineered endothelial cells. Circulation 1989; 80: 1347–1353.

    Article  PubMed  CAS  Google Scholar 

  40. Holmes DR Jr, Camrud AR, Jorgenson MA, Edwards WD, Schwartz RS. Polymeric stenting in the porcine coronary artery model: differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents. J Am Coll Cardiol 1994; 24: 525–531.

    Article  PubMed  CAS  Google Scholar 

  41. Hardhammar PA, van Beusekom HM, Emanuelsson HU, Hofma SH, Albertsson PA, Verdouw PD, Boersma E, Serruys PW, van der Giessen WJ. Reduction in thrombotic events with heparin-coated Palmaz-Schatz stents in normal porcine coronary arteries. Circulation 1996; 93: 423–430.

    Article  PubMed  CAS  Google Scholar 

  42. Park K, Mosher DF, Cooper SL. Acute surface-induced thrombosis in the canine ex vivo model: importance of protein composition of the initial monolayer and platelet activation. J Biomed Mater Res 1986; 20: 589–612.

    Article  PubMed  CAS  Google Scholar 

  43. Brash JL. Protein interactions with artificial surfaces. In: Salzman EW, ed. Interaction of the Blood with Natural and Artificial Surfaces. Marcel Dekker, New York, 1981, p. 37.

    Google Scholar 

  44. Brynda E, Houska M, Pokorna Z, Cepalova NA, Moiseev YV, Kalal J. Irreversible adsorption of human serum albumin onto polyethylene film. J Bioeng 1978; 2: 411–418.

    PubMed  CAS  Google Scholar 

  45. Ihlenfeld JV, Cooper SL. Transient in vivo protein adsorption onto polymeric biomaterials. J Biomed Mater Res 1979; 13: 577–591.

    Article  PubMed  CAS  Google Scholar 

  46. Ishikawa Y, Sasakawa S, Takase M, Osada Y. Effect of albumin immobilization by plasma polymerization on platelet reactivity. Thromb Res 1984; 35: 193–202.

    Article  PubMed  CAS  Google Scholar 

  47. Mustard JF, Groves HM, Kinlough-Rathbone RL, Packham MA. Thrombogenic and nonthrombogenic biological surfaces. In: Leonard EF, Turitto VT, Vroman L, eds. Blood in Contact with Natural and Artificial Surfaces. NY Academy of Sciences, New York, 1987, pp. 12–21.

    Google Scholar 

  48. Salzman EW, ed. Interaction of the Blood with Natural and Artificial Surfaces. Marcel Dekker, New York, 1981.

    Google Scholar 

  49. Whiffen JD, Gott VL. In vivo adsorption of heparin by graphite-benzalkonium surfaces. Surgery 1965; 121: 287–290.

    CAS  Google Scholar 

  50. Gott VL, Daggett RL, Young WP. Development of a carbon-coated, central hinging, bileaflet valve. Ann Thorac Surg 1989; 48: S28 - S30.

    Article  PubMed  CAS  Google Scholar 

  51. Mohammad SF, Olsen DB. Immobilized albumin-immunoglobulin G for improved hemocompatibility of biopolymers. ASAIO Trans 1989; 35: 384–387.

    Article  PubMed  CAS  Google Scholar 

  52. Riccitelli SD, Schlatterer RG, Hendrix JA, Williams GB, Eberhart RC. Albumin coatings resistant to shear-induced desorption. Trans Am Soc Artif Intern Organs 1985; 31: 250–256.

    PubMed  CAS  Google Scholar 

  53. Ryu G, Han D, Kim Y, Min B. Albumin immobilized polyurethane and its blood compatibility. ASAIO J 1992; 38: M644 - M648.

    Article  PubMed  CAS  Google Scholar 

  54. Hennink WE, Dost L, Feijen J, Kim SW. Interaction of albumin-heparin conjugate preadsorbed surfaces with blood. Trans Am Soc Artif Intern Organs 1983; 29: 200–205.

    PubMed  CAS  Google Scholar 

  55. Salzman EW, Merrill EW, Binder F, Wolf CW, Ashford TP, Austen WG. Protein-platelet interaction on heparinized surfaces. J Biomed Mater Res 1969; 3: 69–81.

    Article  PubMed  CAS  Google Scholar 

  56. Goosen MF, Sefton MV. Heparin styrene-butadiene-styrene elastomers. J Biomed Mater Res 1979; 13: 347–364.

    Article  PubMed  CAS  Google Scholar 

  57. Larsson R, Eriksson JC, Lagergren H, Olsson P. Platelet and plasma coagulation compatibility of heparinized and sulphated surfaces. Thromb Res 1979; 15: 157–167.

    Article  PubMed  CAS  Google Scholar 

  58. Rembaum A, Yen SP, Ingram J, Newton JF, Hu CL, Frasher WG, et al. Platelet adhesion to heparin bonded and heparin free surfaces. Biomater Med Devices Artif Organs 1973; 1: 99–119.

    PubMed  CAS  Google Scholar 

  59. Groves PH, Lewis MJ, Cheadle HA, Penny WJ. SIN-1 reduces platelet adhesion and platelet thrombus formation in a porcine model of balloon angioplasty. Circulation 1993; 87: 590–597.

    Article  PubMed  CAS  Google Scholar 

  60. Lablanche JM, Grollier G, Lusson JR, Bassand JP, Drobinski G, Bertrand B, et al. Effect of the direct nitric oxide donors linsidomine and molsidomine on angiographic restenosis after coronary balloon angioplasty. The ACCORD study. Circulation 1997; 95: 83–89.

    Article  PubMed  Google Scholar 

  61. McNamara DB, Bedi B, Aurora H, Tena L, Ignarro LJ, Kadowitz PJ, et al. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem Biophys Res Commun 1993; 193: 291–296.

    Article  PubMed  CAS  Google Scholar 

  62. Taguchi J, Junichi A, Takuwa Y, Kurokawa K. L-Arginine inhibits neointimal formation following balloon injury. Life Sci 1993; 53: 387–392.

    Article  Google Scholar 

  63. von der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 1995; 92: 1137–1141.

    Article  PubMed  Google Scholar 

  64. Pulfer SK, Ott D, Smith DJ. Incorporation of nitric oxide-releasing crosslinked polyethyleneimine microspheres into vascular grafts. J Biomed Mater Res 1997; 37: 182–189.

    Article  PubMed  CAS  Google Scholar 

  65. Smith DJ, Chakravarthy D, Pulfer S, Simmons ML, Harabie JA, Citro ML, et al. Nitric oxide releasing polymers containing the [N(0)NO’]-group. J Med Chem 1996; 39: 1148–1156.

    Article  PubMed  CAS  Google Scholar 

  66. Amiji M, Park H, Park K. Study on the prevention of surface induced platelet activation by albumin coating. J Biomater Sci Polymer 1992; 3: 375–388.

    Article  CAS  Google Scholar 

  67. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992; 89: 444–448.

    Article  PubMed  CAS  Google Scholar 

  68. Marks DS, Vita JA, Folts JD, Keaney JF Jr, Welch GN, Loscalzo J. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J Clin Invest 1995; 96: 2630–2638.

    Article  PubMed  CAS  Google Scholar 

  69. Folts JD. Coating Pahnaz-Schatz stents with a unique NO donor reduces the need for post-procedure anticoagulation when placed in pig carotid arteries. J Invest Med 1995; 43: 476A.

    Google Scholar 

  70. Folts JD, Keaney JF Jr, Loscalzo J. Local delivery of nitrosated albumin to stenosed and damaged coronary arteries inhibits platelet deposition and thrombosis. J Am Coll Cardiol 1995;Special Edition: 377A.

    Google Scholar 

  71. Keaney JF Jr, Stamler JS, Scharfstein J, Folts JD, Loscalzo J. NO forms a stable adduct with serum albumin that has potent antiplatelet properties in vivo. Clin Res 1992; 40: 194A.

    Google Scholar 

  72. Maalej N, Albrecht R, Loscalzo J, Folts JD. The potent platelet inhibitory effect of S-nitrosated albumin coating of artificial surfaces. J Am Coll Cardiol 1999; 33: 1408–1414.

    Article  PubMed  CAS  Google Scholar 

  73. Bertrand OF. Biocompatibility aspects of new stent technology. J Am Coll Cardiol 1998; 32: 562–571.

    Article  PubMed  CAS  Google Scholar 

  74. De Scheerder IK. Wang K, Wilczek K, Meuleman D, Van Amsterdam R, Vogel G, et al. Experimental study of thrombogenicity and foreign body reaction induced by heparin-coated coronary stents. Circulation 1997; 95: 1549–1553.

    Article  PubMed  Google Scholar 

  75. Loscalzo J. N-Acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J Clin Invest 1985; 76: 703–708.

    Article  PubMed  CAS  Google Scholar 

  76. Keaney JF Jr, Simon DI, Stamler JS, Jaraki O, Scharfstein J, Vita JA, et al. NO’ forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Invest 1993; 91: 1582–1589.

    Article  PubMed  CAS  Google Scholar 

  77. Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3’,5’-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 1981; 57: 946–955.

    PubMed  CAS  Google Scholar 

  78. Nakashima S, Tohmatsu T, Hattori H, Okano Y, Nozawa Y. Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin stimulated human platelet. Biochem Biophys Res Commun 1986; 135: 1099–1104.

    Article  PubMed  CAS  Google Scholar 

  79. Morgan RO, Newby AC. Nitroprusside differentially inhibits ADP-stimulated calcium influx and mobilization in human platelets. Biochem J 1989; 258: 447–454.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Folts, J.D., Loscalzo, J. (2000). Coating Arterial and Blood-Contacting Surfaces with NO-Donating Compounds. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics