Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 174 Accesses

Abstract

The fibroblast typically is found in loose connective tissue where it is considered to be the principal cell type. Fibroblasts are responsible for the synthesis of the extracellular matrix proteins including collagen, elastin, and reticular fibers, as well as the complex carbohydrates of the ground substance. In addition, during pathophysiological processes such as wound healing, the fibroblast can change phenotype, differentiate into a myofibroblast, and exhibit properties characteristic of both smooth muscle and conventional fibroblast cells. The role of fibroblasts during wound repair was reviewed recently, and the diverse functions for fibroblasts and their interaction with other cell types during wound healing was discussed (1,2). In addition to matrix production, those functions include growth factor production, proliferation and migration, protease release, formation and contraction of granulation tissue, and phenotypic changes to a myofibroblast or to apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark RA. Wound repair: overview and general considerations. In: Clark RA, ed. The Molecular and Cellular Biology of Wound Repair, 2nd ed. Plenum, New York, 1996, pp. 3–50.

    Google Scholar 

  2. Desmouliere A, Gabbiani G. The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Clark RA, ed. The Molecular and Cellular Biology of Wound Repair, 2nd ed. Plenum, New York, 1996, pp. 391–423.

    Google Scholar 

  3. Hynes RO. Expression of fibronectin by cells in culture. In: Fibronectins. Springer Verlag, New York, 1990, p. 51.

    Chapter  Google Scholar 

  4. Bruch-Gerharz C, Ruzicka T, Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects. J Invest Dermatol 1998; 110: 1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Wang R, Ghahary A, Shen YJ, Scott PG, Tredget EE. Human dermal fibroblasts produce nitric oxide and express both constitutive and inducible nitric oxide synthase isoforms. J Invest Dermatol 1996; 106: 419–427.

    Article  PubMed  CAS  Google Scholar 

  6. Wang R, Ghahary A, Shen YJ, Scott PG, Tredget EE. Nitric oxide synthase expression and nitric oxide production are reduced in hypertrophic scar tissue and fibroblasts. J Invest Dermatol 1997; 108: 438–444.

    Article  PubMed  CAS  Google Scholar 

  7. Schaffer MR, Efron PA, Thornton FJ, Klingel K, Gross SS, Barbul A. Nitric oxide, an autocrine regulator of wound fibroblast synthetic function. J Immunol 1997; 158: 2375–2381.

    PubMed  CAS  Google Scholar 

  8. Yamasaki K, Edington HD, McClosky C, Tzeng E, Lisonova A, Kovesdi I, et al. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest 1998; 101: 967–971

    Article  PubMed  CAS  Google Scholar 

  9. Chakravortty D, Kumar KS. Induction of cell proliferation and collagen synthesis in human small intestinal lamina propria fibroblasts by lipopolysaccharide: possible involvement of nitric oxide. Biochem Biophys Res Commun 1997; 240: 458–463.

    Article  PubMed  CAS  Google Scholar 

  10. Thornton FJ, Ahrendt GM, Schaffer MR, Tantry US, Barbul A. Sepsis impairs anastomotic collagen gene expression and synthesis: a possible role for nitric oxide. J Surg Res 1997; 69: 81–86.

    Article  PubMed  CAS  Google Scholar 

  11. Lavnikova N, Laskin DL. Unique patterns of regulation of nitric oxide production in fibroblasts. J Leukoc Biol 1995; 58: 451–458.

    PubMed  CAS  Google Scholar 

  12. Lavnikova N, Prokhorova S, Burdelia L, Lakhotia A, Laskin DL. Mechanisms regulating macrophage-induced nitric oxide production by spontaneously transformed hamster fibroblasts. J Leukoc Biol 1996; 60: 473–479.

    PubMed  CAS  Google Scholar 

  13. Zhang H, Gharaee-Kermani M, Phan SH. Regulation of lung fibroblast a-smooth muscle actin expression, contractile phenotype, and apoptosis by IL-113. J Immunol 1997; 158: 1392–1399.

    PubMed  CAS  Google Scholar 

  14. White AC, Maloney EK, Boustani MR, Hassoun PM, Fanburg BL. Nitric oxide increases cellular glutathione levels in rat lung fibroblasts. Am J Respir Cell Mol Biol 1995; 13: 442–448.

    PubMed  CAS  Google Scholar 

  15. Shindo T, Ikeda U, Ohkawa F, Kawahara Y, Yokoyama M, Shimada K Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovasc Res 1995; 29: 813–819.

    PubMed  CAS  Google Scholar 

  16. Palmer JN, Hartogensis WE, Patten M, Fortuin FD, Long CS. Interleukin-lß induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 1995; 95: 2555–2564.

    Article  PubMed  CAS  Google Scholar 

  17. Kleinert H, Euchenhofer C, Ihrig-Biedert I, Forstermann U. In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-KB. J Biol Chem 1996; 271: 6039–6044.

    Article  PubMed  CAS  Google Scholar 

  18. Farivar RS, Chobanian AV, Brecher P. Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ Res 1996; 78: 759–768.

    Article  PubMed  CAS  Google Scholar 

  19. Farivar RS, Brecher P. Salicylate is a transcriptional inhibitor of the inducible nitric oxide synthase in cultured cardiac fibroblasts. J Biol Chem 1996;271:31, 585–31, 592.

    Google Scholar 

  20. Koide M, Kawahara Y, Nakayama I, Tsuda T, Yokoyama M. Cyclic AMP-elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Synergism with the induction elicited by inflammatory cytokines. J Biol Chem 1993;268:24, 959–24, 966.

    Google Scholar 

  21. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  22. Garg UC, Hassid A. Nitric oxide-generating vasodilators inhibit mitogenesis and proliferation of BALB/ C 3T3 fibroblasts by a cyclic GMP-independent mechanism Biochem Biophys Res Commun 1990; 171: 474–479.

    CAS  Google Scholar 

  23. Du M, Islam M, Lin L, Ohmura Y, Moriyama Y, Fujimura S. Promotion of proliferation of murine BALB/C3T3 fibroblasts mediated by nitric oxide at lower concentrations. Biochem Mol Biol Int 1997; 41: 625–631.

    PubMed  CAS  Google Scholar 

  24. Hassid A, Arabshahi H, Bourcier T, Dhaunsi GS, Matthews C. Nitric oxide selectively amplifies FGF-2induced mitogenesis in primary rat aortic smooth muscle cells. Am J Physiol 1994; 267: H1040 - H1048.

    PubMed  CAS  Google Scholar 

  25. Sciorati C. Nistico G, Meldolesi J, Clementi E. Nitric oxide effects on cell growth: GMP-dependent stimulation of the AP-1 transcription complex and cyclic GMP-independent slowing of cell cycling. Br J Pharmacol 1997; 122: 687–697.

    Article  PubMed  CAS  Google Scholar 

  26. Peranovich TM, daSilva AM, Fries DM, Stern A, Monteiro HP. Nitric oxide stimulates tyrosine phosphorylation in murine fibroblasts in the absence and presence of epidermal growth factor. Biochem J 1995; 305: 613–619.

    PubMed  CAS  Google Scholar 

  27. Gansuage S, Gansauge F, Nussler AK, Rau B, Poch B, Schoenberg MH. et al. Exogenous, but not endogenous, nitric oxide increases proliferation rates in senescent human fibroblasts. FEBS Lett 1997; 410: 160–164.

    Article  Google Scholar 

  28. Shin JT, Barbeito L, MacMillan-Crow LA, Beckman JS, Thompson JA. Acidic fibroblast growth factor enhances peroxynitrite-induced apoptosis in primary murine fibroblasts. Arch Biochem Biophys 1996; 335: 32–41.

    Article  PubMed  CAS  Google Scholar 

  29. Hou J, Kato H, Cohen RA, Chobanian AV, Brecher P. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest 1995; 96: 2469–2477.

    Article  PubMed  CAS  Google Scholar 

  30. Takizawa T, Gu M, Chobanian AV, Brecher P. The effect of nitric oxide on DNA replication induced by angiotensin II in rat cardiac fibroblasts. Hypertension 1997; 30: 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  31. Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 1996; 93: 2442–2447.

    Article  PubMed  CAS  Google Scholar 

  32. Ishida A, Sasaguri T, Kosaka C, Nojima H, Ogata J. Induction of the cyclin-dependent kinase inhibitor p21Sdil/Cipl/Wafl by nitric oxide-generating vasodilator in vascular smooth muscle cells. J Biol Chem 1997;272:10, 050–10, 057.

    Google Scholar 

  33. Gu M, Brecher P. Nitric oxide increased the expression of p21 in proliferating fibroblasts from the aortic adventitia. FASEB J 1998; 12: A79.

    Google Scholar 

  34. Knowles RG, Salter M, Brooks SL, Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver, and aorta of the rat. Biochem Biophys Res Commun 1990; 172: 1042–1048.

    Article  PubMed  CAS  Google Scholar 

  35. Cook HT, Bune AJ, Jansen AS, Taylor GM, Loi RK, Cattell V. Cellular localization of inducible nitric oxide synthase in experimental endotoxic shock in the rat. Clin Sci 1994; 87: 179–186.

    PubMed  CAS  Google Scholar 

  36. Sato K, Miyakawa K, Takeya M, Hattori R, Yui Y, Sunamoto M, et al. Immunohistochemical expression of inducible nitric oxide synthase (iNOS) in reversible endotoxic shock studied by a novel monoclonal antibody against rat iNOS. J Leukoc Biol 1995; 57: 36–44.

    PubMed  CAS  Google Scholar 

  37. Fleming I, Gray AG, Stoclet J. Influence of endothelium on induction of the L-arginine-nitric oxide pathway in rat aortas. Am J Physiol 1993; 264: H1200 - H1207.

    PubMed  CAS  Google Scholar 

  38. Fleming I, Gray AG, Julou-Schaeffer G, Parratt J, Stoclet J. Incubation with endotoxin activates the L-arginine pathway in vascular tissue. Biochem Biophys Res Commun 1990; 172: 562–568.

    Article  Google Scholar 

  39. Schini-Kerth V, Bara A, Mylsch A, Busse R. Pyrrolidine dithiocarbamate selectively prevents the expression of the inducible nitric oxide synthase in the rat aorta. Eur J Pharmacol 1994; 265: 83–87.

    Article  PubMed  CAS  Google Scholar 

  40. Sirsjo A, Soderkvist P, Sundqvist T, Carlsson M, Ost M, Gidlof A. Different induction mechanisms of mRNA for inducible nitric oxide synthase in rat smooth muscle cells in culture and in aortic strips. FEBS Lett 1994; 338: 191–196.

    Article  PubMed  CAS  Google Scholar 

  41. Zhang H, Du Y, Chobanian AV, Brecher P. Adventitia as a source of inducible nitric oxide synthase in the rat aorta. Am J Hyper 1999; 12: 467–475.

    Article  CAS  Google Scholar 

  42. Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol 1996; 54 (Suppl): S21 - S35.

    Article  PubMed  Google Scholar 

  43. Scott NA, Cipolia GD, Ross CE, Dunn B, Martin FH, Simonet L, et al. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 1996; 93: 2178–2187.

    Article  PubMed  CAS  Google Scholar 

  44. Shi Y, Pienick M, Fard A, O’Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996; 93: 340–348.

    Article  PubMed  CAS  Google Scholar 

  45. Shi Y, O’Brien JE, Fard A, Zalewski A. Transforming growth factor-131 expression and myofibroblast formation during arterial repair. Arterioscler Thromb Vasc Biol 1996; 16: 1298–1305.

    Article  PubMed  CAS  Google Scholar 

  46. Zalewski A, Shi Y. Vascular myofibroblast lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol 1997; 17: 417–422.

    Article  PubMed  CAS  Google Scholar 

  47. Chatelain RE, Dardik BN. Increased DNA replication in the arterial adventitia after aortic ligation. Hypertension 1988; 11: 1130 - I134.

    Google Scholar 

  48. Kato H, Hou J, Chobanian AV, Brecher P. Effects of angiotensin II infusion and inhibition of nitric oxide synthase on the rat aorta. Hypertension 1996; 28: 153–158.

    Article  PubMed  CAS  Google Scholar 

  49. Mecham RP, Whitehouse LA, Wrenn DS, Parks WC, Griffen GL, Senior RM, et al. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science 1987; 237: 423–426.

    Article  PubMed  CAS  Google Scholar 

  50. Steinhorn RH, Morin FC, Russell JA. The adentitia may be a barrier specific to nitric oxide in rabbit pulmonary artery. J Clin Invest 1994; 94: 1883–1888.

    Article  PubMed  CAS  Google Scholar 

  51. Zhu DL, Herembert T, Marche P. Increased proliferation of adventitial fibroblasts from spontaneously hypertensive rat aorta. J Hypertens 1991; 9: 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  52. Venance SL, Watson MH, Wigle DA, Mak AS, Pang SC. Differential expression and activity of p34cdc2 in cultured aotic adventitial fibroblasts derived from spontaneously hypertensive and Wistar-Kyoto rats. J Hypertens 1993; 11: 483–489.

    Article  PubMed  CAS  Google Scholar 

  53. Sobey CG, Brooks RM, Heistead DD. Evidence that expression of inducible nitric oxide synthase in response to endotoxin is augmented in atherosclerotic rabbits. Circ Res 1995; 77: 536–543.

    Article  PubMed  CAS  Google Scholar 

  54. Esaki T, Hayashi T, Asai Y, Kumar TN, Kano H, Muto E, et al. Expression of inducible nitric oxide synthase in T lymphocytes and macrophages in vessels with advanced atheroscerosis. Blood Vessels 1997; 12 (Suppl): 89–92.

    Google Scholar 

  55. Buttery LD, Springall DR, Chester AH, Evans TJ, Standfield EN, Parums DV, et al. Inducible nitric oxide sytnhase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest 1996; 75: 77–85.

    PubMed  CAS  Google Scholar 

  56. Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atheroscerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol 1998; 18: 157–167.

    Article  PubMed  CAS  Google Scholar 

  57. Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, et al. Expression of multiple isoforms of nitric oxide sythase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol 1997; 17: 2479–2488.

    Article  PubMed  CAS  Google Scholar 

  58. Chien AF, Jiang S-W, Crotty TB, Tsutsui M, Smith LA, O’Brian T, et al. Effects of in vivo adventitial expression of recombinant endothelial nitric oxide synthase gene in cerebral arteries. Proc Natl Acad Sci USA 1997;94:12, 568–12, 573.

    Google Scholar 

  59. Cable DG, O’Brian T, Schaff HV, Pompili VJ. Recombinant endothelial nitric oxide synthase-transduced human saphenous veins: gene therapy to augment nitric oxide production in bypass conduits. Circulation 1997;96:II-173—II-178.

    Google Scholar 

  60. Pagano PJ, Ito H, Tornheim K, Gallop PM, Tauber AI, Cohen RA. An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol 1995; 268: H2274 — H2280.

    PubMed  CAS  Google Scholar 

  61. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA 1997;94:14, 483–14, 488.

    Google Scholar 

  62. Wang HD, Pagano PJ, Du Y, Cayatte Ai, Quinn MT, Brecher P, et al. Superoxide anion from the adventitia of the rat throacic aorta inactivates nitric oxide. Circ Res 1998; 82: 810–818.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brecher, P. (2000). The Fibroblast and Nitric Oxide. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics