Skip to main content

Space and Entry Motion Sickness

  • Chapter
  • First Online:
Book cover Principles of Clinical Medicine for Space Flight

Abstract

One of the most significant clinical and operational challenges experienced by spaceflight crews during the first few days in weightlessness is space motion sickness (SMS). SMS was among the first adverse medical conditions encountered by humans as they ventured into weightlessness. SMS is arguably the main risk of decreased human performance during the critical first days of space flight. Activities typically performed early that may be disrupted include payload activation, satellite deployment, rendezvous, and docking. SMS symptoms—particularly malaise, loss of initiative, and nausea—can range from being mildly distracting to physically debilitating.

Similarly, when crewmembers return to Earth, their physiologic systems must readapt to the 1G environment. The collection of physiologic changes during the initial postflight period is referred to as Earth-readaptation syndrome, and the postflight motion sickness component is here referred to as entry motion sickness (EMS). EMS is an operational concern for two reasons: first, because EMS may adversely affect the ability of a pilot to control a vehicle on reentry or the ability of any crewmember to perform an emergency egress after landing and second, because readaptation and EMS can also become a concern for an exploration-class (e.g., Mars) mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis JR, Jennings RT, Beck BG, Bagian JP. Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med. 1993;64:230–3.

    CAS  PubMed  Google Scholar 

  2. Jennings RT. Managing space motion sickness. J Vestib Res. 1998;8(1):67–70.

    CAS  PubMed  Google Scholar 

  3. Reschke MF, Harm DL, Parker DE, Sandoz GR, Homick JL, Vanderploeg JM. Neurophysiologic aspects: Space motion sickness. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia: Lea and Febiger; 1994. p. 228–60.

    Google Scholar 

  4. Reschke MF, Kornilova LM, Harm DL, Bloomberg JJ, Paloski WH. Neurosensory and sensory-motor function. In: Nicogossian AE, Mohler SR, Gazenko OG, Grigoriev AI, editors. Space Biology and Medicine. Humans In Spaceflight. 3. Reston: American Institute of Aeronautics and Astronautics; 1996. p. 135–93.

    Google Scholar 

  5. Gillingham KK, Previc FH. Spatial orientation in flight. In: DeHart RL, editor. Fundamentals of aerospace medicine. 2nd ed. Baltimore: Williams & Wilkins; 1996. p. 309–97.

    Google Scholar 

  6. Harm DL. Physiology of motion sickness symptoms. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 153–77.

    Google Scholar 

  7. Matsnev EI, Yakovleva IY, Tarasov IK, Alekseev VN, Kornilova LN, Mateev AD, et al. Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med. 1983;54:312–7.

    CAS  PubMed  Google Scholar 

  8. Oman CM, Lichtenberg BK, Ke M, McCoy RK. MIT/Canadian vestibular experiments on the Spacelab-1 mission: 4. Space motion sickness: symptoms, stimuli, and predictability. Exp Brain Res. 1986;64:316–34.

    CAS  PubMed  Google Scholar 

  9. Thornton WE, Linder BJ, Moore TP, Pool SL. Gastrointestinal motility in space motion sickness. Aviat Space Environ Med. 1987;58:A16–21.

    CAS  PubMed  Google Scholar 

  10. Thornton WE, Moore TP, Pool SL, Vanderploeg JM. Clinical characterization and etiology of space motion sickness. Aviat Space Environ Med. 1987;58:A1–8.

    CAS  PubMed  Google Scholar 

  11. Gorgiladze GI, Bryanov II. Space motion sickness. Kosmicheskaya Biologiya I Aviakosmicheskaya Meditsina. 1989;23(3):4–14.

    CAS  Google Scholar 

  12. Lackner JR, Graybiel A. Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviat Space Environ Med. 1986;57:443–8.

    CAS  PubMed  Google Scholar 

  13. Lackner JR, Graybiel A. Head movements in low and high force environments elicit motion sickness: implications for space motion sickness. Aviat Space Environ Med. 1987;58(9, Suppl):A212–7.

    CAS  PubMed  Google Scholar 

  14. Lackner JR, Graybiel A, DiZio PA. Altered sensorimotor control of the body as an etiologic factor in space motion sickness. Aviat Space Environ Med. 1991;62:765–71.

    CAS  PubMed  Google Scholar 

  15. Drummer C, Stromeyer H, Reipl RL, König A, Strollo F, Lang RE, et al. Hormonal changes after parabolic flight: implications on the development of motion sickness. Aviat Space Environ Med. 1990;61:821–8.

    PubMed  Google Scholar 

  16. Rose BD. Acid base physiology. In: Rose BD, editor. Clinical physiology of acid-base and electrolyte disorders. 4th ed. New York: McGraw-Hill; 1994. p. 274–99.

    Google Scholar 

  17. Rose BD. Regulation of acid-base balance. In: Rose BD, editor. Clinical physiology of acid-base and electrolyte disorders. 4th ed. New York: McGraw-Hill; 1994. p. 300–45.

    Google Scholar 

  18. Leach CS. Fluid control mechanisms in weightlessness. Aviat Space Environ Med. 1987;58(9 Suppl):A74–9.

    CAS  PubMed  Google Scholar 

  19. Kohl RL, Homick JL. Motion sickness: a modulatory role for the central cholinergic nervous system. Neurosci Biobehav Rev. 1983;7(1):73–85.

    CAS  PubMed  Google Scholar 

  20. Lathers CM, Charles JB, Bungo MW. Pharmacology in space. Part 2. Controlling motion sickness. Trends Pharmacol Sci. 1989;10(6):243–50.

    CAS  PubMed  Google Scholar 

  21. Leach CS, Reschke MF (ed). Biochemical correlates of neurosensory changes in weightlessness. In: 40th congress of the international astronautical federation. Malaga: International Astronautical Federation; 1989.

    Google Scholar 

  22. Leach Huntoon C, Cintron NM, Whitson PA. Endocrine and biochemical functions. In: Nicogossian AE, Leach Huntoon C, Pool SL, editors. Space physiology and medicine. Philadelphia: Lea & Febiger; 1994. p. 334–50.

    Google Scholar 

  23. Leach CS. Biochemical and hematological changes after short-term space flight. Microgravity Q. 1991;2(2):69–75.

    Google Scholar 

  24. Harm DL, Sandoz GR, Stern RM. Changes in gastric myoelectric activity during space flight. Dig Dis Sci. 2002;47(8):1737–45.

    PubMed  Google Scholar 

  25. Hawkins WR, Zieglschmid JF. Clinical aspects of crew health. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo (NASA SP-368). Washington, DC: U.S. Government Printing Office; 1975. p. 43–81.

    Google Scholar 

  26. Reschke MF, Bloomberg JJ, Paloski WH, Mulavara AP, Feiveson AH, Harm DL. Postural reflexes, balance control, and functional mobility with long-duration head-down bed rest. Aviat Space Environ Med. 2009;80(5 Suppl):A45–54.

    PubMed  Google Scholar 

  27. Homick JL, editor. Motion sickness: General background and methods. Space Adaptation Syndrome Drug Workshop. Houston: Space Biomedical Research Institute, USRA Division of Space Biomedicine; 1985.

    Google Scholar 

  28. Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF. Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med. 1988;59:1185–9.

    CAS  PubMed  Google Scholar 

  29. Dietlein LF. Summary and conclusions. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington, DC: U.S. Government Printing Office; 1975. p. 571–9. NASA SP-368.

    Google Scholar 

  30. Mark S, Scott G, Donoviel D, et al. The impact of sex and gender on adaptation to space: executive summary. J Womens Health (Larchmt). 2014;23(11):941–7.

    Google Scholar 

  31. Jennings RT, Davis JR, Santy PA. Comparison of aerobic fitness and space motion sickness in the space shuttle program. Aviat Space Environ Med. 1988;58:448–51.

    Google Scholar 

  32. Simanonok KE, Kohl RL, Charles JB. The relationship between space sickness and preflight diet. Physiologist. 1993;36(1):S90–S1.

    CAS  PubMed  Google Scholar 

  33. Homick JL. Space motion sickness. Acta Astronaut. 1979;6:1259–72.

    CAS  PubMed  Google Scholar 

  34. Bacal K, Billica R, Bishop S. Neurovestibular symptoms following space flight. J Vestib Res. 2003;13(2–3):93–102.

    PubMed  Google Scholar 

  35. Reschke MF, Cohen HS, Cerisano JM, Clayton JA, Cromwell R, Danielson RW, et al. Effects of sex and gender on adaptation to space: neurosensory systems. J Women’s Health. 2014;23(11):959–62.

    Google Scholar 

  36. Crampton GH. Neurophysiology of motion sickness. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 29–42.

    Google Scholar 

  37. Igarashi M. Role of the vestibular end organs in experimental motion sickness: a primate model. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press, Inc.; 1990. p. 43–8.

    Google Scholar 

  38. Kennedy RS, Graybiel A, McDonough RC, Bockwith D. Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinthine defects. Acta Otolaryngol. 1968;66:533–40.

    CAS  PubMed  Google Scholar 

  39. Dobie TG, May JG. Cognitive-behavioral management of motion sickness. Aviat Space Environ Med. 1994;65(10 Pt 2):C1–2.

    CAS  PubMed  Google Scholar 

  40. Guignard JC, McCauley ME. The accelerative stimulus for motion sickness. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press, Inc.; 1990. p. 123–52.

    Google Scholar 

  41. Mirabile CS. Motion sickness susceptibility and behavior. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 391–410.

    Google Scholar 

  42. Kohl RL. Mechanisms of selective attention and space motion sickness. Aviat Space Environ Med. 1987;58:1130–2.

    CAS  PubMed  Google Scholar 

  43. Reschke MF, Bloomberg JJ, Paloski WH, Harm DL, Parker DE. Neurophysiologic aspects: sensory and sensory-motor function. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. Philadelphia: Lea and Febiger; 1994. p. 261–85.

    Google Scholar 

  44. Oman CM, Lichtenberg BK, Money KE. Space motion sickness monitoring experiment: spacelab-1. In: Crampton GW, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 217–46.

    Google Scholar 

  45. Lackner JR, DiZio P. Altered sensory-motor control of the head as an etiological factor in space-motion sickness. Percept Mot Skills. 1989;68(3 Pt 1):784–6.

    PubMed  Google Scholar 

  46. Melvill-Jones GMG. Motion sickness due to vision reversal: its absence in stroboscopic light. Ann N Y Acad Sci. 1981;374:303.

    Google Scholar 

  47. Reschke MF, Somers JT, Ford G. Stroboscopic vision as a treatment for motion sickness: strobe lighting vs. shutter glasses. Aviat Space Environ Med. 2006;77(1):2–7.

    PubMed  Google Scholar 

  48. Johnson WH, Mayne JW. Stimulus required to produce motion sickness. Restriction of head movements as a preventative of airsickness-field studies on airborne troops. J Aviat Med. 1953;56:152–7.

    Google Scholar 

  49. Stott JRR. Adaptation to nauseogenic motion stimuli and its application in the treatment of airsickness. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 373–90.

    Google Scholar 

  50. Welch RP. Adaptation of space perception. In: Boff KR, Kaufman L, Thomas JP, editors. Handbook of perception and human performance. 1. New York: Wiley; 1986. p. 24-1–45.

    Google Scholar 

  51. Davis JE, Jennings RT, Beck BG. Comparison of treatment strategies for space motion sickness. Acta Astronaut. 1993;29:587–91.

    CAS  PubMed  Google Scholar 

  52. Reschke MF, Bloomberg JJ, Harm DL, Paloski WH. Space flight and neurovestibular adaptation. J Clin Pharmacol. 1994;34(6):609–17.

    CAS  PubMed  Google Scholar 

  53. Swisher S, Usher D, Andreae M, Awaramik S, Berliner R, De Campli W, et al. Space in the twenty first century: imperatives for the decades of 1995–2015. Task group on life sciences, National Research Council. Washington, DC: National Academy Press. p. 1988.

    Google Scholar 

  54. Bryanov II, Gorgiladze GI, Kornilova LN, et al. Vestibular function. In: Gazenko OG, editor. Results of medical research performed on the Salyut 6-Soyuz orbital scientific research complex. Moscow: Meditsina; 1986. p. 169–85, 248–56.

    Google Scholar 

  55. Kornilova LN, Muller KH, Chernobylskiy LM. Phenomenology of illusory reactions in weightlessness. Fiziol Cheloveka. 1995;21:50–62.

    CAS  PubMed  Google Scholar 

  56. Berry CA. View of human problems to be addressed for long duration space flights. Aerosp Med. 1973;44(10):1136–46.

    CAS  PubMed  Google Scholar 

  57. Yates BJ, Miller AD. Vestibular-autonomic regulation. Boca Raton: CRC Press; 1996.

    Google Scholar 

  58. Reason JT, Brand JJ. Motion sickness. London: Academic Press; 1975.

    Google Scholar 

  59. Heer M, Paloski WH. Space motion sickness: incidence, etiology, and countermeasures. Auton Neurosci. 2006;129(1–2):77–9.

    PubMed  Google Scholar 

  60. Lackner JR. Motion sickness: more than nausea and vomiting. Exp Brain Res. 2014 Aug;232(8):2493–510.

    PubMed  PubMed Central  Google Scholar 

  61. Graybiel A, Lackner JR. Rotation at 30 rpm about the Z-Axis after 6 hours in the 10° head-down position: effect on susceptibility to motion sickness. Aviat Space Environ Med. 1979;50:390–2.

    CAS  PubMed  Google Scholar 

  62. Harm DL, Parker DE. Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training. J Vestib Res. 1993;3(3):297–305.

    CAS  PubMed  Google Scholar 

  63. Harm DL, Parker DE, Reschke MF, Skinner NC. Relationship between selected orientation rest frame, circular vection and space motion sickness. Brain Res Bull. 1998;47(5):497–501.

    CAS  PubMed  Google Scholar 

  64. Parker DE, Parker KL. Adaptation to the simulated stimulus rearrangement of weightlessness. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 247–62.

    Google Scholar 

  65. Merfeld DM. Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation. J Vestib Res. 2003;13(4–6):309–20.

    PubMed  Google Scholar 

  66. Clement G, Rechke MF. Space experiments on spatial orientation. In: Clement G, Reschke MF, editors. Neuroscience in space. New York: Springer; 2008. p. 202–12.

    Google Scholar 

  67. Graybiel A, Lackner JR. Comparison of susceptibility to motion sickness during rotation at 30 rpm in the earth-horizontal 10° head-down position. Avait Space Environ Med. 1977;48:7–11.

    CAS  Google Scholar 

  68. Leach CS, Alfrew CP, Suki WN, Leonard JI, Rambaut PC, Inners D, et al. Regulation of body fluid compartments during short term spaceflight. J Appl Physiol. 1996;81(1):105–16.

    CAS  PubMed  Google Scholar 

  69. Buckey JC, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, et al. Central venous pressure in space. J Appl Physiol. 1996;81(1):19–25.

    PubMed  Google Scholar 

  70. Michael AP, Marshall-Bowman K. Spaceflight-induced intracranial hypertension. Aerosp Med Hum Perform. 2015;86(6):557–62.

    PubMed  Google Scholar 

  71. Kornilova LN, Yakovleva IY, Tarasov IK, Gorgiladze GI. Vestibular dysfunction in cosmonauts during adaptation to zero-g and readaptation to 1g. Physiologist. 1983;26:S35–40.

    Google Scholar 

  72. von Baumgarten RJ, Thumler RR, editors. A model for vestibular function in altered gravitational states. Open meeting of the working group on space biology and symposium on gravitational physiology, life sciences and space research. Innsbruck; 1978.

    Google Scholar 

  73. von Baumgarten RJ, Welzig J, Vogel H, Kass JR. Static and dynamic mechanisms of space vestibular malaise. Physiologist. 1982;25:S33–S6.

    Google Scholar 

  74. Diamond SG, Markham CH. Ocular torsion in upright and tilted positions during hypo- and hypergravity of parabolic flight. Aviat Space Environ Med. 1988;59:1158–62.

    CAS  PubMed  Google Scholar 

  75. Diamond SG, Markham CH. Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med. 1991;62:201–5.

    CAS  PubMed  Google Scholar 

  76. Diamond SG, Markham CH, Money KE. Instability of ocular torsion in zero gravity: possible implications for space motion sickness. Aviat Space Environ Med. 1990;61:899–905.

    CAS  PubMed  Google Scholar 

  77. Harm DL, Schlegel TT. Predicting motion sickness during parabolic flight. Auton Neurosci. 2002;97(2):116–21.

    PubMed  Google Scholar 

  78. Reschke MF. Statistical prediction of space motion sickness. In: Crampton GH, editor. Motion and space sickness. Boca Raton: CRC Press; 1990. p. 263–316.

    Google Scholar 

  79. Berry CA. Medical care of space crews (Medical care, equipment, and prophylaxis). In: Talbot JM, Genin AM, editors. Space medicine and biotechnology. Foundations of space biology and medicine. 3. Washington DC: National Aeronautics and Space Administration; 1975. p. 345–71.

    Google Scholar 

  80. Attias J, Gordon C, Ribak J, Binah O, Rolnick A. Efficacy of transdermal scopolamine against seasickness: a 3-day study at sea. Aviat Space Environ Med. 1987;58:60–2.

    CAS  PubMed  Google Scholar 

  81. Offenloch K, Zahner G, Dietlein G, Franz I. Comparative in-flight study of a scopolamine-containing membrane plaster versus dimenhydrinate under defined acceleration conditions. Arzneimittelforschung. 1986;36(9):1401–6.

    CAS  PubMed  Google Scholar 

  82. Wood CD, Graybiel A. Evaluation of sixteen anti-motion sickness drugs under controlled laboratory conditions. Aerosp Med. 1968;39:1341–4.

    CAS  PubMed  Google Scholar 

  83. Wood CD, Manno JE, Manno BR, Odenheimer RC, Bairnsfather LE. The effect of antimotion sickness drugs on habituation to motion. Aviat Space Environ Med. 1986;57:539–42.

    CAS  PubMed  Google Scholar 

  84. Graybiel A. Space motion sickness: Skylab revisited. Aviat Space Environ Med. 1980;51:814–22.

    CAS  PubMed  Google Scholar 

  85. Hordinsky JR, Schwertz E, Beier J, Martin J, Aust G. Relative efficacy of the proposed space shuttle antimotion sickness medications. Acta Astronaut. 1982;6(7):375–83.

    Google Scholar 

  86. Lackner JR, Graybiel A. Use of promethazine to hasten adaptation to provocative motion. J Clin Pharmacol. 1994;34(6):644–8.

    CAS  PubMed  Google Scholar 

  87. Wotring VE. Medication use by U.S. crewmembers on the International Space Station. FASEB J. 2015;29(11):4417–23.

    CAS  Google Scholar 

  88. Harm DL, Parker DE. Preflight adaptation training for spatial orientation and space motion sickness. J Clin Pharmacol. 1994;34(6):618–27.

    CAS  PubMed  Google Scholar 

  89. Harm DL, Reschke MF, Parker DE. Visual-vestibular integration: motion perception reporting. In: Sawin CF, Taylor GR, Smith WL, editors. Extended duration orbiter medical project. NASA/SP-1999-534. Houston: NASA Johnson Space Center; 1999. p. 5.2-1–5.2-12.

    Google Scholar 

  90. Stroud KJ, Harm DL, Klaus DM. Preflight virtual reality training as a countermeasure for space motion sickness and disorientation. Aviat Space Environ Med. 2005;76(4):352–6.

    PubMed  Google Scholar 

  91. Lapayev EV, Vorobyev OA, editors. The problem of vestibular physiology in aerospace medicine and prospects for its solution. Space biology and aerospace medicine: 8th all-union conference. Kaluga: Nauka; 1986.

    Google Scholar 

  92. Clement G, Bukley A, Paloski W. The gravity of the situation. In: Clement G, Bukley A, editors. Artificial gravity. Hawthorne\New York: Microcosm Press/Springer; 2007. p. 1–32.

    Google Scholar 

  93. Bukley A, Paloski W, Clement G. Physics of artificial gravity. In: Clement G, Bukley A, editors. Artificial gravity. Hawthorne/New York: Microcosm Press/Springer; 2007. p. 33–58.

    Google Scholar 

  94. Clement G, Bukley A, Paloski W. History of artificial gravity. In: Clement G, Bukley A, editors. Artificial gravity. Hawthorne/New York: Microcosm Press/Springer; 2007. p. 59–93.

    Google Scholar 

  95. Bagian JP. First intramuscular administration in the U.S. space program. J Clin Pharmacol. 1991;31:920.

    CAS  PubMed  Google Scholar 

  96. Hernandez-Korwo R, Kozlovskaya IB, Kreydich YV, Martinez-Fernandez S, Rakhmanov AS, Fernandez-Pone E, et al. Effect of 7-day spaceflight on structure and function of human locomotor system. Kosmicheskaya Biologiya I Aviakosmicheskaya. 1983;17(2):37–44.

    Google Scholar 

  97. Gurovskiy NN, Yeremin AV, Gazenko OG, Yegorov AD, Bryanov II, Genin AM. Medical investigations during flights of the Soyuz-12, Soyuz-13, Soyuz-14 and the Salyut-3 orbital station. Kosmicheskaya Biologiya I Aviakosmicheskaya Meditsina. 1975;9(2):48–54.

    Google Scholar 

  98. Vorobyev YI, Gazenko OG, Gurovskiy NN, Nefedov YG, Yegovov BB, Bayevskiy RM, et al. Preliminary results of medical investigations carried out during flight of the second expedition of the Salyut-4 orbital station. Kosmicheskaya Biologiya I Aviakosmicheskaya Meditsina. 1976;10(5):3–18.

    Google Scholar 

  99. Matveyev AD. Development of methods for the study of space motion sickness. Kosmicheskaya Biologiya I Aviakosmicheskaya Meditsina. 1987;21(3):83–8.

    Google Scholar 

  100. Webb CM, Estrada A, Athy JR. Motion sickness prevention by an 8-Hz stroboscopic environment during air transport. Aviat Space Environ Med. 2013;84(3):177–83.

    PubMed  Google Scholar 

  101. Zaleski-King AC, Lai W, Sweeney AD. Anatomy and physiology of the vestibular system. In: Babu S, Schutt C, Bojrab D, editors. Diagnosis and treatment of vestibular disorders. Cham: Springer; 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortega, H.J., Harm, D.L., Reschke, M.F. (2019). Space and Entry Motion Sickness. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics