Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 160 Accesses

Abstract

Although hypertension has been studied extensively for decades, its etiology remains an enigma. An increase in systemic intravascular pressure or systemic hypertension can result from changes in two basic hemodynamic parameters: (1) a decrease in intravascular size as occurs during vasoconstriction, or (2) an increase in intravascular volume. The latter may occur as a result of either increased salt and water retention or cardiac output. Nitric oxide (NO·) has emerged as a critically important agent in the regulation of vascular tone, renal fluid and volume regulation, and cardiac function. Consequently, an alteration in NO· action on vessel tone, volume regulation, or heart function can lead to hypertension (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 1992; 90: 278–281.

    Article  PubMed  CAS  Google Scholar 

  2. Lahera V, Khraibi AA. Nitric oxide inhibition in hypertension. NIPS 1994; 9: 268–274.

    Google Scholar 

  3. Moreno H Jr, Metze K, Bento AC, Antunes E, Zatz R, de Nucci G. Chronic nitric oxide inhibition as a model of hypertensive heart muscle disease. Basic Res Cardiol 1996; 91: 248–255.

    Article  PubMed  Google Scholar 

  4. Rees DD, Palmer RMJ, Moncado S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 1989; 86: 3375–3378.

    Article  PubMed  CAS  Google Scholar 

  5. Shesely EG, Maeda M, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1996;93:13, 176–13, 181.

    Google Scholar 

  6. Tolins JP, Palmer RMJ, Moncada S, Raij L. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses. Am J Physiol 1990; 258: H655 - H662.

    PubMed  CAS  Google Scholar 

  7. Kourembanas S, McQuillan LP, Leung GK, Faller DV. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest 1993; 92: 99–104.

    Article  PubMed  CAS  Google Scholar 

  8. Busse R, Müisch A, Fleming I, Hecker M. Mechanisms of nitric oxide release from the vascular endothelium. Circulation 1993; 87 (Suppl): V18 - V25.

    CAS  Google Scholar 

  9. Zhang H, Chobanian AV, Brecher P. Aortic adventitia is a source of nitric oxide: a possible paracrine role. Hypertension 1995; 25: 33.

    CAS  Google Scholar 

  10. Yang X, Chowdhury N, Cai B, Brett J, Marboe C, Sciacca RR, Michler RE, Cannon PJ. Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest 1994; 94: 714–721.

    Article  PubMed  CAS  Google Scholar 

  11. Bruno L, Azar S, Weller D. Abscence of a pre-hypertensive stage in post-natal Kyoto hypertensive rats. Jpn Heart J 1979; 20 (Suppl): 90–92.

    Google Scholar 

  12. Smith TL, Hutchins PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension 1979; 1: 508–517.

    Article  PubMed  CAS  Google Scholar 

  13. Hayakawa H, Raij L. The link among nitric oxide synthase activity, endothelial function, and aortic and ventricular hypertrophy in hypertension. Hypertension 1997; 29: 235–241.

    Article  PubMed  CAS  Google Scholar 

  14. Dworkin LD, Feiner HD. Glomerular injury in uninephrectomized spontaneously hypertensive rats. A consequence of glomerular capillary hypertension. J Clin Invest 1986; 77: 797–809.

    Article  PubMed  CAS  Google Scholar 

  15. Arnal JF, Battle T, Ménard J, Michel JB. The vasodilatory effect of endogenous nitric oxide is a major counter-regulatory mechanism in the spontaneously hypertensive rat. J Hypertens 1993; 11: 945–950.

    Article  PubMed  CAS  Google Scholar 

  16. Chen HI, Hu CT. Endogenous nitric oxide on arterial hemodynamics: a comparison between normotensive and hypertensive rats. Am J Physiol 1997; 273: H1816 - H1823.

    PubMed  CAS  Google Scholar 

  17. Fozard JR, Part M-L. Hemodynamic responses to NP-monomethyl-L-arginine in spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Pharmacol 1991; 102: 823–826.

    Article  PubMed  CAS  Google Scholar 

  18. Minami N, Imai Y, Hasimoto J, Abe K. Contribution of vascular nitric oxide to basal blood pressure in conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Clin Sci 1995; 89: 177–182.

    PubMed  CAS  Google Scholar 

  19. Matsuoka H, Itoh S, Kimoto M, Kohno K, Tamai O, Wada Y, et al. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 29: 1997; 242–247.

    Article  PubMed  CAS  Google Scholar 

  20. Mayhan WG, Faraci FM, Heistad DD. Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 1987; 253: H1435 - H1440.

    PubMed  CAS  Google Scholar 

  21. Mayhan WG. Impairment of endothelium-dependent dilation of basilar artery during chronic hypertension. Am J Physiol 1990; 259: H1455 - H1462.

    PubMed  CAS  Google Scholar 

  22. Lin K-F, Chao L, Chao J. Prolonged reduction of high blood pressure with human nitric oxide synthase gene delivery. Hypertension 1997; 30: 307–313.

    Article  PubMed  CAS  Google Scholar 

  23. Chou T-C, Yen M-H, Li C-Y, Ding Y-A. Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 1998; 31: 643–648.

    Article  PubMed  CAS  Google Scholar 

  24. Huang A, Koller A. Both nitric oxide and prostaglandin-mediated responses are impaired in skeletal muscle arterioles of hypertensive rats. J Hypertens 1996; 14: 887–895.

    Article  PubMed  CAS  Google Scholar 

  25. Crabos M, Coste P, Paccalin M, Tariosse L, Daret D, Besse P, Bonoron-Adèle S. Reduced basal NO-mediated dilation and decreased endothelial NO-synthase expression in coronary vessels of spontaneously hypertensive rats. J Mol Cell Cardiol 1997; 29: 55–65.

    Article  PubMed  CAS  Google Scholar 

  26. Fujita H, Takeda K, Nakamura K, Uchida A, Takenaka K, Itoh H, Nakata T, Sasaki S, Nakagawa M. Role of nitric oxide in impaired coronary circulation and improvement by angiotensin II receptor antagonist in spontaneously hypertensive rats. Clin Exp Pharm Physiol 1995;(Suppl 1 ): S148 - S150.

    Google Scholar 

  27. Dohi Y, Thiel MA, Bühler FR, Löscher TF. Activation of endothelial L-arginine pathway in resistance arteries. Effect of age and hypertension. Hypertension 1990; 16: 170–179.

    Article  PubMed  CAS  Google Scholar 

  28. Li J-S, Deng LY, Grove K, Deschepper CF, Schiffrin EL. Comparison of effect of endothelin antagonism and angiotensin-converting enzyme inhibition on blood pressure and vascular structure in spontaneously hypertensive rats treated with /VG-nitro-L-arginine methyl ester. Correlation with topography of vascular endothelin-1 gene expression. Hypertension 1996; 28: 188–195.

    Article  PubMed  CAS  Google Scholar 

  29. Matrougui K, Maclouf J, Lévy BI, Henrion D. Impaired nitric oxide-and prostaglandin-mediated responses to flow in resistance arteries of hypertensive rats. Hypertension 1997; 30: 942–947.

    Article  PubMed  CAS  Google Scholar 

  30. Gil-Longo J, Fernandez-Grandal D, Alvarez M, Sieira M, Orallo F. Study of in vivo and in vitro resting vasodilator nitric oxide tone in normotensive and genetically hypertensive rats. Eur J Pharmacol 1996; 310: 175–183.

    Article  PubMed  CAS  Google Scholar 

  31. Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 1983; 5: 881–886.

    Article  PubMed  CAS  Google Scholar 

  32. Dohi Y, Kojima M, Sato K. Endothelial modulation of contractile responses in arteries fron hypertensive rats. Hypertension 1996; 28: 732–737.

    Article  PubMed  CAS  Google Scholar 

  33. Tschudi MR, Mesaros S, Luscher T, and Malinski T. Direct in situ measurement of nitric oxide in mesenteric resistance arteries: increased decomposition by superoxide in hypertension. Hypertension 1996; 27: 32–35.

    Article  PubMed  CAS  Google Scholar 

  34. Nakazono K, Watanabe N, Matsuno K, Sasaki J, Sato T, Inoue M. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci USA 1991;88:10, 045–10, 048.

    Google Scholar 

  35. Ledingham JM, Laverty R. Nitric oxide synthase inhibition with omega-nitro-L-arginine methyl ester affects blood pressure and cardiovascular structure in the genetically hypertensive rat strain. Clin Exp Pharmacol Physiol 1997; 24: 433–435.

    Article  PubMed  CAS  Google Scholar 

  36. Carretero OA, Gulati OP. Effects of angiotensin antagonist in rats with acute, subacute, and chronic two-kidney renal hypertension. J Lab Clin Med 1978; 91: 264–271.

    PubMed  CAS  Google Scholar 

  37. Martinez-Maldonado M. Pathophysiology of renovascular hypertension. Hypertension 1991; 17: 707–719.

    Article  PubMed  CAS  Google Scholar 

  38. Averill DB, Ferrario CM, Tarazi RC, Sen S, Bajibus R. Cardiac performance in rats with renal hypertension. Circ Res 1976; 38: 280–288.

    Article  PubMed  CAS  Google Scholar 

  39. Cabral AM, Antonio A, Moyses MR, Vasquez EC. Left ventricular hypertrophy differences between male and female renovascular hypertensive rats. Braz J Med Biol Res 1988; 21: 633–635.

    PubMed  CAS  Google Scholar 

  40. Delacrétaz E, Zanchi A, Nussberger J, Hayoz D, Aubert J-F, Brunner HR, Waeber B. Chronic nitric oxide synthase inhibition and carotid artery distensibility in renal hypertensive rats. Hypertension 1995; 26: 332–336.

    Article  PubMed  Google Scholar 

  41. Wilson C, Byrom FB. The vicious cycle in chronic Bright’s disease. Experimental evidence from the hypertensive rat. Q J Med 1941; 34: 65–93.

    Google Scholar 

  42. Thurston H, Bing RF, Swales JD. Reversal of two-kidney one clip renovascular hypertension in the rat. Hypertension 1980; 2: 256–265.

    Article  PubMed  CAS  Google Scholar 

  43. Nakamoto H, Ferrario CM, Fuller SB, Robaczewski DL, Winicov E, Dean RH. Angiotensin-(1–7) and nitric oxide interaction in renovascular hypertension. Hypertension 1995; 25: 796–802.

    Article  PubMed  CAS  Google Scholar 

  44. Sigmon DH, Beierwaltes WH. Influence of nitric oxide in the chronic phase of two-kidney, one clip renovascular hypertension. Hypertension 1998; 31: 649–656.

    Article  PubMed  CAS  Google Scholar 

  45. Sigmon DH, Beierwaltes WH. Renal nitric oxide and angiotensin II interaction in renovascular hypertension. Hypertension 1993; 22: 237–242.

    Article  PubMed  CAS  Google Scholar 

  46. Ortenberg JM, Cook AK, Inscho EW, Carmines PK. Attenuated afferent arteriolar response to acetylcholine in Goldblatt hypertension. Hypertension 1992; 19: 785–789.

    Article  PubMed  CAS  Google Scholar 

  47. Bierwaltes WH, Potter DL, Carretero OA, Sigmon DH. Nitric oxide synthesis inhibition blocks reversal of two-kidney, one clip renovascular hypertension after unclipping. Hypertension 1995; 25: 174–179.

    Article  Google Scholar 

  48. Hall JE. Renal function in one-kidney, one-clip hypertension and low renin essential hypertension. Am J Hypertens 1991; 4: 5235–533S.

    Google Scholar 

  49. Ledingham JM, Cohen RD. Circulatory changes during reversal of experimental hypertension. Clin Sci 1962; 22: 69–77.

    PubMed  CAS  Google Scholar 

  50. O’Sullivan JB, Black MJ, Bertram JF, Bobik A. Cardiovascular hypertrophy in one-kidney, one clip renal hypertensive rats: a role for angiotensin II? J Hypertens 1994; 12: 1163–1170.

    PubMed  Google Scholar 

  51. Vandongen R, O’ Dwyer J, Barden A. Release of prostaglandins during reversal of one-kidney, but not two-kidney, one clip hypertension in the rat. J Hypertens 1983; 1: 177–182.

    Article  PubMed  CAS  Google Scholar 

  52. Dubey RK, Boegehold MA, Gillespie DG, Rosselli M. Increased nitric oxide activity in early renovascular hypertension. Am J Physiol 1996; 270: R118 - R124.

    PubMed  CAS  Google Scholar 

  53. Otsuka Y, DiPiero A, Hirt E, Brennaman B, Lockette W. Vascular relaxation and cGMP in hypertension. Am J Physiol 1988; 254: H163 - H169.

    PubMed  CAS  Google Scholar 

  54. Gerkens JF. Unclipping of two-kidney, one clip hypertensive rats produces endothelium-dependent inhibition of sympathetic vasoconstriction. J Hypertens 1989; 7: 961–966.

    Article  PubMed  CAS  Google Scholar 

  55. Fenoy FJ, Tornel J, Madrid MI, López E, Garcia-Salom M. Effects of N°-nitro-L-arginine and N-acetylL-cysteine on the reversal of one-kidney, one clip hypertension. Am J Hypertens 1997; 10: 1208–1215.

    Article  PubMed  CAS  Google Scholar 

  56. Ben-Ishay D, Saliternik R, Weiner A. Separation of two strains of rats with inbred dissimilar sensitivity to DOCA-salt hypertension. Experientia 1972; 28: 1321–1322.

    Article  PubMed  CAS  Google Scholar 

  57. Yagil C, Katni G, Rubattu S, Stolpe C, Kreutz R, Lindpaintner K, Ganten D, Ben-Ishay DY, Yagil D. Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of salt sensitivity and resistance. J Hypertens 1996; 14: 1175–1182.

    Article  PubMed  CAS  Google Scholar 

  58. Dworkin LD, Feiner HD, Randazzo J. Glomerular hypertension and injury in desoxycorticosteronesalt rats on antihypertensive therapy. Kidney Int 1987; 31: 718–724.

    Article  PubMed  CAS  Google Scholar 

  59. Xu Y, Arnal JF, Hinglais N, Appay MD, Laboulandine I, Bariety J, Michel J-B. Renal hypertensive angiopathy: comparison between chronic nitric oxide suppression and DOCA-salt intoxication. Am J Hypertens 1995; 8: 167–176.

    Article  PubMed  CAS  Google Scholar 

  60. Pucci ML, Miller KB, Dick LB, Guan H, Lin L, Nasjletti A. Vascular responsiveness to nitric oxide synthesis inhibition in hypertensive rats. Hypertension 1994; 23 (Pt 1): 744–751.

    Article  PubMed  CAS  Google Scholar 

  61. Van de Voorde J, Leusen I. Endothelium-dependent and independent relaxation of aortic rings from hypertensive rats. Am J Physiol 1986; 250: H711 - H717.

    PubMed  Google Scholar 

  62. Hagen EC, Webb RC. Coronary artery reactivity in deoxycorticosterone acetate hypertensive rats. Am J Physiol 1984; 247: H409 - H414.

    PubMed  CAS  Google Scholar 

  63. Rees D, Ben-Ishay D, Moncada S. Nitric oxide and the regulation of blood pressure in the hypertension-resistant Sabra rat. Hypertension 1996; 28: 367–371.

    Article  PubMed  CAS  Google Scholar 

  64. Lippoldt A, Gross V, Schneider K, Hansson A, Nadaud S, Schneider W, Bader M, Yagil C, Yagil Y, Luft FC. Nitric oxide synthase and renin-angiotensin system gene expression in salt-sensitive and salt-resistant Sabra rats. Hypertension 1997; 30: 409–415.

    Article  PubMed  CAS  Google Scholar 

  65. Dahl LK, Heine M, Tassinari L. Effects of chronic salt ingestion: evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Medicine 1962; 115: 1173–1190.

    Article  CAS  Google Scholar 

  66. Giardin E, Caverzasio J, Iwai J, BonjourJP, Muller AF, Grandchamp A. Pressure natriuresis in isolated kidneys from hypertension-prone and hypertension-resistant rats (Dahl rats). Kidney Int 1980; 18: 10–19.

    Article  Google Scholar 

  67. Rapp JP, Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 1985; 7: 340–349.

    PubMed  CAS  Google Scholar 

  68. Chen PY, Sanders PW. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 1991; 88: 1559–1567.

    Article  PubMed  CAS  Google Scholar 

  69. Boegehold MA. Enhanced arteriolar vasomotion in rats with chronic salt-induced hypertension. Microvasc Res 1993; 45: 83–94.

    Article  PubMed  CAS  Google Scholar 

  70. Löscher TF, Raij L, Vanhoutte PM. Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension 1987; 9: 157–163.

    Article  Google Scholar 

  71. Löscher TF, Vanhoutte PM, Raij L. Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension 1987;9:III193–III197.

    Google Scholar 

  72. Chen PY, Sanders PW. Role of nitric oxide synthesis in salt-sensitive hypertension in Dahl/Rapp rats. Hypertension 1993; 22: 812–818.

    Article  PubMed  CAS  Google Scholar 

  73. Hu L, Manning RD Jr. Role of nitric oxide in regulation of long-term pressure-natriuresis relationship in Dahl rats. Am J Physiol 1995; 268: H2375 - H2383.

    PubMed  CAS  Google Scholar 

  74. Shultz PJ, Tolins JP. Adaptation to increase dietary salt intake in the rat. Role of endogenous nitric oxide. J Clin Invest 1993; 91: 642–650.

    Article  PubMed  CAS  Google Scholar 

  75. Simchon S, Manger W, Blumberg G, Brensilver J, Cortell S. Impaired renal vasodilation and urinary cGMP excretion in Dahl salt-sensitive rats. Hypertension 1996; 27: 653–657.

    Article  PubMed  CAS  Google Scholar 

  76. Deng AY, Rapp JP. Locus for the inducible, but not a constitutive, nitric oxide synthase cosegregates with blood pressure in the Dahl salt-sensitive rat. J Clin Invest 1995; 95: 2170–2177.

    Article  PubMed  CAS  Google Scholar 

  77. Bouloumie A, Bauersacks J, Linz W, Schölkens BA, Wiemer G, Fleming I, Busse R. Endothelial dysfunction coincides with and enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 1997; 30: 934–941.

    Article  PubMed  CAS  Google Scholar 

  78. Deng X, Welch WJ, Wilcox CS. Role of nitric oxide in short-term and prolonged effects of angiotensin II on renal hemodynamics Hypertension 1996; 27: 1173–1179.

    CAS  Google Scholar 

  79. Granger J, Schnackenberg C, Novak J, Tucker B, Miller T, Morgan S, Kassab S. Role of nitric oxide in modulating the long-term renal and hypertesive actions of norepinephrine. Hypertension 1997; 29: 205–209.

    Article  PubMed  CAS  Google Scholar 

  80. Calver A, Collier J, Moncada S, Valiance P. Effect of local intra-arterial /VG-monomethyl-L-arginine in patients with hypertension: nitric oxide dilator mechanism appears abnormal. J Hypertens 1992; 10: 1025–1031.

    Article  PubMed  CAS  Google Scholar 

  81. Panza JA, Casino PR, Badar DM, Quyyumi AA. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation 1993; 87: 1475–1481.

    Article  PubMed  CAS  Google Scholar 

  82. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 1993; 87: 1468–1474.

    Article  PubMed  CAS  Google Scholar 

  83. Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 1993; 21: 929–933.

    Article  PubMed  CAS  Google Scholar 

  84. Forte P, Copland M, Smith LM, Milne E, Sutherland J, Benjamin N. Basal nitric oxide synthesis in essential hypertension. Lancet 1997; 349: 837–842.

    Article  PubMed  CAS  Google Scholar 

  85. Nobunaga T, Tokugawa Y, Hashimoto K, Matsuzaki N, Nitta Y, Kimura T, et al. Plasma nitric oxide levels in pregnant patients with preeclampsia and essential hypertension. Gynecol Obstet Invest 1996; 41: 189–193.

    Article  PubMed  CAS  Google Scholar 

  86. Node K, Kitakaze M, Yoshikawa H, Kosaka H, Hori M. Reduced plasma concentrations of nitrogen oxide in individuals with essential hypertension. Hypertension 1997; 30: 405–408.

    Article  PubMed  CAS  Google Scholar 

  87. Hishikawa K, Nakaki T, Suzuki H, Kato R, Saruta T. Role of L-arginine-nitric oxide pathway in hypertension. J Hypertens 1993; 11: 639–645.

    Article  PubMed  CAS  Google Scholar 

  88. Cockcroft JR, Chowienczyk PJ, Benjamin N, Ritter JM. Preserved endothelium-dependent vasodilation in patients with essential hypertension. N Engl J Med 1994; 330: 1036–1040.

    Article  PubMed  CAS  Google Scholar 

  89. Campese VM, Tawadrous M, Bigazzi R, Bianchi S, Mann AS, Oparil S, Raij L. Salt intake and plasma atrial natriuretic peptide and nitric oxide in hypertension. Hypertension 1996; 28: 335–340.

    Article  PubMed  CAS  Google Scholar 

  90. Campese VM, Amar M, Anjali CTM, Wurgaft A. Effect of L-arginine on systemic and renal hemodynamics in salt-sensitive patients with essential hypertension. J Hum Hypertens 1997; 11: 527–532.

    Article  PubMed  CAS  Google Scholar 

  91. Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, Shimasaki Y, Nakayama M, et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension 1998; 32: 3–8.

    Article  PubMed  CAS  Google Scholar 

  92. Ferlito S, Gallina M Nitrite plasma levels in acute and chronic coronary heart disease. Minerva Cardioangiol 1997; 45: 553–558.

    PubMed  CAS  Google Scholar 

  93. Xiao J, Pang PKT. Activation of nitric oxide synthesis in vascular smooth muscle cells and macrophages during development in spontaneously hypertensive rats. Am J Hypertens 1996; 9: 377–384.

    Article  PubMed  CAS  Google Scholar 

  94. Kling CF, Lüscher TF. Different mechanisms of endothelial dysfunction with aging and hypertension in rat aorta. Hypertension 1995; 25: 194–200.

    Article  Google Scholar 

  95. Clozel M, Breu V. The role of ETB receptors in normotensive and hypertensive rats as revealed by the non-peptide selective ETB receptor antagonist Ro 46–8443. FEBS Lett 1996; 383: 42–45.

    Article  PubMed  CAS  Google Scholar 

  96. Noll G, Wenzel RR, Luscher TF. Endothelin and endothelin antagonists: potential role in cardiovascular and renal disease. Mol Cell Biochem 1996; 157: 259–267.

    Article  PubMed  CAS  Google Scholar 

  97. Sventek P, Li JS, Grove K, Deschepper CF, Schiffrin EL. Vascular structure and expression of endothelin-1 gene in L-NAME-treated spontaneously hypertensive rats. Hypertension 1996; 27: 49–55.

    Article  PubMed  CAS  Google Scholar 

  98. Guyton AC, Coleman TG, Cowley AW Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation overiding dominance of the kidneys in long term regulation and in hypertension. Am J Med 1972; 52: 584–594.

    Article  PubMed  CAS  Google Scholar 

  99. Kone BC, Baylis C. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol 1997; 272: F561 - F578.

    PubMed  CAS  Google Scholar 

  100. Mundel P, Bachmann S, Bader M, Fischer A, Kummer W, Mayer B, et al. Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int 1992; 42: 1017–1019.

    Article  PubMed  CAS  Google Scholar 

  101. Scmidt HHHW, Gagne GD, Nakane M, Pollcok JS, Miller MF, Murad F. Mapping of neuronal nitric oxide synthase in the rat suggests frequent co-localization with NADPH-diaphorase but not with soluble guanylyl cyclase, and novel paraneural function for nitrinergic signal transduction. J Histochem Cytochem 1992; 40: 1439–1456.

    Article  Google Scholar 

  102. Tojo A, Gross SS, Zhang L, Tisher CC, Schmidt HHHW, Wilcox CS, Madsen KM. Immunocytochemical localization of distinct isoforms of nitric oxide synthase in the juxtaglomerular apparatus of normal rat kidney. J Am Soc Nephol 1994; 4: 1438–1447.

    CAS  Google Scholar 

  103. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, et al. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA 1992;89:11, 993–11, 997.

    Google Scholar 

  104. Bachmann S, Bosse HM, Mundel P. Topography of nitric oxide synthesis by localizing constitutive NO synthases in mammalian kidney. Am J Physiol 1995; 268: F885 - F898.

    PubMed  CAS  Google Scholar 

  105. Terada Y, Tornita K, Nonoguchi H, Marumo F. Polymerase chain reaction localization of constitutive nitric oxide synthase and soluble guanylate cyclase messenger RNAs in microdissected rat nephron segments. J Clin Invest 1992; 90: 659–665.

    Article  PubMed  CAS  Google Scholar 

  106. Ito S. Nitric oxide in the kidney. Curr Opin Nephrol Hypertens 1995; 4: 23–30.

    Article  PubMed  CAS  Google Scholar 

  107. Mohaupt MG, Elzie JL, Ahn KY, Clapp WL, Wilcox CS, Kone BC. Differential expression and induction of mRNAs encoding two inducible nitric oxide synthases in rat kidney. Kidney Int 1994; 46: 653–665.

    Article  PubMed  CAS  Google Scholar 

  108. Lau, KS, Nakashima O, Aalund GR, Hogarth L, Ujie K, Yuen J, Star RA. TNF-alpha and IFN-gamma induce expression of nitric oxide synthase in cultured rat medullary interstitial cells. Am J Physiol 1995; 269: F212 - F217.

    PubMed  CAS  Google Scholar 

  109. Tojo A, Madsen KM, Wilcox CS. Expression of immunoreactive nitric oxide synthase isoforms in rat kidney. Effects of dietary salt and losartan. Jpn Heart J 1995; 36: 389–398.

    Article  PubMed  CAS  Google Scholar 

  110. Tojo A, Garg LC, Guzman NJ, Tisher CC, Madsen KM. Nitric oxide inhibits bafilomycin-sensitive H+ATPase activity in rat cortical collecting duct. Am J Physiol I994; 267: F509 - F515.

    Google Scholar 

  111. Morrissey JJ, McCracken R, Kaneto H, Vehaskari M, Montani D, Klahr S. Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int 1994; 45: 998–1005.

    Article  PubMed  CAS  Google Scholar 

  112. Bachmann S, Mundel P. Nitric oxide in the kidney: synthesis, localization, and function. Am J Kidney Dis 1994; 24 (1): 112–129.

    PubMed  CAS  Google Scholar 

  113. Ujiie K, Yuen J, Hogarth L, Danziger R, Star RA. Localization and regualtion of endothelial NO synthase mRNA expression in rat kidney. Am J Physiol 1994; 267: F296 - F302.

    PubMed  CAS  Google Scholar 

  114. Biondi ML, Dousa TP, Vanhoutte PM, Romero JC. Evidences for the existence of endothelium-derived relaxing factor in the renal medulla. Am J Hypertens 1990; 3: 876–878.

    PubMed  CAS  Google Scholar 

  115. Biondi ML, Bolterman RJ, Romero JC. Zonal changes of cGMP related to EDRF in dog kidney. Renal Physiol Biochem 1992; 15: 16–22.

    PubMed  CAS  Google Scholar 

  116. McKee M, Scavone C, Nathanson JA. Nitric oxide, cGMP, and hormone regulation of active sodium transport. Proc Natl Acad Sci USA 1994; 91: 12056–12060.

    Article  PubMed  CAS  Google Scholar 

  117. Lahera V, Salom MG, Miranda-Guardiola F, Moncada S, Romero JC. Effects of /VG-nitro-L-arginine methyl ester on renal function and blood pressure. Am J Physiol 1991; 261: F1033 - F1037.

    PubMed  CAS  Google Scholar 

  118. Deng A, Baylis C. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Physiol 1993; 264: F212 - F215.

    PubMed  CAS  Google Scholar 

  119. Granger JP, Alberola AM, Salazar FJ, Nakamura T. Control of renal hemodynamics during intrarenal and systemic blockade of nitric oxide synthesis in conscious dogs. J Cardiovasc Pharmacol 1992; 20: S160–5162.

    Article  PubMed  CAS  Google Scholar 

  120. Slangen B, Weaver C, Baylis C. Renal effects of low dose nitric oxide (NO) inhibition in the rat. J Am Soc Nephrol 1993; 4 (Abstr): 569A.

    Google Scholar 

  121. Walder CE, Thiemermann C, Vane JR. The involvement of endothelium-derived relaxing factor in the regulation of renal cortical blood flow in the rat. Br J Pharmacol 1991; 102: 967–973.

    Article  PubMed  CAS  Google Scholar 

  122. Woltz M, Schmetterer L, Ferber W, Artner E, Mensik C, Eichler H-G, Krejcy K. Effect of nitric oxide synthase inhibition on renal hemodynamics in humans: reversal by L-arginine. Am J Physiol 1997; 272: F178 - F182.

    Google Scholar 

  123. Bech JN, Nielsen CB, Pedersen EB. Effects of systemic NO synthesis inhibition on RPF, GFR, UNa, and vasoactive hormones in healthy humans. Am J Physiol 1996; 270: F845 - F851.

    PubMed  CAS  Google Scholar 

  124. Haynes WG, Hand MF, Dockrell MEC, Eadington DW, Lee MR, Hussein Z, Benjamin N, Webb DJ. Physiological role of nitric oxide in regulation of renal function. Am J Physiol 1997; 272: F364 - F371.

    PubMed  CAS  Google Scholar 

  125. Lahera V, Navarro-Cid J, Cachofiero V, Garcia-Estan, J, Ruilope LM. Nitric oxide, the kidney, and hypertension. Am J Hypertens 1997; 10: 129–140.

    Article  PubMed  CAS  Google Scholar 

  126. Manning RD Jr, Hu L. Nitric oxide regulates renal hemodynamics and urinary sodium excretion in dogs. Hypertension 1994; 22: 619–625.

    Article  Google Scholar 

  127. Mattson DL, Roman RJ, Cowley AW Jr. Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 1992; 19: 766–769.

    Article  PubMed  CAS  Google Scholar 

  128. Mattson DL, Higgins DJ. Influence of dietary sodium intake on renal medullary nitric oxide synthase. Hypertension 1996; 27: 688–692.

    Article  PubMed  CAS  Google Scholar 

  129. Just A. Nitric oxide and renal autoregulation. Kidney Blood Press Res 1997; 20: 201–204.

    Article  PubMed  CAS  Google Scholar 

  130. Ito S, Arima S, Ren Y, Juncos LA, Carretero OA. Endothelium-derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest 1993; 91: 2012–2019.

    Article  PubMed  CAS  Google Scholar 

  131. Ito S, Johnson CS, Carretero OA. Modulation of angiotensin II-induced vasoconstriction by endothelium-derived relaxing factor in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest 1991; 87: 1656–1663.

    Article  PubMed  CAS  Google Scholar 

  132. Raij L, Baylis C. Glomerular actions of nitric oxide. Kidney Int 1995; 48: 20–32.

    Article  PubMed  CAS  Google Scholar 

  133. Romero JC, Lahera V, Salom MG, Biondi ML. Role of endothelium-dependent relaxing factor nitric oxide on renal function. J Am Soc Nephrol 1992; 2: 1371–1387.

    PubMed  CAS  Google Scholar 

  134. Salazar FJ, Alberola A, Pinilla JM, Romero JC, Quesada T. Salt-induced increase in arterial pressure during nitric oxide synthesis inhibition. Hypertension 1993; 22: 49–55.

    Article  PubMed  CAS  Google Scholar 

  135. Thorup C, Persson AEG. Inhibition of locally produced nitric oxide resets tubuloglomerular feedback mechanism. Am J Physiol 1994; 267: F606 - F611.

    PubMed  CAS  Google Scholar 

  136. Ito S, Ren Y. Evidence for the role of nitric oxide in macula densa control of gomerular hemodynamics. J Clin Invest 1993; 92: 1093–1098.

    Article  PubMed  CAS  Google Scholar 

  137. Vallon V, Thomson S. Inhibition of local nitric oxide synthase increases homeostatic efficiency of tubuloglomerular feedback. Am J Physiol 1995; 269: F892 - F899.

    PubMed  CAS  Google Scholar 

  138. Wilcox CS, Welch WJ. TGF and nitric oxide: effects of salt-intake and salt-sensitive hypertension. Kidney Int 1996;49(Suppl 55):S-9-S-13.

    Google Scholar 

  139. Guarasci GR, Kline RL. Pressure natriuresis following acute and chronic inhibition of nitric oxide synthase in rats. Am J Physiol 1996; 270: R469 - R478.

    PubMed  CAS  Google Scholar 

  140. Krier JD, Romero JC. Systemic inhibition of nitric oxide and prostaglandins in volume-induced natriuresis and hypertension. Am J Physiol 1998; 274: R175 - R180.

    PubMed  CAS  Google Scholar 

  141. Haas JA, Khraibi AA, Perella MA, Knox FG. Role of renal interstitial hydrostatic pressure in natriuresis of systemic nitric oxide inhibition. Am J Physiol 1993; 264: F411 - F414.

    PubMed  CAS  Google Scholar 

  142. Romero JC, Strick DM. Nitric oxide and renal function. Curr Opin Nephrol Hypertens 1993; 2: 114–121.

    Article  PubMed  CAS  Google Scholar 

  143. Ikeda Y, Saito K, Kim JI, Yokoyama M. Nitric oxide synthase isoform activities in kidney of Dahl salt-sensitive rats. Hypertension 1995; 26: 1030–1034.

    Article  PubMed  CAS  Google Scholar 

  144. Rudd MA, Trolliet M, Hope S, Loscalzo J. Dahl salt-resistant rat becomes salt-sensitive with inducible nitric oxide synthase inhibition. Am J Hypertens 1997; 10: 20A.

    Google Scholar 

  145. Simchon S, Manger WM, Brown TW. Dual hemodynamic mechanisms for salt-induced hypertension in Dahl salt-sensitive rats. Hypertension 1991; 17: 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  146. Campese VM, Parise M, Karubian F, Bigazzi R. Abnormal renal hemodynamics in black salt-sensitive patients with hypertension. Hypertension 1991; 18: 805–812.

    Article  PubMed  CAS  Google Scholar 

  147. Frohlich ED, Messerli FH, Dunn FG, Oigman W, Ventura HO, Sundgaard-Riise K. Greater renal vascular involvement in the black patient with essential hypertension. A comparison of systemic and renal hemodynamics in black and white patients. Mineral Electrolyte Metab 1984; 10: 173–177.

    CAS  Google Scholar 

  148. Svetkey LP, McKeown SP, Wilson AF. Heritability of salt sensitivity on black Americans. Hypertension 1996; 28: 854–858.

    Article  PubMed  CAS  Google Scholar 

  149. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension 1986;8:III27–III34.

    Google Scholar 

  150. Lang CC, Stein CM, Brown RM, Deegan R, Nelson R, He HB, Wood M, Wood Ai. Attenuation of isoproterenol-mediated vasodilation in blacks. New Engl J Med 1995; 332: 155–160.

    Article  Google Scholar 

  151. Lahera V, Salazar J, Salom MG, Romero JC. Deficient production of nitric oxide induces volume-dependent hypertension. J Hypertens 1992; 10 (Suppl): S173 - S177.

    Article  CAS  Google Scholar 

  152. Chobanian AV, Gqavras H, Melby JC, Gavras I, Jick H. Relationship of basal plasma noradrenaline to blood pressure, age, sex, plasma renin activity and plasma volume in essential hypertension. Clin Sci Mol Med 1978; 4 (Suppl): 939–969.

    Google Scholar 

  153. Julius S, Esler M. Increased central blood volume: a possible pathophysiological factor in mild lowrenin essential hypertension. Clin Sci Mol Med 1976; 3 (Suppl): 2079–2109.

    Google Scholar 

  154. Safar ME, Chau, NP, Weiss YA, London GM, Simon AC, Milliez PP. The pressure-volume relationship in normotensive and permanent essential hypertensive patients. Clin Sci Mol Med 1976; 50: 207–212.

    PubMed  CAS  Google Scholar 

  155. Brady AJB, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 1993; 265: H176 - H182.

    PubMed  CAS  Google Scholar 

  156. Brady AJB, Poole-Wilson PA, Harding SE, Warren JB. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 1992; 262: H1963 - H1966.

    Google Scholar 

  157. Kelly RA, Ballingand JL, Smith TW. Nitric oxide and cardiac function. Circ Res 1996; 79: 363–380.

    Article  PubMed  CAS  Google Scholar 

  158. Shultz R, Nava E, Moncado S. Induction and potential biological relevance of a calcium-independent nitric oxide synthase in the myocardium. Br J Pharmacol 1992; 105: 575–580.

    Article  Google Scholar 

  159. Kelm M, Feelisch M, Krebber T, Deussen A, Motz W, Strauer BE. Role of nitric oxide in the regulation of coronary vascular tone in hearts from hypertensive rats. Maintenance of nitric oxide-forming capacity and increased basal production of nitric oxide. Hypertension 1995; 25: 186–193.

    Article  PubMed  CAS  Google Scholar 

  160. Ballingand JL, Kelly RA, Marsden PA, Smith TW, Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signalling system. Proc Natl Acad Sci USA 1992; 90: 347–351.

    Article  Google Scholar 

  161. Joe EK, Schussheim AE, Longrois D, Maki T, Kelly RA, Smith TW, Balligand JL. Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase (iNOS): mechanisms of contractile depression by nitric oxide. J Mol Cell Cardiol 1998; 30: 303–315.

    Article  PubMed  CAS  Google Scholar 

  162. Mohan P, Brutsaert DL, Paulus WJ, Sys SU. Myocardial contractile responce to nitric oxide and cGMP. Circulation 1996; 92: 1223–1229.

    Article  Google Scholar 

  163. Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B. Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res 1997; 81: 60–68.

    Article  PubMed  CAS  Google Scholar 

  164. Klabunde RE, Kimber ND, Kuk JE, Helgren MC, Forstermann U. NG-methyl-L-arginine decreases contractility, cGMP and cAMP in isoproterenol-stimulated rat hearts in vitro. Eur J Pharmacol 1992; 222: 1–7.

    Article  Google Scholar 

  165. Klabunde RE, Tse J, Weiss HR. Guanylyl cyclase inhibition reduces contractility and decreases cGMP and cAMP in isolated rat hearts. Cardiovasc Res 1998; 37: 676–683.

    Article  PubMed  CAS  Google Scholar 

  166. Kojda G, Kottenberg K, Nix P, Schulter KD, Piper HM, Noack E. Low increase in cGMP induced by organic nitrates and nitrovasolidators improves contractile response of rat ventricular myocytes. Circ Res 1996; 78: 91–101.

    Article  PubMed  CAS  Google Scholar 

  167. Kirstein M, Rivet-Bastide M,Hatem S, Agnès B, Mercadier JJ, Fischmeister R. Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest 1995; 95: 794–802.

    Article  PubMed  CAS  Google Scholar 

  168. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996; 271: C1424 - C1437.

    PubMed  CAS  Google Scholar 

  169. Wahler GM, Dollinger SJ. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol 1995; 268: C45–054.

    PubMed  CAS  Google Scholar 

  170. Arnal JF, el Amrani AI, Chatellier G, Ménard J, Michel J-B. Cardiac weight in hypertension induced by nitric oxide synthase blockade. Hypertension 1993; 22: 380–387.

    Article  PubMed  CAS  Google Scholar 

  171. de Simone G, Devereux RB, Volpe M, Camargo MJ, Wallerson DC, Laragh JH. Relation of left ventricular hypertrophy, afterload, and contractility to left ventricular performance in Goldblatt hypertension. Am J Hypertens 1992; 5: 292–301.

    PubMed  Google Scholar 

  172. Numaguchi K, Egashira K, Takemoto M, Kadokami T, Shimokawa H, Sueishi K, Takeshita A. Chronic inhibition of nitric oxide synthesis causes coronary microvascular remodeling in rats. Hypertension 1995; 26: 957–962.

    Article  PubMed  CAS  Google Scholar 

  173. Moreno H Jr, Nathan LP, Costa SKP, Metze K, Antunes E, Zatz R, de Nucci G. Enalapril does not prevent the myocardial ischemia caused by the chronic inhibition of nitric oxide synthesis. Eur J Pharmacol 1995; 287: 93–96.

    Article  PubMed  CAS  Google Scholar 

  174. Hou J, Kato H, Cohen RA, Chobanian AV, Brecher P. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest 1995; 96: 2469–2477.

    Article  PubMed  CAS  Google Scholar 

  175. Hu CT, Chang K-C, Wu CY, Chen HI. Acute effects of nitric oxide blockade with L-NAME on arterial haemodynamics in the rats. Br J Pharmacol 1997; 122: 1237–1243.

    Article  PubMed  CAS  Google Scholar 

  176. Gardiner SM, Compton AM, Bennett T, Palmer RM, Moncada SM. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension 1990; 15: 486–492.

    Article  PubMed  CAS  Google Scholar 

  177. Araujo MT, Barker LA, Cabral AM, Vasquez EC. Inhibition of nitric oxide synthase causes profound enhancement of the Bezold-Jarisch reflex. Am J Hypertens 1998; 11: 66–72.

    Article  PubMed  CAS  Google Scholar 

  178. Cunha RS, Cabral AM, Vasquez EC. Evidence that the autonomic nervous system plays a major role in the L-NAME-induced hypertension in conscious rats. Am J Hypertens 1993; 6: 806–809.

    PubMed  CAS  Google Scholar 

  179. Vasquez EC, Cunha RS, Cabral AM. Baroreceptor reflex function in rats submitted to chronic inhibition of nitric oxide. Braz J Med Biol Res 1994; 27: 767–774.

    PubMed  CAS  Google Scholar 

  180. Gardiner SM, Compton AM, Bennett T, Palmer RM, and Moncada S. Regional haemodynamic changes during oral ingestion of NG-monomethyl-L-arginine or NG-nitrol-l-arginine methyl ester in conscious Brattleboro rats. Br J Pharmacol 1990; 101: 10–12.

    Article  PubMed  CAS  Google Scholar 

  181. Frohlich ED, Kozul VJ, Tarazi RC, Dustan HP. Physiological comparison of labile and essential hypertension. Circ Res 1970; 27 (Suppl): 55–69.

    PubMed  CAS  Google Scholar 

  182. Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation 1971; 44: 413–418.

    Article  PubMed  CAS  Google Scholar 

  183. Messerli FH, de Carvalho JGR, Christie B, Frohlich ED. Systemic and regional hemodynamics in low, normal, and high cardiac output in borderline hypertension. Circulation 1978; 58: 441–448.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rudd, M.A., Trolliet, M.R., Loscalzo, J. (2000). Nitric Oxide and Hypertension. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics