Skip to main content

Nitric Oxide and Cardiomyocyte Function

  • Chapter
Nitric Oxide and the Cardiovascular System

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 159 Accesses

Abstract

There is ample evidence that all three isoforms of nitric oxide synthase (NOS) are expressed within the various cell types in the myocardium (see Table 1). The coordinate physiological regulation of cardiac muscle contraction by the NO (see Table 2) produced by each of these isoforms mandates a tight regulation of both the expression and the activity of each NOS isoform within a specific cell type. Therefore, despite the apparent promiscuity of having all three NOS isoforms within cardiac muscle, the predominant cellular source of the NO that is produced in the heart may vary according to specific transcriptional and posttranscriptional stimuli differentially affecting each cell type and/or isoform (as will subsequently be illustrated for eNOS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmidt HH, Gagne GD, Nakane M, Pollock JS, Miller MF, Murad F. Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase and novel paraneural functions for nitrinergic signal transduction. J Histochem Cytochem 1992; 40: 1439–1456.

    Article  PubMed  CAS  Google Scholar 

  2. Tanaka K, Hassall CJ, Burnstock G. Distribution of intracardiac neurons and nerve terminals that contain a marker for nitric oxide, NADPH-diaphorase, in the guinea-pig heart. Cell Tissue Res 1993; 273: 293–300.

    Article  PubMed  CAS  Google Scholar 

  3. Schwarz P, Diem R, Dun NJ, Förstermann U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 1995; 77: 841–848.

    Article  PubMed  CAS  Google Scholar 

  4. Kaye DM, Wiviott D, Kobzik L, Kelly RA, Smith TW. S-nitrisothiols inhibit neuronal norepinephrine transport. Am J Physiol 1997; 272: H875 - H883.

    PubMed  CAS  Google Scholar 

  5. Balligand JL, Kobzik L, Han X, Kaye DM, Belhassen L, O’Hara DS, et al. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 1995; 270: 14582–14586.

    Article  PubMed  CAS  Google Scholar 

  6. Belhassen L, Kelly RA, Smith TW, Balligand JL. Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cAMP in rat cardiac myocytes. J Clin Invest 1996; 97: 1908–1915.

    Article  PubMed  CAS  Google Scholar 

  7. Silvagno F, Xia H, Bredt DS. Neuronal nitric oxide synthase mu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 1996; 271: 11204–11208.

    Article  PubMed  CAS  Google Scholar 

  8. Belhassen L, Feron O, Kaye DM, Michel T, Kelly RA. Regulation by cAMP of post-translational processing and subcellular targeting of endothelial nitric-oxide synthase (type 3) in cardiac myocytes. J Biol Chem 1997; 272: 11198–11204.

    Article  PubMed  CAS  Google Scholar 

  9. Xu KY, Huso DL, Dawson TH, Bredt DS, Becker LC. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 1999; 96: 657–662.

    Article  PubMed  CAS  Google Scholar 

  10. Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol 1997; 17: 1846–1858.

    Article  PubMed  CAS  Google Scholar 

  11. Andries LJ, Brutsaert DL, Sys SU. Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium. Circ Res 1998; 82: 195–203.

    Article  PubMed  CAS  Google Scholar 

  12. Balligand JL, Smith TW. Molecular regulation of NO synthase in the heart. In: Shah AM, Lewis MJ, eds. Endothelial Modulation of Cardiac Contraction. Harwood Academic Publishers, Amsterdam, The Netherlands, 1997, pp. 53–71.

    Google Scholar 

  13. Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Le Marec H. The negative inotropic effect of beta-3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 1998; 102: 1377–1384.

    Article  PubMed  CAS  Google Scholar 

  14. Han X, Kobzik L, Balligand JL, Kelly RA, Smith TW. Nitric oxide synthase (NOS3)-mediated cholinergic modulation of Ca2+ current in adult rabbit atrioventricular nodal cells. Circ Res 1996; 78: 998–1008.

    Article  PubMed  CAS  Google Scholar 

  15. Seki T, Hagiwara H, Naruse K, Kadowaki M, Kashiwagi M, Demura H, et al. In situ identification of messenger RNA of endothelial type nitric oxide synthase in rat cardiac myocytes. Biochem Biophys Res Commun 1996; 218: 601–605.

    Article  PubMed  CAS  Google Scholar 

  16. Wei CM, Jiang SW, Lust JA, Daly RC, MacGregor CG. Genetic expression of endothelial nitric oxide synthase in human atrial myocardium. Mayo Clin Proc 1996; 71: 346–350.

    Article  PubMed  CAS  Google Scholar 

  17. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T. Endothelial nitric oxide synthase targeting to caveolae. Specific interaction with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 1996; 27: 22810–22814.

    Google Scholar 

  18. Michel JB, Feron O, Sase K, Prabhakar P, Michel T. Caveolin versus calmodulin. Counterbalancing allosteric modulators of nitric oxide synthase. J Biol Chem 1997; 272: 25907–25912.

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 1997; 272: 25437–25440.

    Article  PubMed  CAS  Google Scholar 

  20. Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ. Interaction beween caveolin-1 and the reductase domain of endothelial nitric oxide synthase. J Biol Chem 1998; 273: 22267–22271.

    Article  PubMed  CAS  Google Scholar 

  21. Ju H, Zou R, Venema VJ, Venema RC. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 1997; 272: 18522–18525.

    Article  PubMed  CAS  Google Scholar 

  22. Feron O, Saldana JB, Michel JB, Michel T. The eNOS-caveolin regulatory cycle. J Biol Chem 1998; 273: 3125–3128.

    Article  PubMed  CAS  Google Scholar 

  23. Parton RG, Way M, Zorzi N, Stang E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 1997; 136: 137–154.

    Article  PubMed  CAS  Google Scholar 

  24. Ishikawa H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J Cell Biol 1968; 38: 51–66.

    Article  PubMed  CAS  Google Scholar 

  25. Kelly RA, Balligand JL, Smith T. Nitric oxide and cardiac function. Circ Res 1996; 79: 363–380.

    Article  PubMed  CAS  Google Scholar 

  26. Szabolcs MJ, Ravalli S, Minanov O, Sciacca RR, Michler RE, Cannon PJ. Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection. Transplantation 1998; 65: 804–812.

    Article  PubMed  CAS  Google Scholar 

  27. Wildhirt SM, Dudek RR, Suzuki H, Bing RJ. Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction. Int J Cardiol 1995; 50: 253–261.

    Article  PubMed  CAS  Google Scholar 

  28. Lewis NP, Tsao PS, Rickenbacher PR, Xue C, Johns RA, Haywood GA, et al. Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle. Circulation 1996; 93: 720–729.

    Article  PubMed  CAS  Google Scholar 

  29. Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, et al. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996; 93: 1087–1094.

    Article  PubMed  CAS  Google Scholar 

  30. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996; 347: 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  31. Fukuchi M, Hussain SNA, Giaiad A. Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and 13-adrenergic receptor therapy. Circulation 1998; 98: 132–139.

    Article  PubMed  CAS  Google Scholar 

  32. Thoenes M, Forstermann U, Tracey WR, Bleese NM, Nussler AK, Scholz H, et al. Expression of inducible nitric oxide synthase in failing and non-failing human heart. J Mol Cell Cardiol 1996; 28: 165–169.

    Article  PubMed  CAS  Google Scholar 

  33. Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 1996; 27: 1201–1206.

    Article  PubMed  CAS  Google Scholar 

  34. Finkel MS, Oddis CV, Jacob TD, Watkin SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992; 257: 387–389.

    Article  PubMed  CAS  Google Scholar 

  35. Goldhaber JI, Kim KH, Natterson PD, Lawrence T, Yang P, Weiss JN. Effects of TNF-alpha on [Ca2+], and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol 1996; 271: H1449 - H1455.

    PubMed  CAS  Google Scholar 

  36. Salvemini D, Korbut R, Anggard E, Vane J. Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 1990; 87: 2593–2597.

    Article  PubMed  CAS  Google Scholar 

  37. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997; 100: 2153–2157.

    Article  PubMed  CAS  Google Scholar 

  38. Fleming I, Bauersachs J, Fisslthaler B, Busse R. Cat+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 1998; 82: 686–695.

    Article  PubMed  CAS  Google Scholar 

  39. Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S, et al. Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res 1997; 81: 372–379.

    Article  PubMed  CAS  Google Scholar 

  40. Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994; 269: 13725–13728.

    PubMed  CAS  Google Scholar 

  41. Kaye DM, Wiviott SD, Balligand JL, Simmons WW, Smith TW, Kelly RA. Frequency-dependent activation of a constitutive nitric oxide synthase and regulation of contractile function in adult rat ventricular myocytes. Circ Res 1996; 78: 217–224.

    Article  PubMed  CAS  Google Scholar 

  42. Finkel MS, Oddis CV, Mayer OH, Hattler BG, Simmons RL. Nitric oxide synthase inhibitor alters papillary muscle force-frequency relationship. J Pharmacol Exp Ther 1995; 272: 945–952.

    PubMed  CAS  Google Scholar 

  43. Kanai AJ, Mesaros S, Finkel MS, Oddis CV, Birder LA, Malinski T. Beta-adrenergic regulation of constitutive nitric oxide synthase in cardiac myocytes. Am J Physiol 1997; 273: C1371 - C1377.

    PubMed  CAS  Google Scholar 

  44. Felder CC. Muscarinic acetylcholine receptors: signal transduction through mutiple effectors. FASEB J 1995; 9: 619–625.

    PubMed  CAS  Google Scholar 

  45. Feron O, Smith TW, Michel T, Kelly RA. Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 1997;272:17, 744–17, 748.

    Google Scholar 

  46. Michel T, Feron O. Nitric oxide synthases: which, where, how and why? J Clin Invest 1997; 100: 2146–2152.

    Article  PubMed  CAS  Google Scholar 

  47. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 1993; 90: 347–351.

    Article  PubMed  CAS  Google Scholar 

  48. Feron O, Dessy C, Opel DJ, Arstall MA, Kelly RA, Michel T. Modulation of the eNOS-caveolin interactions in cardiac myocytes: implications for the autonomic regulation of heart rate. J Biol Chem 1998; 273: 30249–30354.

    Article  PubMed  CAS  Google Scholar 

  49. Fleming I, Bauersachs J, Busse R. Calcium-dependent and calcium-independent activation of the endothelial NO synthase. J Vasc Res 1997; 34: 165–174.

    Article  PubMed  CAS  Google Scholar 

  50. Yoshizumi M, Perrella MA, Burnett JC Jr, Lee HE. Tumor ncrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73: 205–209.

    Article  PubMed  CAS  Google Scholar 

  51. Smith CJ, Sun D, Hoegler C, Roth BS, Zhang X, Zhao G, et al. Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 1996; 78: 58–64.

    Article  PubMed  CAS  Google Scholar 

  52. Stein B, Eschenhagen T, Rudiger J, Scholz H, Forstermann U, Gath I. Increased expression of constitutive nitric oxide synthase III, but not inducible nitric oxide synthase II in human heart failure. J Am Coll Cardiol 1998; 32: 1179–1186.

    Article  PubMed  CAS  Google Scholar 

  53. Khadour FH, O’Brien DW, Fu Y, Armstrong PW, Schulz R. Endothelial nitric oxide synthase increases in left atria of dogs with pacing-induced heart failure. Am J Physiol 1998; 275: H1971 - H1978.

    PubMed  CAS  Google Scholar 

  54. Hare JM, Kim B, Flavahan NA, Ricker KM, Peng X, Colman L, et al. Persussis-toxin-sensitive G proteins influence nitric oxide synthase III activity and protein levels in rat heart. J Clin Invest 1998; 101: 1424–1431.

    Article  PubMed  CAS  Google Scholar 

  55. Balligand JL, Ungureanu-Longrois D, Simmons WW, Pimental D, Malinski TA, Kapturczak M, et al. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 1994; 269: 27580–27588.

    PubMed  CAS  Google Scholar 

  56. Ungureanu-Longrois D, Balligand JL, Okada I, Simmons WW, Kobzik L, Lowenstein CJ, et al. Contractile responsiveness of ventricular myocytes to isoproterenol is regulated by induction of nitric oxide synthase activity in cardiac microvascular endothelial cells in heterotypic primary culture. Circ Res 1995; 77: 486–493.

    Article  PubMed  CAS  Google Scholar 

  57. Singh K, Balligand JL, Fischer TA, Smith TW, Kelly RA. Regulation of cytokine-inducible nitric oxide synthase in cardiac myocytes and microvascular endothelial cells. Role of extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) and STATI alpha. J Biol Chem 1996; 271: 1111–1117.

    Article  PubMed  CAS  Google Scholar 

  58. Pinsky DJ, Cai B, Yang X, Rodriguez C, Sciacca RR, Cannon PJ. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor ß. J Clin Invest 1995; 95: 677–685.

    Article  PubMed  CAS  Google Scholar 

  59. Roberts AB, Vodovotz Y, Roche NS, Sporn MB, Nathan CF. Role of nitric oxide in antagonistic effects of transforming growth factor-beta and interleukin-1 beta on the beating rate of cultured cardiac myocytes. Mol Endocrinol 1992; 6: 1921–1930.

    Article  PubMed  CAS  Google Scholar 

  60. Kinugawa K, Schimizu T, Yao A, Kohmoto O, Serizawa T, Takahashi T. Transcriptional regulation of inducible nitric oxide synthase in cultured neonatal rat cardiac myocytes. Circ Res 1997; 81: 911–921.

    Article  PubMed  CAS  Google Scholar 

  61. Ikeda U, Maeda Y, Kawahara Y, Yokoyama M, Shimada K. Angiotensin II augments cytokine-stimulated nitric oxide synthesis in rat cardiac myocytes. Circulation 1995; 92: 2683–2689.

    Article  PubMed  CAS  Google Scholar 

  62. Ikeda U, Murakami Y, Kanbe T, Shimada K. Alpha-adrenergic stimulation enhances inducible nitric oxide synthase expression in rat cardiac myocytes. J Mol Cell Cardiol 1996; 28: 1539–1545.

    Article  PubMed  CAS  Google Scholar 

  63. Oddis CV, Simmons RL, Hattler BG, Finkel MS. cAMP enhances inducible nitric oxide synthase mRNA stability in cardiac myocytes. Am J Physiol 1995; 269: H2044 - H2050.

    PubMed  CAS  Google Scholar 

  64. McKenna TM, Li S, Tao S. PKC mediates LPS- and phorbol-induced cardiac cell nitric oxide synthase activity and hypocontractility. Am J Physiol 1995; 269: H1891 - H1898.

    PubMed  CAS  Google Scholar 

  65. Yamamoto K, Dang QN, Kelly RA, Lee RT. Mechanical strain suppresses inducible nitric oxide synthase in cardiac myocytes. J Biol Chem 1998; 273: 11862–11866.

    Article  PubMed  CAS  Google Scholar 

  66. Simmons WW, Closs EI, Cunningham JM, Smith TW, Kelly RA. Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and NO production by CAT-1, CAT-2A, and CAT-2B. J Biol Chem 1996; 271: 11694–11702.

    Article  PubMed  CAS  Google Scholar 

  67. Simmons WW, Ungureanu-Longrois D, Smith GK, Smith TW, Kelly RA. Glucocorticoïds regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport. J Biol Chem 1996; 271: 23928–23937.

    Article  PubMed  CAS  Google Scholar 

  68. Mayer B, Pfeiffer S, Schrammel A, Koesling D, Schmidt K, Brunner F. A new pathway of nitric oxide/ cyclic GMP signaling involving S-nitrosoglutathione. J Biol Chem 1998; 273: 3264–3270.

    Article  PubMed  CAS  Google Scholar 

  69. Méry PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 1993; 268: 26286–26295.

    PubMed  Google Scholar 

  70. Kirstein M, Rivet-Bastide M, Hatem S, Benardeau A, Mercadier JJ, Fischmeister R. Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest 1995; 95: 794–802.

    Article  PubMed  CAS  Google Scholar 

  71. Wang YG, Rechenmacher CE, Lipsius SL. Nitric oxide signaling mediates stimulation of L-Type Ca2+ current elicited by withdrawal of acetylcholine in cat atrial myocytes. J Gen Physiol 1998; 111: 113–125.

    Article  PubMed  CAS  Google Scholar 

  72. Han X, Shimoni Y, Giles WR. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate. J Gen Physiol 1995; 106: 45–65.

    Article  PubMed  CAS  Google Scholar 

  73. Ono K, Trautwein W. Potentiation by cyclic GMP of beta-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol 1991; 443: 387–404.

    PubMed  CAS  Google Scholar 

  74. Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E. Low increase of cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 1996; 78: 91–101.

    Article  PubMed  CAS  Google Scholar 

  75. Joe EK, Schussheim AE, Longrois D, Mäki T, Kelly RA, Smith TW, et al. Regulation of cardiac myocyte contractile function by inducible nitric oxide synthase (iNOS): mechanisms of contractile depression by nitric oxide. J Mol Cell Cardiol 1998; 30: 303–315.

    Article  PubMed  CAS  Google Scholar 

  76. Méry PF, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 1991; 88: 1197–1201.

    Article  PubMed  Google Scholar 

  77. Wahler GM, Dollinger SJ. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol 1995; 268: C45–054.

    PubMed  CAS  Google Scholar 

  78. Yasuda S, Lew WY. Lipopolysaccharide depresses cardiac contractility and beta-adrenergic contractile response by decreasing myofilament response to Ca2+ in cardiac myocytes. Circ Res 1997; 81: 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  79. Robertson SP, Johnson JD, Holroyde MJ, Kranias EG, Potter JD, Solaro RJ. The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J Biol Chem 1982; 257: 260–263.

    PubMed  CAS  Google Scholar 

  80. Pfitzer G, Ruegg JC, Flockerzi V, Hofmann F. cGMP-dependent protein kinase decreases calcium sensitivity of skinned cardiac fibers. FEBS Lett 1982; 149: 171–175.

    Article  PubMed  CAS  Google Scholar 

  81. Galione A, Lee HC, Busa WB. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 1991; 253: 1143–1146.

    Article  PubMed  CAS  Google Scholar 

  82. Guo X, Laflamme MA, Becker PL. Cyclic ADP-ribose does not regulate sarcoplasmic reticulum Ca2+ release in intact cardiac myocytes. Circ Res 1996; 79: 147–151.

    Article  PubMed  CAS  Google Scholar 

  83. lino S, Cui Y, Galione A, Terrar DA. Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes. Influence of temperature. Circ Res 1997; 81: 879–884.

    Article  Google Scholar 

  84. Zahradnikova A, Minarovic I, Venema RC, Meszaros LG. Inactivation of the cardiac ryanodine receptor calcium release channel by nitric oxide. Cell Calcium 1997; 22: 447–454.

    Article  PubMed  CAS  Google Scholar 

  85. Hu H, Chiamvimonvat N, Yamaghishi T, Marban E. Direct inhibition of expressed cardiac L-type Ca2+ channels by S-nitrosothiol nitric oxide donors. Circ Res 1997; 81: 742–752.

    Article  PubMed  CAS  Google Scholar 

  86. Campbell DL, Stamler JS, Strauss HC. Redox modulation of L-type calcium channel in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 1996; 108: 277–293.

    Article  PubMed  CAS  Google Scholar 

  87. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998; 279: 234–237.

    Article  PubMed  CAS  Google Scholar 

  88. Shen W, Hintze TH, Wolin MS. Nitric oxide. An important signaling mechanism between vascular endothelium and parenchymal cells in the regulation of oxygen consumption. Circulation 1995; 92: 3505–3512.

    Article  PubMed  CAS  Google Scholar 

  89. Kelm M, Schafer S, Dahmann R, Dolu B, Perings S, Decking UK, et al. Nitric oxide induced contractile dysfunction is related to a reduction in myocardial energy generation. Cardiovasc Res 1997; 36: 185–194.

    Article  PubMed  CAS  Google Scholar 

  90. Molina y Vedia L, Mc Donald B, Reep B, Brune B, Di Silvio M, et al. Nitric oxide-induced Snitrosylation of glyceraldehyde-3 phosphate dihydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 1992; 267: 24929–24932.

    Google Scholar 

  91. Mohr S, Stamler JS, Brune B. Post-tranlational modification of glyceraldehyde-3 phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J Biol Chem 1996; 271: 4209–4214.

    Article  PubMed  CAS  Google Scholar 

  92. Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, et al. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA 1996; 93: 5604–5609.

    Article  PubMed  CAS  Google Scholar 

  93. Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Kelly RA. Reversible S-nitrosation of creatinine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 1998; 30: 979–988.

    Article  PubMed  CAS  Google Scholar 

  94. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 1994; 75: 1086–1095.

    Article  PubMed  CAS  Google Scholar 

  95. Oddis CV, Finkel MS. Cytokine-stimulated nitric oxide production inhibits mitochondrial activity in cardiac myocytes. Biochem Biophys Res Commun 1995; 213: 1002–1009.

    Article  PubMed  CAS  Google Scholar 

  96. Beckman JS, Koppenol WH. Nitric oxide, superoxide and peroxynitrite: the good, the bad and ugly. Am J Physiol 1996; 271: 1424–1437.

    Google Scholar 

  97. Hausladen A, Fridovich K. Superoxide and peroxinitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 1994; 269: 29405–29408.

    PubMed  CAS  Google Scholar 

  98. Gilad E, Zingarelli B, Salzman AL, Szabo C. Protection by inhibition of poly (ADP-ribose) synthetase against oxidant injury in cardiac myoblasts in vitro. J Mol Cell Cardiol 1997; 29: 2585–2597.

    Article  PubMed  CAS  Google Scholar 

  99. Igarashi J, Nishida M, Hoshida S, Yamashita N, Kosaka H, Hori M, et al. Inducible nitric oxide synthase augments injury elicited by oxidative stress in rat cardiac myocytes. Am J Physiol 1998; 274: C245 - C252.

    PubMed  CAS  Google Scholar 

  100. Paulus WJ, Vantrimpont PJ, Shah AM. Paracine coronary endothelial control of left ventricular function in humans. Circulation 1995; 92: 2119–2126.

    Article  PubMed  CAS  Google Scholar 

  101. Sherman AJ, Davis CA 3rd, Klocke FJ, Harris KR, Srinivasan G, Yaacoub AS, et al. Blockade of nitric oxide synthesis reduces myocardial oxygen consumption in vivo. Circulation 1997; 95: 1328–1334.

    Article  PubMed  CAS  Google Scholar 

  102. Zhang X, Xie YW, Nasjletti A, Xu X, Wolin MS, Hintze TH. ACE inhibitors promote nitric oxide accumulation to modulate myocardial oxygen consumption. Circulation 1997; 95: 176–182.

    Article  PubMed  Google Scholar 

  103. Laursen JB, Harrisson DG. Modulation of myocardial oxygen consumption through ACE inhibitors. No effect? Circulation 1997; 95: 14–16.

    Article  PubMed  CAS  Google Scholar 

  104. Grocott-Mason R, Fort S, Lewis MJ, Shah AM. Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol 1994; 266: H1699 - H1705.

    PubMed  CAS  Google Scholar 

  105. Prendergast BD, Sagach VF, Shah AM. Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 1997; 96: 1320–1329.

    Article  PubMed  CAS  Google Scholar 

  106. Smith JA, Shah AM, Lewis MJ. Factors released from endocardium of the ferret and pig modulate myocardial contraction. J Physiol 1991; 439: 1–14.

    PubMed  CAS  Google Scholar 

  107. Brady AJ, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 1993; 265: H176 - H182.

    PubMed  CAS  Google Scholar 

  108. Han X, Kubota I, Feron O, Opel DJ, Arstall MA, Zhao YY, et al. Muscarinic cholinergic regulation of cardiac myocyte ICa-L is absent in mice with targeted disruption of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1998; 95: 6510–6515.

    Article  PubMed  CAS  Google Scholar 

  109. Hare JM, Loh E, Creager MA, Colucci WS. Nitric oxide inhibits the positive inotropic response to betaadrenergic stimulation in humans with left ventricular dysfunction. Circulation 1995; 92: 2198–2203.

    Article  PubMed  CAS  Google Scholar 

  110. Hare JM, Givertz MM, Creager MA, Colucci WS. Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: potentiation of beta-adrenergic inotropic responsiveness. Circulation 1998; 97: 161–166.

    Article  PubMed  CAS  Google Scholar 

  111. Bartunek J, Shah AM, Vanderheyden M, Paulus WJ. Dobutamine enhances cardiodepressant effects of receptor-mediated coronary endothelial stimulation. Circulation 1997; 95: 90–96.

    Article  PubMed  Google Scholar 

  112. Keaney JF Jr, Hare JM, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol 1996; 271: H2646 - H2652.

    PubMed  CAS  Google Scholar 

  113. Gyurko R, Fishman MC, Huang PL. Enhanced systolic contractility and preserved diastolic relaxation in mice deficient in endothelial nitric oxide synthase. Presented at the 4th International Meeting on the Biology of Nitric Oxide, Kyoto, Japan, September 1997.

    Google Scholar 

  114. Godecke A, Heinicke T, Decking UKM, Stumpe T, Schrader J. B-adrenergic stimulation of eNOSdeficient mice hearts. Circulation 1998; 98: I - 70 (abstract).

    Google Scholar 

  115. Fei L, Baron AD, Henry DP, Zipes DP. Intrapericardial delivery of L-arginine reduces the increased severity of ventricular arrhythmias during sympathetic stimulation in dogs with acute coronary occlusion: nitric oxide modulates sympathetic effects on ventricular electrophysiological properties. Circulation 1997; 96: 4044–4049.

    Article  PubMed  CAS  Google Scholar 

  116. Gauthier C, Erfanian M, Baron O, Balligand JL. Control of contractile and rhythmic properties of human atrial tissue by a NO pathway. Circulation 1998; 98: 1–732 (abstract).

    Article  Google Scholar 

  117. Sterin-Borda L, Genaro A, Perez Leiros C, Cremaschi G, Echague AV, Borda E. Role of nitric oxide in cardiac beta-adrenoceptor-inotropic response. Cell Signal 1998; 10: 253–257.

    Article  PubMed  CAS  Google Scholar 

  118. Hare JM, Keaney JF Jr, Balligand JL, Loscalzo J, Smith TW, Colucci WS. Role of nitric oxide in parasympathetic modulation of (3-adrenergic myocardial contractility in normal dogs. J Clin Invest 1995; 95: 360–366.

    Article  PubMed  CAS  Google Scholar 

  119. Elvan A, Rubart M, Zipes DP. NO modulates autonomic effects on sinus discharge rate and AV nodal conduction in open-chest dogs. Am J Physiol 1997; 272: H263 - H271.

    PubMed  CAS  Google Scholar 

  120. Han X, Shimoni Y, Giles WR. An obligatory role of nitric oxide in autonomic control of mammalian heart rate. J Physiol 1994; 476: 309–314.

    PubMed  CAS  Google Scholar 

  121. Kilter H, Lenz O, La Rosée K, Flesch M, Schwinger RH, Madge M, et al. Evidence against a role of nitric oxide in the indirect negative inotropic effect of M-cholinoreceptor stimulation in human ventricular myocardium. Naunyn-Schmiedeberg’s Arch Pharmacol 1995; 352: 308–312.

    PubMed  CAS  Google Scholar 

  122. Méry-PF, Hove-Madsen L, Chesnais JM, Hartzell HC, Fischmeister R. Nitric oxide synthase does not participate in negative inotropic effect of acetylcholine in frog heart. Am J Physiol 1996; 270: H1178 - H1188.

    Google Scholar 

  123. Stein B, Droemuller A, Mulsch A, Schmitz W, Scholz H. Ca (++)-dependent constitutive nitric oxide synthase is not involved in the cyclic GMP-increasing effects of carbachol in ventricular cardiomyocytes. J Pharmacol Exp Ther 1993; 266: 919–925.

    PubMed  CAS  Google Scholar 

  124. Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R. Muscarinic and betaadrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 1999; 5: 331–334.

    Article  PubMed  CAS  Google Scholar 

  125. Gallo MP, Ghigo D, Bosia A, Allaotti G, Costamagna C, Penna C, et al. Modulation of guinea-pig cardiac L-type calcium current by nitric oxide synthase inhibitors. J Physiol (Lond) 1998; 506: 639–651.

    Article  CAS  Google Scholar 

  126. Shimoni Y, Han X, Severson D, Giles WR. Mediation by nitric oxide of the indirect effects of adenosine on calcium current in rabbit heart pacemaker cells. Br J Pharm 1996; 119: 1463–1469.

    Article  CAS  Google Scholar 

  127. Martynyuk AE, Kane KA, Cobbe SM, Rankin AC. Nitric oxide mediates the anti-adrenergic effect of adenosine on calcium current in isolated rabbit atrioventricular nodal cells. Pflugers Arch 1996; 431: 452–457.

    Article  PubMed  CAS  Google Scholar 

  128. Martynyuk AE, Kane KA, Cobbe SM, Rankin AC. Role of nitric oxide, cGMP and superoxide in inhibition by adenosine of calcium current in rabbit atrioventricular nodal cells. Cardiovasc Res 1997; 34: 360–367.

    Article  PubMed  CAS  Google Scholar 

  129. Wang YG, Lipsius SL. Acetylcholine elicits a rebound stimulation of Ca2+ current mediated by pertussis toxin-sensitive G protein and cAMP-dependent protein kinase A in atrial myocytes. Circ Res 1995; 76: 634–644.

    Article  PubMed  CAS  Google Scholar 

  130. Sears CE, Choate JK, Paterson DJ. Inhibition of nitric oxide synthase slows heart rate recovery from cholinergic activation. J Appl Physiol 1998; 84: 1596–1603.

    PubMed  CAS  Google Scholar 

  131. Zakharov SI, Pieramici S, Kumar GK, Prabhakar NR, Harvey RD. Nitric oxide synthase activity in guinea-pig ventricular myocytes is not involved in muscarinic inhibition of cAMP-regulated ion channels. Circ Res 1996; 78: 925–935.

    Article  PubMed  CAS  Google Scholar 

  132. Ruschittzka FT, Noll G, Luscher TF. The endothelium in coronary artery disease. Cardiology 1997; 3: 3–19.

    Article  Google Scholar 

  133. Calderone A, Thaik CM, Takahashi N, Chang DLF, Colucci WS. NO, ANP, cGMP, inhibit the growth-promoting effects of norephephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998; 101: 812–818.

    Article  PubMed  CAS  Google Scholar 

  134. Devlin AM, Brosnan MJ, Graham D, Morton JJ, McPhaden AR, Mcintyre M, et al. Vascular smooth muscle cell polyploidy and cardiomyocyte hypertrophy due to chronic NOS inhibition in vivo. Am J Physiol 1998; 274: H52 - H59.

    PubMed  CAS  Google Scholar 

  135. Ishigai Y, Mori T, Ikeda T, Fukuzawa A, Shibano T. Role of bradykinin-NO pathway in prevention of cardiac hypertrophy by ACE inhibitor in rat cardiomyocytes. Am J Physiol 1997; 273: H2659 - H2663.

    PubMed  CAS  Google Scholar 

  136. Takaori K, Kim S, Ohta K, Hamaguchi A, Yagi K, Iwao H. Inhibition of nitric oxide synthase causes cardiac phenotypic modulation in rat. Eur J Pharmacol 1997; 322: 59–62.

    Article  PubMed  CAS  Google Scholar 

  137. de Belder A, Robinson N, Richardson P, Martin J, Moncada S. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1997; 95: 1672, 1673.

    Google Scholar 

  138. Avontuur JA, Bruining HA, Ince C. Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res 1995; 76: 418–425.

    Article  PubMed  CAS  Google Scholar 

  139. Ungureanu-Longrois D, Balligand JL, Kelly RA, Smith TWJ. Myocardial contractile dysfuncion in the systemic inflammatory response syndrome: role of a cytokine-inducible nitric oxide synthase in cardiac myocytes. J Mol Cell Cardiol 1995; 27: 155–167.

    Article  PubMed  CAS  Google Scholar 

  140. Balligand JL, Ungureanu-Longrois D, Simmons WW, Kobzik L, Lowenstein CJ, Lamas S, et al. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-113 and IFN-y. Am J Physiol 1995; 268: H1293 - H1303.

    PubMed  CAS  Google Scholar 

  141. Fujii H, Ichimori K, Hoshiai K, Nakazawa H. Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem 1997;272:32, 773–32, 778.

    Google Scholar 

  142. Kubes P, Grisham MB, Barrowman JA, Gaginella T, Granger DN. Leukocyte-induced vascular protein leakage in cat mesentery. Am J Physiol 1991; 261: H1872 - H1879.

    PubMed  CAS  Google Scholar 

  143. Kubes P. Nitric oxide affects microvascular permeability in the intact and inflamed vasculature. Microcirculation 1995; 2: 235–244.

    Article  PubMed  CAS  Google Scholar 

  144. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature (Lond) 1995; 375: 408–411.

    Article  CAS  Google Scholar 

  145. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 1995; 81: 641–650.

    Article  PubMed  CAS  Google Scholar 

  146. Laubach VE, Sheseley EG, Smithies O, Sherman PA. Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Nail Acad Sci USA 1995; 92: 10688–10692.

    Article  CAS  Google Scholar 

  147. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323: 236–241.

    Article  PubMed  CAS  Google Scholar 

  148. Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, Mann DL. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation 1999; 99: 3224–3226.

    Article  PubMed  CAS  Google Scholar 

  149. Muller-Werdan U, Schumann H, Fuchs R, Reithmann C, Loppnow H, Koch S, et al. TNF alpha is cardiodepressant in pathophysiologically relevant concentrations without inducing iNOS or triggering cytotoxicity. J Mol Cell Cardiol 1997; 29: 2915–2923.

    Article  PubMed  CAS  Google Scholar 

  150. Oral H, Dorn GW, Mann DL. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte. J Biol Chem 1997; 272: 4836–4842.

    Article  PubMed  CAS  Google Scholar 

  151. Anversa P. Myocyte apoptosis and heart failure. Eur Heart J 1998; 19: 359–360.

    Article  PubMed  CAS  Google Scholar 

  152. Anversa P, Kajstura J. Myocyte cell death in the diseased heart. Circ Res 1998; 82: 1231–1233.

    Article  PubMed  CAS  Google Scholar 

  153. Worrall NK, Lazenby WD, Misko TP, Lin TS, Rodi CP, Manning PT, et al. Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med 1995; 181: 63–70.

    Article  PubMed  CAS  Google Scholar 

  154. Schulz R, Panas DL, Catena R, Moncada S, Olley PM, Lopaschuk GD. The role of nitric oxide in cardiac depression induced by interleukin 1 and tumor necrosis factor-a. Br J Pharmacol 1995; 114: 27–34.

    Article  PubMed  CAS  Google Scholar 

  155. Brady AJ, Poole-Wilson PA, Harding SE, Warren JB. Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 1992; 263: H1963 - H1966.

    PubMed  CAS  Google Scholar 

  156. Ziolo MT, Dollinger SJ, Wahler GM. Myocytes isolated from rejecting transplanted rat hearts exhibit reduced basal shortening which is reversible by aminoguanidine. J Mol Cell Cardiol 1998; 30: 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  157. Balligand JL, Ungureanu D, Kelly KA, Kobzik L, Pimental D, Michel T, et al. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 1993; 91: 2314–2319.

    Article  PubMed  CAS  Google Scholar 

  158. Decking UK, Flesche CW, Godecke A, Schrader J. Endotoxin-induced contractile dysfunction in guinea pig hearts is not mediated by nitric oxide. Am J Physiol 1995; 268: H2460 - H2465.

    PubMed  CAS  Google Scholar 

  159. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Nail Acad Sci USA 1989; 86: 6753–6757.

    Article  CAS  Google Scholar 

  160. Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG. Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction. Circ Res 1990; 67: 753–763.

    Article  PubMed  CAS  Google Scholar 

  161. Pyo RT, Wahler GM. Ventricular myocytes isolated from rejecting cardiac allografts exhibit a reduced beta-adrenergic contractile response. J Mol Cell Cardiol 1995; 27: 773–776.

    Article  PubMed  CAS  Google Scholar 

  162. Sun X, Delbridge LMD, Dusting GY. Cardiodepressant effects of interferon-gamma and endotoxin reversed by inhibition of NO synthase 2 in rat myocardium. J Mol Cell Cardiol 1998; 30: 989–997.

    Article  PubMed  CAS  Google Scholar 

  163. Mikami S, Kawashima S, Kanazawa K, Hirata K, Hotta H, Hayashi Y, et al. Low-dose N omega-nitroL-arginine methyl ester treatment improves survival rate and decreases myocardial injury in a murine model of viral myocarditis induced by coxackie virus B3. Circ Res 1997; 81: 504–511.

    CAS  Google Scholar 

  164. Lowenstein CJ, Hill SL, Lafond-Walker A, Wu J, Allen G, Landavere M, et al. Nitric oxide inhibits viral replication in murine myocarditis. J Clin Invest 1996; 97: 1837–1843.

    Article  PubMed  CAS  Google Scholar 

  165. Pinsky DJ, Oz MC, Koga S, Taha Z, Broekman MJ, Marcus AJ, et al. Cardiac preservation is enhanced in a heterotopic rat transplant model by supplementing the nitric oxide pathway. J Clin Invest 1994; 93: 2291–2297.

    Article  PubMed  CAS  Google Scholar 

  166. Yang X, Chowdhury N, Cai B, Brett J, Marboe C, Sciacca RR, et al. Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest 1994; 94: 714–721.

    Article  PubMed  CAS  Google Scholar 

  167. Kim Y-M, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999; 84: 253–256.

    Article  PubMed  CAS  Google Scholar 

  168. Szabolcs M, Michler RE, Yang X, Aji W, Royd Athan E, et al. Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase. Circulation 1996; 94: 1665–1673.

    Article  PubMed  CAS  Google Scholar 

  169. Szabolcs MJ, Ravalli S, Minanov O, Sciacca RR, Michler RE, Cannon PJ. Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection. Transplantation 1998; 65: 804–812.

    Article  PubMed  CAS  Google Scholar 

  170. Nguyen T, Brunson D, Crespi CL, Penamn BW, Wishnok JS, Tannenbaum SR. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA 1992; 89: 3033–3034.

    Google Scholar 

  171. Burney S, Tamir S, Gal S, Tannenbaum SR. A mechanistic analysis of nitric oxide-induced cellular toxicity. Nitric Oxide Biol Chem 1997; 1: 130–144.

    Article  CAS  Google Scholar 

  172. Hounstetter A, Izumo S. Apoptosis: basic mechanisms and implication for cardiovascular disease. Circ Res 1998; 82: 1111–1129.

    Article  Google Scholar 

  173. Koglin J, Granville DJ, Glysing-Jensen T, Mudgalt JS, Carthy CM, McManus BM, Russell ME. Attenuated acute cardiac rejection in NOS2-/- recipients correlates with reduced apoptosis. Circulation 1999; 99: 836–842.

    Article  PubMed  CAS  Google Scholar 

  174. Lew WYW. LPS induces cell shrinkage in rabbit ventricular cardiac myocytes. Am J Physiol 1997; 272: H2989 - H2993.

    PubMed  CAS  Google Scholar 

  175. Preckel B, Kojda G, Schlack W, Ebel D, Kottenberg K, Noack E, et al. Inotropic effects of glyceryl trinitrate and spontaneous NO donors in the dog heart. Circulation 1997; 96: 2675–2682.

    Article  PubMed  CAS  Google Scholar 

  176. Mohan P, Brutsaert DL, Paulus WS, Sys V. Myocardial contractile response to nitric oxide and cGMP. Circulation 1996; 93: 1223–1229.

    Article  PubMed  CAS  Google Scholar 

  177. Pinsky DJ, Aji W, Szabolcs M, Athan ES, Liu Y, Yang YM, et al. Nitric oxide triggers programmed cell death (apoptosis) of adult rat cardiac myocytes in culture. Am J Physiol 1999; 277: H1189 - H1199.

    PubMed  CAS  Google Scholar 

  178. Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak and Bc1-x. Circ Res 1999; 84: 21–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Balligand, JL., Cannon, P.J. (2000). Nitric Oxide and Cardiomyocyte Function. In: Loscalzo, J., Vita, J.A. (eds) Nitric Oxide and the Cardiovascular System. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-002-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-002-5_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-101-1

  • Online ISBN: 978-1-59259-002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics