Skip to main content

Acoustic and Auditory Issues

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

During long duration space missions, crewmembers are exposed to a variety of incessant noises and acoustic conditions, as well as brief, but very loud, sound levels during launch, descent, and possible abort scenarios. Some common sources of these sounds are payloads (science experiments), ventilation fans, thermal control systems, and equipment within the limited confines of spacecraft (Goodman and Grosveld. Acoustics and noise control in space crew compartments. National Aeronautics and Space Administration, Houston; 2015). Crewmembers have reported that the monotony of adverse acoustic conditions can degrade habitability, especially with inadequate acoustic respite during long duration missions. More specifically, the impact of acoustics on human health and performance during space flight has been associated with disruptions of sleep, interference with speech communications, reduced audible detection of caution or warning alarms, and reduced human performance in demanding tasks. Because excessive noise conditions may also be a risk for temporary or permanent hearing loss, crewmembers must frequently wear hearing protection. In an effort to prevent hearing loss and improve habitability during space missions, multidisciplinary teams have been established to control acoustical noise using hardware design and reviews, acoustical measurements, noise controls, and hearing conservation practices. This chapter offers a summary of the impact of spacecraft noise on human health and performance, as well as options for remediation and crew protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to bear in mind that statistical metrics are not necessarily applied well to conventional audiometric testing, which does not test in steps of less than 5 dB [66].

References

  1. Goodman JR, Grosveld FW. Acoustics and noise control in space crew compartments. National Aeronautics and Space Administration, Houston. NASA/SP-2015-624; 2015.

    Google Scholar 

  2. Passchier-Vermeer W, Passchier WF. Noise exposure and public health. Environ Health Perspect. 2000;108(Suppl 1):123–31.

    PubMed  PubMed Central  Google Scholar 

  3. ANSI/ASA. S1.1 Acoustical terminology. American National Standards Institute, Melville; 2013.

    Google Scholar 

  4. Berger EH, Neitzel R, Kladden CA. Noise Navigator Sound Level Database. https://multimedia.3m.com/mws/media/888553O/noise-navigator-sound-level-hearing-protection-database.pdf.

  5. ANSI/ASA.S12.2-2008 Criteria for Evaluating Room Noise. American National Standards Institute, Melville; 2013.

    Google Scholar 

  6. ANSI. S12.65-2006. American National Standard for Rating Noise with Respect to Speech Interference, American National Standards Institute, Melville; 2006.

    Google Scholar 

  7. Sliwinska-Kowalska M, Davis A. Noise-induced hearing loss. Noise Health. 2012;14(61):274–80.hg.

    PubMed  Google Scholar 

  8. International Standardizations Organization. ISO-1999. Acoustics determination of Occupational Noise Exposure and Estimation of Noise-Induced Hearing Impairment. Switzerland: ISO; 1990.

    Google Scholar 

  9. ANSI/ASA. S3.44- 1996. American National Standard: Determination of occupational noise exposure and estimation of noise-induced hearing impairment. American National Standards Institute, New York; 1996.

    Google Scholar 

  10. Humes LE, Joellenbeck LM, Durch JS. editors. Noise and military service: implications for hearing loss and tinnitus. National Academies Press. 2005. Available from: http://www.nap.edu/catalog/11443.html

  11. Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, et al. Auditory and non-auditory effects of noise on health. Lancet. 2013;383:1325–32.

    PubMed  PubMed Central  Google Scholar 

  12. Muzet A. Environmental noise, sleep and health. Sleep Med Rev. 2007;11:135–42.

    PubMed  Google Scholar 

  13. Basner M, Brink M, Bristow A, de Kluisenar Y, Finegold L, Hong J, et al. ICBEN review of research on the biological effects of noise 2011–2014. Noise Health. 2015;17(75):57–82.. Available from: https://www.researchgate.net/publication/271077177_ICBEN_Review_of_Research_on_the_Biological_Effects_of_Noise_2011-2014

    PubMed  PubMed Central  Google Scholar 

  14. Occupational Safety and Health Administration. 29 CFR Chapter XVII, Part 1910.95. Occupational Noise Exposure Standard. OSHA; 1983.

    Google Scholar 

  15. Department of Defense. Instruction 6055.12 Hearing Conservation Program. Washington: DOD; 2010.

    Google Scholar 

  16. Cohen MM. Perception of facial features and face-to-face communications in space. Aviat Space Environ Med. 2000;71:A51–7.

    CAS  PubMed  Google Scholar 

  17. Shi LF. Measuring effectiveness of semantic cues in degraded English sentences in non-native listeners. Int J Audiol. 2014;53(1):30–9.

    PubMed  Google Scholar 

  18. Begault DR. Assessment and mitigation of the effects of noise on habitability in deep space environments: report on non-auditory effects of noise. NASA. NASA/TM-2018-219748; 2018.

    Google Scholar 

  19. Driskell JE, Salas E. Stress and human performance. Manwah: Lawrence Erlbaum Associates; 1996.

    Google Scholar 

  20. Clark JB. Acoustic issues in human spaceflight. In: Henderson D, Prasher D, Kopke R, Salvi R, Hamernik R, editors. Noise induced hearing loss: basic mechanisms, prevention and control. 1st ed. London: NRN Publications; 2001.

    Google Scholar 

  21. Henderson D, Hamernik RP. Impulse noise: critical review. J Acoust Soc Am. 1986;80:569–84.

    CAS  PubMed  Google Scholar 

  22. Goley SG, Song WJ, Kim JH. Kurtosis corrected sound pressure level as a noise metric for risk assessment of occupational noises. J Acoust Soc Am. 2011;23(3):1475–81.

    Google Scholar 

  23. Xie HW, Qiu W, Heyer NJ, Zhang MB, Zhang P, Zhao YM, Hamernik RP. The use of the Kurtosis-adjusted cumulative noise exposure metric in evaluating the hearing loss risk for complex noise. Ear & Hearing. 2016;37(3):312–23. https://doi.org/10.1097/AUD.0000000000000251.

  24. Suter AH. Occupational Hearing loss from non-Gaussian noise. Seminar Hearing. 2017;28:225–62.

    Google Scholar 

  25. Mills JH, Gilbert RM, Adkins WY. Temporary threshold shift in humans exposed to octave bands of noise for 16 to 24 hours. J Acoust Soc Am. 1979;65:1238–48.

    CAS  PubMed  Google Scholar 

  26. Ryan AF, Kujawa SG, Hammill T, Le Prell C, Kil J. Temporary and permanent noise-induced threshold shifts: a review of basic and clinical observations. Otol Neurotol. 2016;37(8):e271–5. https://doi.org/10.1097/MAO.0000000000001071.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Henderson D, Hamernik RP. A parametric evaluation of the equal energy hypothesis. In: Salvi RJ, Henderson D, Hamernik RP, Colletti V, editors. Basic and applied aspects of noise-induced hearing loss, NATO ASI Series, vol. 111. New York: Plenum Press; 1986.

    Google Scholar 

  28. Ward WD, Duvall AJ, Santi PA, et al. Total energy and critical intensity concepts in noise damage. Ann Otol. 1981;90:584–9.

    CAS  Google Scholar 

  29. Henderson D, Hamernik RP. Biologic bases of noise-induced hearing loss. Occup Med. 2010;10:513–34.

    Google Scholar 

  30. Slepecky N. Overview of mechanical damage to the inner ear: noise as a tool to probe cochlear function. Hear Res. 1986;22:307–21.

    CAS  PubMed  Google Scholar 

  31. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear & Hearing. 2005;27(1):2–19.

    Google Scholar 

  32. Hu BH, Guo W, Wang PY, et al. Intense noise-induced apoptosis in hair cells of guinea pig cochleae. Acta Otolaryngol. 2000;120:19–24.

    CAS  PubMed  Google Scholar 

  33. Campbell K, Claussen A, Meech R, Verhulst S, Fox D, Hughes L. D-methionine (D-met) significantly rescues noise-induced hearing loss: timing studies. Hear Res. 2011;282(1–2):138–44.

    CAS  PubMed  Google Scholar 

  34. Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res. 2007;226(1–2):22–43.

    PubMed  Google Scholar 

  35. Kil J, Pierce C, Tran H, Gu R, Lynch ED. Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase. Hear Res. 2007;226(1–2):44–51.

    CAS  PubMed  Google Scholar 

  36. Kopke R, Allen KA, Henderson D, et al. A radical demise: toxins and trauma share common pathways in hair cell death. Ann N Y Acad Sci. 1999;884:171–91.

    CAS  PubMed  Google Scholar 

  37. Hamernik RP, Henderson D, Coling D, et al. Influence of vibration on asymptotic threshold shift produced by impulse noise. Audiology. 1981;20:259–69.

    CAS  PubMed  Google Scholar 

  38. Melnick W. Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am. 1991;90(1):147–54.

    CAS  PubMed  Google Scholar 

  39. Danielson R, Henderson D, Gratton MA, Bianchi L, Salvi R. The importance of ‘temporal pattern’ in traumatic impulse noise exposures. J Acoust Soc Am. 1991;91:209–14.

    Google Scholar 

  40. Kirchner DB, Evenson E, Dobie RA, Rabinowitz P, Crawford J, Kopke R, et al. Occupational noise-induced hearing loss: ACOEM task force on occupational hearing loss. J Occ Environ Med. 2012;54(1):106–8.

    Google Scholar 

  41. Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg. 2017;46(1):41. https://doi.org/10.1186/s40463-017-0219.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015;330(Pt B:191–9.

    Google Scholar 

  43. Lobarinas E, Salvi R, Baizer J, Altman C, Allman B. Noise and health special issue: advances in the neuroscience of tinnitus. Noise Health. 2013;15(63):81–2.

    PubMed  Google Scholar 

  44. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013;33(34):13686–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hearin Res. 2017;349:138–47.

    Google Scholar 

  46. Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006;26(7):2115–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci. 2011;31(38):13452–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29(45):14077–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Plack CJ, Barker D, Prednergast G. Perceptual consequences of “hidden” hearing loss. Trend Hearin. 2014;18:1–11.

    Google Scholar 

  50. National Aeronautics and Space Administration. NPR 1800.1D. NASA Occupational Health Program Procedure. Houston: NASA Johnson Space Center; 2016.

    Google Scholar 

  51. Department of Defense Design Criteria Standard. MIL-STD-1472G. Human Engineering. Washington: DOD; 2014.

    Google Scholar 

  52. National Institute for Occupational Safety and Health. Revised Criteria for a recommended standard—Occupational noise exposure. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health, DHHS (NIOSH). Publication 98–126; 1998

    Google Scholar 

  53. World Health Organization. Noise. World Health Organization. Environmental Health Criteria Document No. 12; 1980.

    Google Scholar 

  54. World Health Organization. Occupational and Community Noise. WHO Fact Sheet No. 258; 2001.

    Google Scholar 

  55. Environmental Protection Agency Office of Noise Abatement and Control. Information on levels of environmental noise requisited to protect public health and welfare with an adequate margin of safety. EPA. EPA Document 550/9-74-004, 1974.

    Google Scholar 

  56. Berger EH. The noise manual. 5th ed. Fairfax: American Industrial Hygiene Association; 2000.

    Google Scholar 

  57. National Aeronautics and Space Administration. NSTS-1282. ISS Generic Operational Flight Rules Vol. B, B13-152, Noise Level Constraints. Houston: NASA Johnson Space Center; 2016.

    Google Scholar 

  58. Shoenberger RW, Harris CS. Human performance as a function of changes in acoustic noise levels. J Eng Psychol. 1965;4:108–19.

    Google Scholar 

  59. Dimberg U. Perceived unpleasantness and facial reactions to auditory stimuli. Scand J Psychol. 1990;31:70–5.

    CAS  PubMed  Google Scholar 

  60. Stansfeld SA, Haines MM, Burr M, et al. A review of environmental noise and mental health. Noise & Health. 2000;8:1–8.

    Google Scholar 

  61. Hammersen F, Niemann H, Hoebel J. Environmental noise annoyance and mental health in adults: findings from the cross-sectional German health update (GEDA) study. Int J Environ Res Public Health. 2016;13(10):E954.

    PubMed  Google Scholar 

  62. Babisch W, Dutilleux G, Paviotti M, Backman A, Gergely B, McManus B, Licitra G. Good practice guide on noise exposure and potential health effects. European Environmental Agency. EEA technical report No. 11/2010, 2010.

    Google Scholar 

  63. International Standardizations Organization. ISO 7731:2003. Ergonomics—Danger signals for public and work areas—auditory danger signals. Switzerland: ISO; 2003.

    Google Scholar 

  64. Thurston FE. The worker’s ear: a history of noise-induced hearing loss. Am J Ind Med. 2013;56(3):367–77. https://doi.org/10.10002/ajim.22095.

    Article  PubMed  Google Scholar 

  65. ANSI/ASA. S3.1. Maximum permissible ambient noise levels for audiometric test rooms. American National Standards Institute. Melville; 1999 (Reaffirmed 2013)

    Google Scholar 

  66. American Speech-Language-Hearing Association (ASHA). Guidelines for manual pure-tone threshold audiometry. ASHA. 2005;20:297–301.

    Google Scholar 

  67. ANSI/ASI. S3.21. Methods for manual pure-tone threshold audiometry. American National Standards Institute. Melville; 2004 (Reaffirmed 2009).

    Google Scholar 

  68. Schulz TY. Individual fit-testing of earplugs: A review of uses. Noise and Health. 2011;13(51):152–62.

    PubMed  Google Scholar 

  69. National Hearing Conservation Association. Guidelines for audiometric baseline revision. NHCA; 2013.

    Google Scholar 

  70. Clark JG. Uses and abuses of hearing loss classification. ASHA. 1981;23:493–500.

    CAS  PubMed  Google Scholar 

  71. Occupational Safety and Health Administration. 29 CFR Part 1904. Occupational injury and illness recording and reporting requirements. OSHA; 2001.

    Google Scholar 

  72. Allen CS, Danielson RW, Allen JR. Acoustics and audition. In: Nicogossian AE, Williams RE, Huntoon CL, Doarn CR, Polk JD, Schneider VS, editors. Space physiology and medicine. 4th ed. New York: Springer; 2016. p. 168–96.

    Google Scholar 

  73. Nealis. Acoustic noise analysis for STS-3. NASA Flight Communications Branch, Tracking and Communications Division. Internal NASA Report EE-2-82-016 (U), 1982.

    Google Scholar 

  74. National Aeronautics and Space Administration. Human factors assessment of STS-40/SLS-1. Houston: NASA Johnson Space Center. JSC-28514; 1998.

    Google Scholar 

  75. Koros A, Wheelwright C, Adam S. An evaluation of noise and its effects on shuttle crewmembers during STS-50/USML-1. NASA Technical Memorandum 104775; 1993.

    Google Scholar 

  76. Roller C, Clark J. Short-duration space flight and hearing loss. Otol-Head and Neck Surg. 2003;129(10):98–106.

    Google Scholar 

  77. Alford BR, Clark JB, Danielson RW. System-specific adaptations/responses and countermeasures—ear, nose and throat and auditory issues. In: Risin D, Stepaniak PC, editors. Biomedical results of the space shuttle program. NASA SP; 2013 - 607. Houston: National Aeronautics and Space Administration; 2013.

    Google Scholar 

  78. Prohl W, Nefedova MV, Birke J. Temporary results of the examination of the audition of cosmonauts during a long-term flight in the space station MIR with the audiometer ELBE 2 (Experiment AUDIO 2). International Astronautical Federation. IAF/IAA Paper 90–519; 1990.

    Google Scholar 

  79. IYa Y, Nefedova MF. Sensory systems: hearing. In: Gurovskiy NN, editor. Results of medical research performed on the “Salyut-6-Soyuz” space station complex. Moscow: Nauka Press; 1986. p. 165–8.

    Google Scholar 

  80. Nefedova MV. The effect of space flight factors on the auditory function of cosmonauts. In: Proceedings of: the Space Biology and Aerospace Medicine 9th All-Union Conference, 1990 June 19–21, Kaluga. Moscow: Nauka; 1990. [in Russian].

    Google Scholar 

  81. Belew GC. SKYLAB, Our First Space Station 2004. SP-400. National Aeronautics and Space Administration, Washington; 2004.

    Google Scholar 

  82. Beierle J. MIR Acoustic Environment. NASA–Johnson Space Center. JSC 961609; 1996.

    Google Scholar 

  83. GOST R 50804-95. Cosmonaut habitation environment in a manned spacecraft. General Medical and Technical Requirements. 1995.

    Google Scholar 

  84. Allen CS. International Space Station Acoustics—a status report. In: Proceedings of the 45th International Conference on Environmental Systems 2015, 2015 July 12–16, Bellevue, Washington. ICES; 2015-286.

    Google Scholar 

  85. Allen CS, Goodman JR. Preparing for flight—the process of assessing the ISS acoustic environment. In: Proceedings of NOISE-CON 2003. Washington: US Institute of Noise Control Engineering; 2003. Paper # NC03-006.

    Google Scholar 

  86. Phillips E, Tang PISS. Human Research Facility (HRF) Acoustics. In: Proceedings of NOISE-CON 2003. Washington: US Institute of Noise Control Engineering; 2003.

    Google Scholar 

  87. Grosveld FW, Goodman JR, Pilkinton GD. International Space Station acoustic noise control—case studies: Proceedings of NOISE-CON 2003, Washington. US Institute of Noise Control Engineering; 2003.

    Google Scholar 

  88. Alibaruho K, Gentry G, Sang A. Flight 2A.1/STS-96, ISS Air Quality issue assessment and recommendations for flight 2A.2/STS-101. ISS Independent Assessment Report; 1999 October 23.

    Google Scholar 

  89. Allen CS, Denham SA. International Space Station Acoustics—A Status Report: Proceedings of International Conference on Environmental Systems 2011. American Institute of Aeronautics and Astronautics. AIAA; 2011-5128.

    Google Scholar 

  90. Broyan J, Welsh D, Cady S. International space station crew quarters ventilation and acoustic design implementation: Proceedings of International Conference on Environmental Systems 2010. Washington, DC: American Institute of Aeronautics and Astronautics, AIAA; 2010-6018.

    Google Scholar 

  91. Allen CS. International Space Station Acoustics—a status report. In: Proceedings of INTER-NOISE 2018. INCE; 2018, #1473.

    Google Scholar 

  92. Berglund B, Lindvall T, Schwela D. Guidelines for community noise. World Health Organization; 1999.

    Google Scholar 

  93. Kim R, van den Berg M. Summary of night guidelines for Europe. Noise and Health. 2010;47:61–3.

    Google Scholar 

  94. Limardo JG, Allen CS. Analysis of noise exposure measurements acquired onboard the international space station. In: Proceedings of International Conference on Environmental Systems 2011. American Institute of Aeronautics and Astronautics. AIAA; 2011-5137.

    Google Scholar 

  95. Limardo JG, Allen CS, Danielson RW. Assessment of crewmember noise exposures on the international space station. In: Proceedings of International Conference on Environmental Systems 2013. American Institute of Aeronautics and Astronautics. AIAA; 2013-3516.

    Google Scholar 

  96. Limardo JG, Allen CS, Danielson RW. Crewmember noise exposures on the international space station. American Institute of Aeronautics and Astronautics. ICES 2015 239.

    Google Scholar 

  97. Limardo JG, Allen CS, Danielson RW. International Space Station (ISS) crewmember’s noise exposures from 2015 to present. In: Proceedings of International Conference on Environmental Systems 2017. ICES; 2017-191.

    Google Scholar 

  98. Limardo JG, Allen CS, Danielson RW, Boone AJ. International Space Station (ISS) crewmembers noise exposures: Proceedings of INTER-NOISE 2018, #1898.

    Google Scholar 

  99. Prohl W, Mocker R, IYa Y, et al. Initial audiometric investigations in an orbital station. Zeitschr Militaermed. 1981;2:60–2.

    Google Scholar 

  100. ANSI/ASA. S3.6-2010. American National Standard Specification for Audiometers. New York: Acoustical Society of America; 2006.

    Google Scholar 

  101. Danielson RW, Garcia JM, Murray LD. Analysis of hearing threshold shifts among astronauts on long-duration missions. In: Proceedings of the NASA Human Research Program Investigators’ Workshop, 2013 February 11–13, Galveston. 2013.

    Google Scholar 

  102. Daniell WE, Stover BD, Takaro TK. Comparison of criteria for significant threshold shift in workplace hearing conservation programs. J Occup Environ Med. 2003;45(3):295–304.

    PubMed  Google Scholar 

  103. Rabinowitz PM, Galusha D, Dixon Ernst C, Slade MD. Audiometric “early flags” for occupational hearing loss. J Occup Environ Med. 2007;49:1310–6.

    PubMed  Google Scholar 

  104. National Aeronautics and Space Administration. Dickens T. Data acquisition, management and analysis support of the audiology and hearing conservation and the orbital debris program office. Document 20120010555. 2012 March 15.

    Google Scholar 

  105. Ryan K, Danielson R. A retrospective analysis of On-Orbit Hearing Assessments and audiometry results Related to International Space Station spaceflights. Poster session at: NASA Human Research Program Investigators’ Workshop; 2018 Jan 22–24; Galveston.

    Google Scholar 

  106. Boettcher FA, Henderson D, Gratton MA, Danielson RW Byrne CD. Synergistic interactions of noise and other Ototraumatic agents. Ear Hear. 1987;8:192–212.

    CAS  PubMed  Google Scholar 

  107. Campo P, Morata TC, Hong O. Chemical exposure and hearing loss. Dis Mon. 2013;59(4):119–38.

    PubMed  PubMed Central  Google Scholar 

  108. Gonzalez ER, Kosk-Bienko J. Combined exposure to noise and ototoxic substances: literature review. EU-OSHA—European Agency for Safety and Health at Work. 2009;TE-80-09-996-EN-N.

    Google Scholar 

  109. Young JS, Upchurch MB, Kaufman MJ, et al. Carbon monoxide exposure potentiates high-frequency hearing auditory threshold shifts induced by noise. Hear Res. 1987;26:37–43.

    CAS  PubMed  Google Scholar 

  110. Pekkarinen J. Noise, impulse noise and other physical factors: combined effects on hearing. Occup Med. 1995;10:545–59.

    CAS  PubMed  Google Scholar 

  111. Manninen O. Bioresponses in men after repeated exposures to single and simultaneous sinusoidal or stochastic whole body vibrations of varying bandwidths and noise. Int Arch Occup Environ Health. 1986;57:267–95.

    CAS  PubMed  Google Scholar 

  112. Manninen O. Cardiovascular changes and hearing threshold shifts in men under complex exposures to noise, whole body vibrations, temperatures and competition-type psychic load. Int Arch Occup Environ Health. 1985;56:251–74.

    Google Scholar 

  113. Abel SM, Crabtree B, Baranski JV, Smith DG, Thompson MM, Steeneken HJ, et al. Hearing and performance during a 70-h exposure to noise simulating the space station environment. Aviat Space Environ Med. 2004;75(9):766–70.

    Google Scholar 

  114. EU-OSHA. Combined exposure to noise and ototoxic substances. European agency for safety and health at work. Luxemburg: Office for Official Publications of the European Communities; 2009.

    Google Scholar 

  115. Hughes H, Hunting KL. Evaluation of the effects of exposure to organic solvents and hazardous noise among US Air Force Reserve personnel. Noise and Health. 2013;15(67):379–87.

    PubMed  Google Scholar 

  116. Killian MC, De Vilbiss E, Stewart J. An earplug with uniform 15 dB attenuation. Hearing J. 1988;41(5):14–7.

    Google Scholar 

Suggested Reading

  • Begault DR. Assessment and mitigation of the effects of noise on habitability in deep space environments: report on non-auditory effects of noise. NASA. NASA/TM-2018-219748; 2018.

    Google Scholar 

  • Goodman JR, Grosveld FW. Acoustics and noise control in space crew compartments. National Aeronautics and Space Administration, Houston. NASA/SP-2015-624; 2015.

    Google Scholar 

  • Suter AH. Occupational hearing loss from non-Gaussian noise. Seminar Hearing. 2017;28:225–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Danielson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danielson, R.W., Allen, C.S., Limardo, J.G., Clark, J.B. (2019). Acoustic and Auditory Issues. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics