Skip to main content

Health Effects of Atmospheric Contamination

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

As human missions reach deeper into space, crews must become more independent of ground controllers. With this in mind, future analytical instruments for air pollutants must provide data that are complete and that can be readily interpreted by onboard personnel who are neither toxicologists nor physicians. As spacecraft and habitat environments reach 100% closure for distant missions, the challenges of managing air pollutants will increase. Moreover, the addition of new pollutant sources (e.g., plant growth chambers, waste incineration, and dust) on celestial bodies will demand new strategies for providing safe air for crewmembers to breathe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James J, Limero T, Beck S, et al. Toxicological assessment of the International Space Station atmosphere with emphasis on Metox canister regeneration. Presented at the 33rd International Conference on Environmental Systems; 2003 Jul 7, Vancouver. Technical Paper No. 2003-01-2647; 2003.

    Google Scholar 

  2. Rutz RA, Schultz J, Kuo C, et al. Discovery and identification of dimethylsilanediol as a contaminant in ISS potable water. Presented at the International Conference on Environmental Systems; 2011 17–21 Jul, Portland, OR. Technical paper No. AIAA-2011-5154; 2011.

    Google Scholar 

  3. Ramanathan R, James JT, McCoy T. Acceptable levels for ingestion of dimethylsilanediol in water on the International Space Station. Aviat Space Environ Med. 2012;83:598–603.

    Article  CAS  PubMed  Google Scholar 

  4. Wieland PO. Living together in space: the design and operation of the life support systems on the International Space Station, vol. I. NASA-Marshall Space Flight Center; 1998. NASA TM-206956. Page 20.

    Google Scholar 

  5. James JT, Limero TF, Beck SW, et al. Toxicological investigation of Mir during NASA 4. Unpublished NASA-Johnson Space Center Memorandum SD2-97-543; 1997 Sep.

    Google Scholar 

  6. Wong KL. Carbon monoxide. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 1. Washington: National Academy Press; 1994. p. 61–90.

    Google Scholar 

  7. Khan-Mayberry NN. Carbon monoxide. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 5. Washington: National Academy Press; 2008. p. 125–90.

    Google Scholar 

  8. James JT, Limero TF, Beck SW, et al. Toxicological investigation of Mir during NASA 7. Unpublished NASA-Johnson Space Center Memorandum SD2-99-500; 1999 Jan.

    Google Scholar 

  9. Prime Item Development Specification for US Laboratory, number S683-29523D, International Space Station. Boeing Company, Huntsville Alabama; 1995

    Google Scholar 

  10. Shimoda T, Oikawa T, Miyake A. Sampling and analysis of human metabolites. Presented at the 28th Conference on Environmental Systems; 1998 Jul 13–16; Danvers, MA and Warrendale, PA: Society of Automotive Engineers Technical Paper No. 981739; 1998.

    Google Scholar 

  11. James JT. Offgas test results from Node 1-Second test. Unpublished NASA-Johnson Space Center Memorandum SD2-98-551; 1998 Oct.

    Google Scholar 

  12. Tachibana S. Final report: preflight module offgas test of the H-II transfer vehicle 1. Japan Aerospace Exploration Agency Report No. SO-161; 2009 Aug 18.

    Google Scholar 

  13. Hampson NB, Kramer CC, Dunford RG, et al. Carbon monoxide poisoning from indoor burning of charcoal briquets. JAMA. 1994;271:52–3.

    Article  CAS  PubMed  Google Scholar 

  14. Centers for Disease Control and Prevention. Carbon monoxide levels during indoor sporting events-Cincinnati, 1992–1993. JAMA. 1994;271:419.

    Article  Google Scholar 

  15. Stewart RD, Peterson JE, Fisher TN, et al. Experimental human exposure to high concentrations of carbon monoxide. Arch Environ Health. 1973;26:1–7.

    Article  CAS  PubMed  Google Scholar 

  16. Purser DA. Toxicity assessment of combustion products. In: DiNenno PJ, Beyer CL (eds.), The SFPE handbook of fire protection engineering. Section 1. Quincy: National Fire Protection Association; 1988: Ch 14.

    Google Scholar 

  17. Stewart RD. The effect of carbon monoxide on humans. Annu Rev Pharmacol. 1975;15:409–23.

    Article  CAS  PubMed  Google Scholar 

  18. Ellenhorn MJ. Respiratory toxicology. In: Ellenhorn’s medical toxicology. 2nd ed. Baltimore: Williams & Wilkins; 1997. Ch 66.

    Google Scholar 

  19. Reschke MF, Harm DL, Parker DE, et al. Neurophysiologic aspects: space motion sickness. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea & Febiger; 1994. p. 228–60.

    Google Scholar 

  20. O’Hanlon JF. Preliminary studies of the effects of carbon monoxide on vigilance in man. In: Weiss B, Laties G, editors. Behavioral toxicology. New York: Plenum Press; 1975. p. 61–75.

    Chapter  Google Scholar 

  21. Delgado RH, Davis DD. Evaluation of compound specific analyzer- combustion products. NASA-White Sands Test Facility; 1998 May. Document TR-915-001.

    Google Scholar 

  22. Stewart RD, Stewart RS, Stramm W, Seelan RP. Rapid estimation of carboxyhemoglobin in fire fighters. JAMA. 1976;235:390–2.

    Article  CAS  PubMed  Google Scholar 

  23. Perry JL, Curtis RE, Alexandre KL, et al. Performance testing of a trace contaminant control subassembly for the International Space Station. Presented at the 28th International Conference on Environmental Systems; 1998 Jul 13–16; Danvers, MA and Warrendale, PA: Society of Automotive Engineers Technical Paper No. 981621; 1998.

    Google Scholar 

  24. Tatara JD, Perry JL, Franks GD. Overview of the International Space Station System-level trace contaminant injection test. Presented at the 28th International Conference on Environmental Systems; 13–16. Danvers, MA and Warrendale, PA: Society of Automotive Engineers Technical Paper No. 981665; 1998 Jul.

    Google Scholar 

  25. Frane J, et al. Registration eligibility document: carbon and carbon dioxide. United States Environmental Protection Agency Office of Pesticides Program; 1991 Sep.

    Google Scholar 

  26. NASA. Human integration design handbook. Washington: National Aeronautics and Space Administration; January; 2010.

    Google Scholar 

  27. Cronyn PD, Watkins S, Alexander DJ. Chronic exposure to moderately elevated CO2 during long-duration space flight. NASA-Johnson Space Center; 2012. NASA/TP-2012-217358.

    Google Scholar 

  28. James JT. Carbon dioxide. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 5. Washington: National Academy Press; 2008. p. 112–24.

    Google Scholar 

  29. Langford N. Carbon dioxide poisoning. Toxicol Rev. 2005;24:229–35.

    Article  CAS  PubMed  Google Scholar 

  30. Abolhassani M, Guais A, Chaumet-Riffaud P, et al. Carbon dioxide inhalation causes pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol. 2009;296:L657–65.

    Article  CAS  PubMed  Google Scholar 

  31. Fisher CW. Adverse effects of carbon dioxide excess. Perm Found Med Bull. 1952;10(1–4):284–8.

    CAS  PubMed  Google Scholar 

  32. United States Environmental Protection Agency. Carbon dioxide as a fire suppressant: examining the risks. Report EPA430-R-00-002; 2000 Feb.

    Google Scholar 

  33. Sliwka U, Kransney JA, Simon SG, Schmidt P, North J. Effects of sustained low-level elevations of carbon dioxide on cerebral blood flow and autoregulation of the intracerebral arteries in humans. Aviat Space Environ Med. 1998;69(3):299–306.

    CAS  PubMed  Google Scholar 

  34. Law J, Van Baalen M, Foy M, Mason S, Mendez C, Wear M, Meyers V, Alexander D. Relationship between carbon dioxide levels and reported headaches on the International Space Station. J Occup Env Med. 2014;56(5):477–83.

    Article  CAS  Google Scholar 

  35. Sun M, Sun C, Yang Y. Effect of low-concentration CO2 on stereoacuity and energy expenditure. Aviat Space Environ Med. 1996;67(1):34–9.

    CAS  PubMed  Google Scholar 

  36. Yang Y, Sun C, Sun M. The effect of moderately increased CO2 concentration on perception of coherent motion. Aviat Space Environ Med. 1997;68(3):187–91.

    CAS  PubMed  Google Scholar 

  37. Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect. 2012;120(12):1671–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sieker HO, Hickam JB. Carbon dioxide intoxication: the clinical syndrome, its etiology and management with particular reference to the use of mechanical respirators. Medicine (Baltimore). 1956;35(4):389–423.

    Article  CAS  Google Scholar 

  39. Law J, Watkins S, Alexander DJ. In-flight carbon dioxide exposures and related symptoms: association, susceptibility, and operational implications. NASA-Johnson Space Center; 2010. NASA/TP-2010-216126.

    Google Scholar 

  40. Maples W. ISS ECLSS console handbook, vol. 3, Section 3.2 MCA and SDS Hardware Systems Brief. NASA-Johnson Space Center; 2006. JSC-36331.

    Google Scholar 

  41. Joiner J, Walch K. Certification/acceptance test plan for the carbon dioxide monitor, Rev C. NASA-Johnson Space Center; 2007. JSC 62813.

    Google Scholar 

  42. Maples W. ISS ECLSS console handbook, vol. 2, Section 4.1—Carbon dioxide Removal Assembly. NASA-Johnson Space Center; 2006. JSC-36331.

    Google Scholar 

  43. Graf J, Filburn T, Lantzakis M, and Taddey E. An Orbiter Upgrade Demonstration Test article for a fail-safe regenerative CO, removal system. Presented at the International Conference on Environmental Systems, 1998 Jul 13, Danvers, MA, Technical Paper No. 981536; 1998.

    Google Scholar 

  44. Papale W, Nalette T, Sweterlitsch J. Development status of the carbon dioxide and moisture removal amine swing-bed system. Presented at the International Conference on Environmental Systems, 2009 Jul 12, Savannah, GA, Technical Paper No. 2009-01-2441; 2009.

    Google Scholar 

  45. James JT, Coleman ME. Toxicology of airborne gaseous and particulate contaminants. In: Nicogossian AE, Mohler SR, Gazenko OG, Grigoryev AI, editors. Life support and habitability. Vol. 2 of space biology and medicine. Reston: American Institute of Aeronautics and Astronautics; 1994. p. 37–60.

    Chapter  Google Scholar 

  46. Perry J. A design basis for spacecraft cabin trace contaminant control. SAE Int J Aerosp. 2011;4:584–91.

    Article  Google Scholar 

  47. Hatton DV, Leach CS, Beaudet AL, et al. Collagen breakdown and ammonia inhalation. Arch Environ Health. 1979;34:83–7.

    Article  CAS  PubMed  Google Scholar 

  48. Garcia HD. Ammonia. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 5. Washington: National Academy Press; 2008. p. 48–61.

    Google Scholar 

  49. World Health Organization. Environmental Health Criteria. 54. Ammonia. Geneva, Switzerland: WHO; 1986.

    Google Scholar 

  50. Verberk MM. Effects of ammonia in volunteers. Int Arch Occup Environ Health. 1977;39:73–81.

    Article  CAS  PubMed  Google Scholar 

  51. Helmers S, Top FH, Knapp LW. Ammonia injuries in agriculture. J Iowa Med Soc. 1971;61:271–80.

    CAS  PubMed  Google Scholar 

  52. ATSDR. Toxicological profile for ammonia. Washington: US Department of Health and Human Services; 2004 Sep.

    Google Scholar 

  53. Ferguson WS, Koch WC, Webster LB, et al. Human physiological response and adaptation to ammonia. J Occup Med. 1977;19:319–26.

    CAS  PubMed  Google Scholar 

  54. Wallace WT. Preflight testing of the air quality monitor and the effects on its use in flight. Unpublished NASA-Johnson Space Center Memorandum; 2015 Jan.

    Google Scholar 

  55. Garcia HD, Lam CW, Langford S, Ramanathan R. Guidelines for assessing the toxic Hazard of spacecraft chemicals and test materials, Rev A. Houston: NASA-Johnson Space Center; 2014. JSC-26895.

    Google Scholar 

  56. Alexander RG. Mir-18 containment bag failure. Unpublished NASA-Johnson Space Center Memorandum NS2-95-180; 1995 Sep.

    Google Scholar 

  57. James JT. Analysis of air during the 60-day Lunar Mars Life Support Test. Unpublished NASA-Johnson Space Center Memorandum SD2-97-536; 1997 Aug.

    Google Scholar 

  58. Graf J, Perry J, Wright J, et al. Systems upsets involving trace contaminant control systems. Presented at the 30th International Conference on Environmental Systems, 2000 July 10–13, Toulouse; 2000.

    Google Scholar 

  59. Huntoon CL. Toxicological analysis of STS-40 atmosphere. Unpublished NASA-Johnson Space Center Memorandum NASA-JSC SD4/91-362; 1991 Oct.

    Google Scholar 

  60. IARC (International Agency for Research on Cancer). Chemical agents and related occupations. 100F:401-35; 2012.

    Google Scholar 

  61. NTP (National Toxicology Program). Report on Carcinogens, Thirteenth Edition. Research Triangle Park: U.S. Department of Health and Human Services, Public Health Service; 2014. http://ntp.niehs.nih.gov/pubhealth/roc/roc13/

  62. ATSDR. Toxicological Profile for Formaldehyde. Washington: US Department of Health and Human Services; 1999 Jul.

    Google Scholar 

  63. Morgan KT. A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human risk assessment. Toxicol Pathol. 1997;25:291–307.

    Article  CAS  PubMed  Google Scholar 

  64. Costa DL, Amdur MO. Air pollution. In: Klaassen CD, editor. Casarett & Doull’s Toxicology: The Basic Science of Poisons. 5th ed. New York: McGraw-Hill; 1996. p. 857–82.

    Google Scholar 

  65. McCoy JT. Formaldehyde. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 5. Washington: National Academy Press; 2008. p. 206–49.

    Google Scholar 

  66. Canadian Department of National Health and Welfare, Expert Advisory Panel Committee on Urea Foam Insulation. Final Report. Ottawa, Canada; 1981.

    Google Scholar 

  67. Nordman H, Keskinen H, Tuppurainen M. Formaldehyde asthma—rare or overlooked? J Allergy Clin Immunol. 1985;75:91–9.

    Article  CAS  PubMed  Google Scholar 

  68. Pierson DL, James JT, Russo D, et al. Environmental health. In: Sawin CF, Taylor GR, Smith WL editors, Extended duration Orbiter Medical Project. Final Report 1989–1995. Houston: NASA Johnson Space Center; 1999:4-1–4-12. NASA-SP-1999-534.

    Google Scholar 

  69. Petro PG. Results of Soviet-Hungarian Space Research. East Europe Report No. 699, 1981 April 3: 4–12. Cited in: Bluth BJ, Helppie M. Soviet Space Stations as Analogs. 2nd ed. Unpublished document prepared for NASA Grant NAGW-659 by the Space Station Freedom Program Office, NASA Headquarters, Washington; 1986.

    Google Scholar 

  70. McCoy JT. Formaldehyde. In: Spacecraft water exposure guidelines for selected contaminants, vol. 2. Washington: National Academy Press; 2007. p. 300–41.

    Google Scholar 

  71. Schultz J. Final chemical analysis for the ISS water samples returned on STS-135/ULF7. Unpublished Wyle Memorandum 2011-WFL-ISSWQ-00I0.1; November 2011.

    Google Scholar 

  72. Perry J. Octafluoropropane Concentration Dynamics On Board the International Space Station, SAE Technical Paper 2003-01-2651, 2003.

    Google Scholar 

  73. Calkins DS, Degioanni JJ, Tan MN, et al. Human performance and physiological function during a 24-h exposure to 1% bromotrifluoromethane (Halon 1301). Fund Appl Toxicol. 1993;20:240–7.

    Article  CAS  Google Scholar 

  74. James JT. Spacecraft maximum allowable concentrations for airborne contaminants. Houston: NASA-Johnson Space Center; 2008. JSC-20584.

    Google Scholar 

  75. Huntoon CL. Toxicological analysis of STS-50 atmosphere. Unpublished NASA-Johnson Space Center Memorandum NASA-JSC SD4/92-316; 1992 September.

    Google Scholar 

  76. National Research Council. Guidelines for developing spacecraft maximum allowable concentrations for space station contaminants. Washington: National Academy Press; 1992.

    Google Scholar 

  77. Garcia HD. Chloroform. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 4. Washington: National Academy Press; 2000. p. 264–306.

    Google Scholar 

  78. James JT. Isoprene. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 4. Washington: National Academy Press; 2000. p. 89–118.

    Google Scholar 

  79. Wong KL. Acetaldehyde. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 1. Washington: National Academy Press; 1994. p. 19–38.

    Google Scholar 

  80. Khan-Mayberry NN. Benzene. In: Spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 5. Washington: National Academy Press; 2008. p. 62–72.

    Google Scholar 

  81. Popov VV, Nazarov NM. Waste disposal and management systems. In: Nicogosian A, Mhhler SR, Gazenko OG, Grigoryev AI, editors. Chapter 13 in Space Biology and Medicine, II Life Support and Habitability. Washington: AIAA; 1994.

    Google Scholar 

  82. Fisher JW, Pisharody S, Wignarjah K, et al. Waste incineration for resource recovery in bioregenerative life support systems. Presented at the 28th International Conference on Environmental Systems; 1998 July 13–16; Danvers, MA and Warrendale, PA: Society of Automotive Engineers Technical Paper No. 981758; 1998.

    Google Scholar 

  83. Matney ML, Boyd JF, Covington PA, et al. Air quality assessments for two recent space shuttle missions. Aviat Space Environ Med. 1993;64:992–9.

    CAS  PubMed  Google Scholar 

  84. NASA. Apollo12 Preliminary Science Report. Washington: Office of Technology Utilization; 1970. NASA SP-235.

    Google Scholar 

  85. Lee LH. Adhesion and cohesion mechanisms of lunar dust on the moon’s surface. J Adhes Sci Technol. 1995;9:1103–24.

    Article  CAS  Google Scholar 

  86. Belkin VV, Kustov MK, Kulakova MK, et al. Biological activity of lunar soil from the Sea of Fertility when injected intratracheally. Izv Akad Nauk Ser Biol. 1983;3:461–5.

    Google Scholar 

  87. Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of simulated lunar and Martian dusts in mice: I. Histopathology 7 and 90 days after intratracheal instillation. Inhal Toxicol. 2002;14(9):901–16.

    Article  CAS  PubMed  Google Scholar 

  88. Lam CW, Scully RR, Zhang Y, et al. Toxicity of lunar dust assessed in inhalation-exposed rats. Inhal Toxicol. 2013;25:661–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scully RR, Lam CW, James JT. Estimating safe human exposure levels for lunar dust using benchmark dose modeling of data from inhalation studies in rats. Inhal Toxicol. 2013;25:785–93.

    Article  CAS  PubMed  Google Scholar 

  90. James JT, Lam C-W, Santana PA, Scully RR. Estimate of safe human exposure levels for lunar dust based on comparative benchmark dose modeling. Inhal Tox. 2013;25:243–56.

    Article  CAS  Google Scholar 

  91. Meyers VE, Garcia HD, Monds K, et al. Ocular toxicity of authentic lunar dust. BMC Ophthalmol. 2012;12:26.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Darquenne C, Prisk GK. Deposition of inhaled particles in the human lung is more peripheral in lunar than normal gravity. Eur J Appl Physiol. 2008;103:687–95.

    Article  PubMed  Google Scholar 

  93. Liu BYH, Rubow KL, McMurry PH, Kotz TJ, Russo D. Airborne particulate matter and spacecraft internal environments. Presented at the International Conference on Environmental Systems, 1991 Jul 8, San Francisco, CA, Technical Paper No. 911476; 1991.

    Google Scholar 

  94. Schultz J, Fuhrmann K. DTO 635: Eyewash evaluation. In: Results of life sciences DSOs conducted Aboard the Shuttle 1991–1993. Unpublished NASA report. Houston: NASA Johnson Space Center; 1994 Jul. p. 112–122.

    Google Scholar 

  95. James JT, Zalesak SM. Prediction of crew health effects from air samples taken aboard the International Space Station. Aviat Space Environ Med. 2012;83(8):795–9.

    Article  PubMed  Google Scholar 

  96. Limero T, Wallace W, James JT. Operational validation of the air quality monitor on the International Space Station. 44th International Conference on Environmental Systems ICES-2014-218 2014 Jul 13–17, Tucson, AZ; 2014.

    Google Scholar 

  97. Suffredini MT. International Space Station Program Medical Operations Requirements Document (ISS MORD), Revision D. Houston: NASA-Johnson Space Center; 2014. JSC-50260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie E. Ryder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, J.T., Ryder, V.E. (2019). Health Effects of Atmospheric Contamination. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics