Skip to main content

Renal and Genitourinary Concerns

  • Chapter
  • First Online:
Book cover Principles of Clinical Medicine for Space Flight

Abstract

Genitourinary (GU) disorders are pervasive in the adult population and broadly include the diagnoses of 15–20% of patients who are discharged from hospitals in the United States, with even higher percentages for ambulatory visits. Along with susceptibility to the common disorders of the general population, the GU system of astronauts is additionally vulnerable to spaceflight-related stresses, both in flight and immediately pre- and postflight. These stresses may include rigorous exercise, microgravity, dietary changes, limited availability of drinking water, thermal stress, and the effects of other spaceflight-related disorders, such as space motion sickness, as well as the influence of medications used to treat them. Some of these conditions may increase the risk of genitourinary disorders or complicate their presentation. Exposure to microgravity causes a number of metabolic and physiological changes that can affect the GU organs. Fluid volume, electrolyte levels, and bone and muscle undergo changes as the human body adapts to weightlessness. Changes in urinary chemical composition occurring as a part of this adaptation process may lead to the potentially serious consequence of renal stone formation.

With the length of human exposure to microgravity extending as we maintain a permanent presence on the International Space Station (ISS), the probability of GU-related illnesses, such as renal stones or infections, will undoubtedly increase. Exploration-class lunar missions for long duration settlement and missions to Mars will pose even greater challenges for the diagnosis and management of GU conditions, as immediate return to Earth will not be possible. This chapter reviews the influence of space flight on GU function, the disorders that might arise involving this system, and possible treatment methods and countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reschke MF, Harm DL, Parker DE, et al. Neurophysiologic aspects: space motion sickness. In: Nicogossian AE, Huntoon CS, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea and Febiger, Inc.; 1994. p. 228–60.

    Google Scholar 

  2. Huntoon CS, Charles JB, Bungo MW, Fortner GW. Cardiopulmonary function. In: Nicogossian AE, Huntoon CS, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea and Febiger, Inc.; 1994. p. 286–304.

    Google Scholar 

  3. Huntoon CS, Cintron NM, Whitson PA. Endocrine and biochemical function. In: Nicogossian AE, Huntoon CS, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea and Febiger, Inc.; 1994. p. 334–50.

    Google Scholar 

  4. Morukov B, et al. 120-day head-down tilted bed rest study with participation of female subjects: tasks and protocols of the studies. Aviakosm Ekolog Med. 1997;31(1):40–7.

    CAS  PubMed  Google Scholar 

  5. Zaichik Y, Morukov B. In vivo bone mineral studies on volunteers during a 370-day antiorthostatic hypokinesia test. Appl Radiat Isot. 1998;49(5–6):691–4.

    Article  Google Scholar 

  6. Morukov B, et al. Changes in calcium metabolism and its regulation in humans during prolonged space flight. Fiziol Cheloveka. 1998;24(2):102–7.

    CAS  PubMed  Google Scholar 

  7. Smith M, et al. Bone mineral measurement experiment M078. In: Johnson RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC NASA SP-377; 1997, p. 183–90.

    Google Scholar 

  8. Leblanc A, Shackleford L, Schneider V. Future human bone research in space. Bone. 1998;22(5 Suppl):113S–6S.

    Article  CAS  PubMed  Google Scholar 

  9. Leach CS, Rambaut PC. Biomedical responses of the Skylab crewmen: an overview. In: Johnson RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC NASA SP-377; 1997, p. 204–16.

    Google Scholar 

  10. Smith SM, Wastney ME, Morukov BV, et al. Calcium metabolism before, during, and after a 3-month space flight: kinetic and biochemical changes. Am J Phys. 1999;277:R1–R10.

    CAS  Google Scholar 

  11. Jones JA, Jennings RJ, Baker ES. Chapter 4.7: Renal, genitourinary, and gynecological health issues. In: Risin D, Stepaniak P, editors. Biomedical results of the space shuttle program. Washington, DC: US Government; 2013. p. 141–54.

    Google Scholar 

  12. Salem MEG. The kidney in ancient Egyptian medicine: where does it stand? Am J Nephrol. 1999;19(2):140–7.

    Article  CAS  PubMed  Google Scholar 

  13. Manthey D, Teichman J. Nephrolithiasis. Emerg Med Clin North Am. 2001;19(3):633–54.

    Article  CAS  PubMed  Google Scholar 

  14. Hall P. Nephrolithiasis: treatment, causes, and prevention. Cleve Clin J Med. 2009;76(10):583–91.

    Article  PubMed  Google Scholar 

  15. Hwang TI, Hill K, Schneider V, Pak CY. Effect of prolonged bed rest on the propensity for renal stone formation. J Clin Endocrinol Metab. 1988;66(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  16. Muller CE, Bianchetti M, Kaiser G. Immobilization, a risk factor for urinary tract stones in children. A case report. Eur J Pediatr Surg. 1994;4(4):201–4.

    Article  CAS  PubMed  Google Scholar 

  17. Evans K, Costabile R. Time to development of symptomatic urinary calculi in a high risk environment. J Urol. 2005;173(3):858–61.

    Article  PubMed  Google Scholar 

  18. Pak CYC. Medical treatment of renal stone disease. Nephron. 1999;81(Suppl. 1):60–5.

    Article  CAS  PubMed  Google Scholar 

  19. Lingeman JE, Preminger GM. New treatment options for kidney stones. Fam Urol. 2001;6(2):4–6.

    Google Scholar 

  20. Rivers K, Shetty S, Menon M. When and how to evaluate a patient with nephrolithiasis. Urol Clin North Am. 2000;27(2):203–13.

    Article  CAS  PubMed  Google Scholar 

  21. Pak CY, Peterson R, Poindexter JR. Adequacy of a single stone risk analysis in the medical evaluation of urolithiasis. J Urol. 2001;165(2):378–81.

    Article  CAS  PubMed  Google Scholar 

  22. Jones ML, Ganopolsky JG, Martoni CJ, Labbe A, Prakash S. Emerging science of the human microbiome. Gut Microbes. 2014;5(4):446–57.

    Article  PubMed  Google Scholar 

  23. Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol. 2008;19(6):1197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siener R, Bangen U, Sidhu H, Honow R, von Unruh G, Hesse A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013;83(6):1144–9.

    Article  CAS  PubMed  Google Scholar 

  25. Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I, et al. Evidence for a distinct gutmicrobiome in kidney stone formers compared to non-stone formers. Urolithiasis. 2016;44(5):399–407.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract – a role beyond infection. Nat Rev Urol. 2015;12(2):81–90.

    Article  PubMed  Google Scholar 

  27. Shiekh FA, Miller VM, Lieske JC. Do calcifying nanoparticles promote nephrolithiasis? A review of the evidence. Clin Nephrol. 2009;71(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kutikhin AG, Yuzhalin AE, Borisov VV, Velikanova EA, Frolov AV, Sakharova VM, et al. Calcifying nanoparticles: one face of distinct entities? Front Microbiol. 2014;5:214.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nishiyama K, Funai T, Katafuchi R, Hattori F, Onoyama K, Ichiyam A. Primary hyperoxaluria type I due to a point mutation of T to C in the coding region of the serine:pyruvate aminotransferase gene. Biochem Biophys Res Commun. 1991;176(3):1093–9.

    Article  CAS  PubMed  Google Scholar 

  30. Takaoka N, Takayama T, Miyazaki M, Nagata M, Ozono S. Modification of primers for GRHPR genotyping: avoiding allele dropout by single nucleotide polymorphisms and homology sequence. Urol Res. 2008;6:297–302.

    Article  CAS  Google Scholar 

  31. Belostotsky R, Seboun E, Idelson GH, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87(3):392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pereira D, Schoolwerth A, Pais V. Cystinuria: current concepts and future directions. Clin Nephrol. 2015;83(3):138–46.

    Article  CAS  PubMed  Google Scholar 

  33. Lieske J, Turner S, Edeh S, Smith J, Kardia S. Heritability of urinary traits that contribute to nephrolithiasis. Clin J Am Soc Nephrol. 2014;9(5):943–50.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Arcidiacono T, Mingione A, Macrina L, Pivari F, Soldati L, Vezzoli G. Idiopathic calcium nephrolithiasis: a review of pathogenic mechanisms in the light of genetic studies. Am J Nephrol. 2014;40:499–506.

    Article  CAS  PubMed  Google Scholar 

  35. Randall A. The origin and growth of renal calculi. Ann Surg. 1937;105(6):1009–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller N, Gillen D, Williams J, Evan A, Bledsoe S, Coe F, Worcester E, Matlaga B, Munch L, Lingeman J. A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall's plaque. BJU Int. 2009;103(7):966–71.

    Article  CAS  PubMed  Google Scholar 

  37. Bagga H, Chi T, Miller J, Stoller M. New insights into the pathogenesis of renal calculi. Urol Clin North Am. 2013;40(1):1–12.

    Article  PubMed  Google Scholar 

  38. Kim S, Coe F, Tinmouth W, Kuo R, Paterson R, Parks J, Munch L, Evan A, Lingeman J. Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol. 2005;173(1):117–9.

    Article  CAS  PubMed  Google Scholar 

  39. Matlaga B, Williams J, Kim S, Kuo R, Evan A, Bledsoe S, Coe F, Worcester E, Munch L, Lingeman J. Endoscopic evidence of calculus attachment to Randall's plaque. J Urol. 2006;175(5):1720–4.

    Article  PubMed  Google Scholar 

  40. Pak CYC. Medical prevention of renal stone disease. Nephron. 1991;81(Suppl. 1):60–5.

    Google Scholar 

  41. Batinic D, Milosević D, Blau N, Konjevoda P, Stambuk N, Barbarić V, Subat-Dezulović M, Votava-Raić A, Nizić L, Vrljicak K. Value of the urinary stone promoters/inhibitors ratios in the estimation of the risk of urolithiasis. J Chem Inf Comput Sci. 2000;40(3):607–10.

    Article  CAS  PubMed  Google Scholar 

  42. Smith S, Heer M, Shackelford L, Sibonga J, Spatz J, Pietrzyk R, Hudson E, Zwart S. Bone metabolism and renal stone risk during international space station missions. Bone. 2015;81:712–21.

    Article  CAS  PubMed  Google Scholar 

  43. Whitson PA, Pietrzyk RA, Pak CYC, Cintron NM. Alterations in renal stone risk factors after space flight. J Urol. 1993;150:1–5.

    Article  Google Scholar 

  44. Whitson PA, Pietrzyk RA, Pak CYC. Renal stone risk assessment during space shuttle flights. J Urol. 1997;158:2305–10.

    Article  CAS  PubMed  Google Scholar 

  45. Lebedev V, Diangar L, Paperny V, Cassutt M. Diary of a cosmonaut: two hundred eleven days in space. College Station: PhytoResource Research, Inc.; 1988. 352 p.

    Google Scholar 

  46. Huntoon CS, Cintron NM, Whitson PA. Endocrine and biochemical function. In: Nicogossian AE, Huntoon CS, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea and Febiger, Inc.; 1994. p. 334–50.

    Google Scholar 

  47. Smith M, et al. Bone mineral measurement experiment M078. In: Johnson RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC NASA SP-377; 1997. p. 183–90.

    Google Scholar 

  48. Leach CS, Rambaut PC. Biomedical responses of the Skylab crewmen: an overview. In: Johnson RS, Dietlein LF, editors. Biomedical results from Skylab. Washington, DC NASA SP-377; 1997. p. 204–16.

    Google Scholar 

  49. Cronyn P, Watkins S, Alexander D. Chronic Exposure to Moderately Elevated CO2 during Long-Duration Space Flight. NASA/TP-2012-217358 National Aeronautics and Space Administration, 2012.

    Google Scholar 

  50. Wong KL. Carbon dioxide. In: National Research Council, spacecraft maximum allowable concentrations for selected airborne contaminants, vol. 2. Washington, DC: National Academy Press; 1996. p. 105–88.

    Google Scholar 

  51. Tansey WA, Wilson JM, Schaefer KE. Analysis of health data from 10 years of Polaris submarine patrols. Undersea Biomed Res. 1979;6(Suppl):S217–46.

    PubMed  Google Scholar 

  52. Cervantes JL, Hong BY. Dysbiosis and immune dysregulation in outer space. Int Rev Immunol. 2016;35:67–82.

    CAS  PubMed  Google Scholar 

  53. Ciftcioglu N, Haddad RS, Golden DC, Morrison DR, McKay DS. A potential cause for kidney stone formation during space flights: enhanced growth of nanobacteria in microgravity. Kidney Int. 2005;67(2):483–91.

    Article  CAS  PubMed  Google Scholar 

  54. Jones JA, Ciftcioglu N, Schmid JF, Barr YR, Griffith D. Calcifying nanoparticles (nanobacteria): an additional potential factor for urolithiasis in space flight crews. Urology. 2009;73(1):210 e11–3.

    Google Scholar 

  55. Whitson PA, Pietrzyk RA, Morukov BV, Sams CF. The risk of renal stone formation during and after long duration spaceflight. Nephron. 2001;89(3):264–70.

    Article  CAS  PubMed  Google Scholar 

  56. Whitson PA, Pietrzyk RA, Jones JA, Nelman-Gonzalez M, Hudson EK, Sams CF. Effect of potassium citrate therapy on the risk of renal stone formation during spaceflight. J Urol. 2009;182(5):2490–6.

    Article  CAS  PubMed  Google Scholar 

  57. Gilkey KM, McRae MP, Griffin EA, and Myers JG. Bayesian analysis for risk assessment of selected medical events in support of the integrated medical model effort. NASA Technical Publication. NASA/TP-2012-217120; 2012.

    Google Scholar 

  58. Litwin MS, Saigal CS. Introduction. In: Litwin MS, Saigal CS, editors. Urologic diseases in America. Washington, DC: US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, US Government Printing Office; 2007. p. 3–7.

    Google Scholar 

  59. Pietrzyk RA, Jones JA, Sams CF, Whitson PA. Renal stone formation among astronauts. Aviat Space Environ Med. 2007;78(4):A9–13.

    CAS  PubMed  Google Scholar 

  60. Gonzalez G, Pak C, Adams-Huet B, Taylor R, Bilhartz L. Effect of potassium-magnesium citrate on upper gastrointestinal mucosa. Aliment Pharmacol Ther. 1998;12:105–10.

    Article  CAS  PubMed  Google Scholar 

  61. Preminger GM, Sakhaee K, Pak CY. Hypercalciuria and altered intestinal calcium absorption occurring independently of vitamin D in incomplete distal renal tubular acidosis. Metabolism. 1987;36(2):176–9.

    Article  CAS  PubMed  Google Scholar 

  62. Zerwekh JE, Odvina CV, Wuermser LA, Pak CY. Reduction of renal stone risk by potassium-magnesium citrate during 5 weeks of bed rest. J Urol. 2007;177(6):2179–84.

    Article  CAS  PubMed  Google Scholar 

  63. Whalley NA, Meyers MN, Margolius LP. Long-term effects of potassium citrate therapy on the formation of new stones in groups of recurrent stone formers with hypocitraturia. Br J Urol. 1996;78(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  64. Sakhaee K, Alpern R, Jacobson HR, Pak CYC. Contrasting effects of various potassium salts on renal citrate excretion. J Clin Endocrinol Metab. 1991;72(2):396–400.

    Article  CAS  PubMed  Google Scholar 

  65. Pak CYC, Fuller CF. Idiopathic hypocitraturic calcium-oxalate nephrolithiasis successfully treated with potassium citrate. Ann Int Med. 1996;104:33–7.

    Article  Google Scholar 

  66. Pak CYC. Citrate and renal calculi: An update. Miner Electrolyte Metab. 1994;20(6):371–7.

    CAS  PubMed  Google Scholar 

  67. Pak CY, Peterson RD, Poindexter J. 2002. Prevention of spinal bone loss by potassium citrate in cases of calcium urolithiasis. J Urol. 2002;168(1):31–4.

    Article  PubMed  Google Scholar 

  68. Sellmeyer DE, Schloetter M, Sebastian A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab. 2002;87(5):2008–12.

    Article  CAS  PubMed  Google Scholar 

  69. Marangella M, DiStefano M, Casalis S, Berutti S, D’Amelio P, Isaia GC. Effects of potassium citrate supplementation on bone metabolism. Calcif Tissue Int. 2004;74(4):330–5.

    Article  CAS  PubMed  Google Scholar 

  70. Okada A, Ohshima H, Itoh Y, Yasui T, Tozawa K, Kohri K. Risk of renal stone formation induced by long-term bed rest could be decreased by premedication with bisphosphonate and increased by resistive exercise. Int J Urol. 2008;15(7):630–5.

    Article  CAS  PubMed  Google Scholar 

  71. Leblanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013 Jul;24(7):2105–14.

    Article  CAS  PubMed  Google Scholar 

  72. Leblanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Update of Bisphosphanate Flight Experiment. NASA Human Research Program Investigators’ Workshop; February 8, 2016, Galveston, TX; 2016.

    Google Scholar 

  73. Grases F, Conte A, March JG, García-Ferragut L, Villalonga N. Chronopharmacological studies on potassium citrate treatment of oxalocalcic urolithiasis. Int Urol Nephrol. 1997;29(3):263–73.

    Article  CAS  PubMed  Google Scholar 

  74. Pak CY. Southwestern Internal Medicine Conference: Medical management of nephrolithiasis—a new, simplified approach for general practice. Am J Med Sci. 1997;313(4):215–9.

    CAS  PubMed  Google Scholar 

  75. Pak CYC, Skurla C, Harvey J. Graphic display of urinary risk factors for renal stone formation. J Urol. 1985;134:867–70.

    Article  CAS  PubMed  Google Scholar 

  76. Ryall RL, Marshall VR. The value of the 24-hour urine analysis in the assessment of stone-formers attending a general outpatient clinic. Br J Urol. 1983;55:1–5.

    Article  CAS  PubMed  Google Scholar 

  77. Yagisawa T, Chandhoke PS, Fan J. Metabolic risk factors in patients with first time and recurrent stone formations as determined by comprehensive metabolic evaluation. Urology. 1998;52(5):750–5.

    Article  CAS  PubMed  Google Scholar 

  78. Lifshitz DA, Shalhav AL, Lingeman JE, Evan AP. Metabolic evaluation of stone disease patients: a practical approach. J Endourol. 1999;13(9):669–78.

    Article  CAS  PubMed  Google Scholar 

  79. Morgan M, Parle M. Medical management of renal stones. BMJ. 2016;352:i52.

    Article  PubMed  Google Scholar 

  80. Miller O, Kane C. Time to stone passage for observed ureteral calculi: a guide for patient education. J Urol. 1999;162(3):688.

    Article  CAS  PubMed  Google Scholar 

  81. Coll D, Varanelli M, Smith R. Relationship of spontaneous passage of ureteral calculi to stone size and location as revealed by unenhanced helical CT. Am J Roentgenol. 2002;178(1):101.

    Article  Google Scholar 

  82. Sur R, Shore N, L’Esperance J, Knudsen B, Gupta M, Olsen S, Shah O. Silodosin to facilitate passage of ureteral stones: a multi-institutional, randomized, double-blinded, placebo-controlled trial. Eur Urol. 2015 May;67(5):959–64.

    Article  CAS  PubMed  Google Scholar 

  83. Hyams E, Nelms D, Silberman W, Feng Z, Matlaga B, et al. The incidence of urolithiasis among commercial aviation pilots. J Urol. 2011;186(3):914–6.

    Article  PubMed  Google Scholar 

  84. Keeley F Jr, Tilling K, Elves A, Menezes P, Wills M, Rao N, Feneley R. Preliminary results of a randomized controlled trial of prophylactic shock wave lithotripsy for small asymptomatic renal calyceal stones. BJU Int. 2001;87(1):1–8.

    Article  PubMed  Google Scholar 

  85. Koh L, Ng F, Ng K. Outcomes of long-term follow-up of patients with conservative management of asymptomatic renal calculi. BJU Int. 2012;109(4):622–5.

    Article  PubMed  Google Scholar 

  86. Coll D, Varanelli M, Smith R. Relationship of spontaneous passage of ureteral calculi to stone size and location as revealed by unenhanced helical CT. Am J Roentgenol. 2002;178(1):101–3.

    Article  Google Scholar 

  87. Moe OW, et al. Pharmacotherapy of urolithiasis: evidence from clinical trials. Kidney Int. 2011;79:385–92.

    Article  CAS  PubMed  Google Scholar 

  88. Huang Z, Fu F, Zhong Z, Zhang L, Xu R, Zhao X. Flexible ureteroscopy and laser lithotripsy for bilateral multiple intrarenal stones: is this a valuable choice? Urology. 2012;80(4):800–4.

    Article  PubMed  Google Scholar 

  89. Losek R, Mauro L. Efficacy of tamsulosin with extracorporeal shock wave lithotripsy for passage of renal and ureteral calculi. Ann Pharmacother. 2008;42(5):692–7.

    Article  CAS  PubMed  Google Scholar 

  90. Obek C, Onal B, Kantay K, Kalkan M, Yalçin V, Oner A, Solok V, Tansu N. The efficacy of extracorporeal shock wave lithotripsy for isolated lower pole calculi compared with isolated middle and upper calyceal calculi. J Urol. 2001;166(6):2081–4.

    Article  CAS  PubMed  Google Scholar 

  91. Hussain M, Acher P, Penev B, Cynk M. Redefining the limits of flexible ureterorenoscopy. J Endourol. 2011;25(1):45–9.

    Article  PubMed  Google Scholar 

  92. Breda A, Ogunyemi O, Leppert J, Lam J, Schulam P. Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2cm or greater – is this the new frontier? J Urol. 2008;179(3):981–4.

    Article  PubMed  Google Scholar 

  93. Medical Evaluation Documents (MED). Volume A, Medical Standards for ISS Crewmembers, International Space Station Program, Rev 3.3, 2013.

    Google Scholar 

  94. Hall P. Nephrolithiasis: treatment, causes, and prevention. Cleve Clin J Med. 2009;76(10):583–91.

    Article  PubMed  Google Scholar 

  95. Frassetto L, Kohlstadt I. Treatment and prevention of kidney stones: an update. Am Fam Physician. 2011;84(11):1234–42.

    PubMed  Google Scholar 

  96. Jones J, Cherian S, Barr Y, Stocco A. Medullary sponge kidney and urinary calculi: aeromedical concerns. Aviat Space Environ Med. 2008;79(7):707–11.

    Article  PubMed  Google Scholar 

  97. Jones J, Jennings R, Baker E. Renal, genitourinary, and gynecological health issues. In: Risin D, Stepaniak P, editors. Biomedical results of the space shuttle program. Washington, DC: US Government; 2013. p. 141–54.

    Google Scholar 

  98. Niemann T, Kollmann T, Bongartz G. Diagnostic performance of low-dose CT for the detection of urolithiasis: a meta-analysis. Am J Roentgenol. 2008;191(2):396–401.

    Article  Google Scholar 

  99. Vashi AR, Wojno KJ, Henricks W, et al. Determination of the “reflex range” and appropriate cutpoints for percent free prostate-specific antigen in 413 men referred for prostatic evaluation using the AxSYM system. Urology. 1997;49(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  100. Overmyer M. Free PSA test granted FDA approval. Urol Times. 1998;26(4):498–501.

    Google Scholar 

  101. Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med. 2009;60:321–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Law J., Cole R., Young M., Mason S. NASA astronaut urinary conditions associated with spaceflight. Aerospace Medical Association Annual Scientific Meeting, Atlantic City, NJ; 2016.

    Google Scholar 

  103. Stepaniak PC, Ramchandani SR, Jones JA. Acute urinary retention among astronauts. Aviat Space Environ Med. 2007;78(suppl 4):A5–8.

    PubMed  Google Scholar 

  104. Jones JA, Jennings R, Pietryzk R, Ciftcioglu N, Stepaniak P. Genitourinary issues during space flight: a review. Int J Impot Res. 2005;17(suppl 1):S64–7.

    Article  PubMed  Google Scholar 

  105. Jones JA, Kirkpatrick AW, Hamilton DR, et al. Percutaneous bladder catheterization in microgravity. Can J Urol. 2007;14(2):3493–8.

    PubMed  Google Scholar 

  106. Jones JA, Johnston S, Campbell M, Billica R. Endoscopic surgery and telemedicine in microgravity, developing contingency procedures for exploratory class space flight. Urology. 1999;53(5):892–7.

    Article  CAS  PubMed  Google Scholar 

  107. Harper JD, Cunitz BW, Dunmire B, Lee FC, Sorensen MD, Hsi RS, et al. First in human clinical trial of ultrasonic propulsion of kidney stones. J Urol. 2016;195(4 pt 1):956–64.

    Article  PubMed  Google Scholar 

  108. Maxwell AD, Cunitz BW, Kreider W, Sapozhnikov OA, Hsi RS, Harper JD, et al. Fragmentation of urinary calculi in vitro by burst wave lithotripsy. J Urol. 2015;193(1):338–44.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following individuals for their contributions: Glenn Preminger MD, Duke University; Donald Griffith MD, Tim Boone MD, Michael Coburn MD, Larry Lipshultz MD, Kevin Slawin MD, and Brian Miles MD, Baylor College of Medicine; Y. Charles Pak and Joe Zerwekh and Howard Heller MD, University of Texas Southwestern; James Lingeman MD, Indiana University Medical Center; Clarence Sams PhD, NASA Human Countermeasures Office, and Igor Gontcharov MD, Institute for Biomedical Problems; David Reyes MD, Wyle Science, Technology and Engineering; and James Locke MD, NASA JSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, J.A., Pietrzyk, R.A., Cristea, O., Whitson, P.A. (2019). Renal and Genitourinary Concerns. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics