Skip to main content

Human Response to Space Flight

  • Chapter
  • First Online:
Principles of Clinical Medicine for Space Flight

Abstract

The past five decades have amply demonstrated that humans can tolerate space flight well for long periods in orbiting spacecraft. Historically, the direct causes of mortality have been accidents occurring during dynamic phases of flight. The vast majority of flight time has been spent in Earth orbit, but both in orbit and on the lunar surface, humans have demonstrated the ability to maintain adequate health and to work productively. The dominant condition associated with Earth orbit affecting human physiology and health is weightlessness, which induces predictable changes in crewmembers during adaptation. Acutely, these changes can induce adverse symptoms such as space motion sickness from neurovestibular adaptation and facial congestion associated with a rostral fluid shift. Typically these symptoms do not limit crew activity and resolve within a few days. Significant but clinically asymptomatic early changes include regulation to a lower plasma volume with a concomitant decrease in red blood cell mass, changes in cardiac and respiratory dynamics, and changes in anthropometry. Food intake is volitionally reduced and weight loss is common. Changes in skeletal muscle morphology are seen, and muscle mass and strength in postural regions are reduced after several days. Aerobic fitness is reduced but does not limit inflight performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The gravitational environment. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: Section 4: environment physiology. New York: Oxford University Press; 1996.

    Google Scholar 

  2. Buckey JC. Space physiology. New York: Oxford University Press; 2006.

    Google Scholar 

  3. Berry C. Perspectives on Apollo. In: Johnston RS, Lawrence F. Dietlein MD, Charles A. Berry MD, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, NASA; 1975. p. 581–2.

    Google Scholar 

  4. Hanrahan JS. History of research in Space Biology and Biodynamics at the U.S. Air Force Missile Development Center, Holloman Air Force Base, New Mexico 1946–1958. In: Project Man High. Holloman Air Force Base, New Mexico: Historical Division, Office of Information Services, Air Force Missile Development Center, Air Research and Development Command; 1958. p. 18–27.

    Google Scholar 

  5. Dietlein LF. Summary and conclusions. In: Johnston RS, Lawrence F, Dietlein MD, Berry CA, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, NASA; 1975. p. 579.

    Google Scholar 

  6. Gurovskii NN, Eryonin AV, Gazenko OG, Egorov AD, Brianov II, Ganin AM. Medical investigations during flights of the spacecraft Soyuz-12, Soyuz-13, Soyuz-14 and the orbital station Salyut-3. In: International Astronautical Congress, 25th. Amsterdam, Netherlands: International Astronautical Federation; 1974.

    Google Scholar 

  7. Dietlein L. Skylab: a beginning. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington: Scientific and Technical Information Office, National Aeronautics and Space Administration, SP-377; 1977. p. 408–18.

    Google Scholar 

  8. D. Risin and P.C. Stepaniak, editors. Biomedical Results of the Space Shuttle Program. 2013. NASA/SP-2013-607

    Google Scholar 

  9. Moore TP, Thornton WE. Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat Space Environ Med. 1987;58:A91–6.

    CAS  PubMed  Google Scholar 

  10. Michel EL, Rummel JA, Sawin CF, Buderer MC, Lem JD. Results of Skylab Medical Experiment M171—Metabolic Activity. In: Johnston R, Dietlein L, editors. Biomedical results of Skylab. Washington: Scientific and Technical Information Office, NASA; 1977. p. 372–87.

    Google Scholar 

  11. Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF. Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med. 1988;59(12):1185–9.

    CAS  PubMed  Google Scholar 

  12. Matsnev EI, Yakovleva IY, Tarasov IK, et al. Space motion sickness: phenomenology, countermeasures, and mechanisms. Aviat Space Environ Med. 1983;54(4):312–7.

    CAS  PubMed  Google Scholar 

  13. Jennings RT. Managing space motion sickness. J Vestib Res. 1998;8(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  14. Billica RD, Barratt MR. Inflight evaluation of apparatus and techniques for performance of medical and surgical procedures in microgravity. STS-40 / SLS-1, SMIDEX Medical Restraint System. In: Spacelab Like Sciences 1 Final Report. Houston, TX: NASA JSC-26786; 1991. p. 5.67–5.82.

    Google Scholar 

  15. Mount FE, Whitmore M, Stealey SL. Evaluation of neutral body posture on shuttle mission STS-57 (Spacehab-1). 2003 NASA TM-2003-104805; 2003.

    Google Scholar 

  16. Thornton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. Chapter 32. In: Johnston R, Dietlein L, editors. Biomedical results of Skylab. Washington: Scientific and Technical Information Office, NASA; 1977 NASA SP-377. p. 330–8.

    Google Scholar 

  17. Ebert D, Sargsyan AE, Garcia KM, Dulchavsky SA. Spinal changes in response to spaceflight; NASA Human Research Program Investigator’s Workshop: Integrated Pathways to Mars; 2015 Jan 13–15; Galveston.

    Google Scholar 

  18. Chang DG, Healey RM, Snyder AJ, et al. Lumbar spine paraspinal muscle and intervertebral disc height changes in Astronauts after long-duration spaceflight on the International Space Station. Spine. 2016;41(24):1917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. NASA. Anthropometry and Biomechanics. In: Man-System Integration Standards, NASA-STD-3000: National Aeronautics and Space Administration; 1989. p. 56–7.

    Google Scholar 

  20. Young KS, Kim KH, Rajulu S. Quantification of in-flight changes: anthropometry and neutral body posture. Abs, presented at the 2017 Human Research Program Investigators’ Workshop. Galveston.

    Google Scholar 

  21. Human Integration Design Handbook. NASA 2010, SP-2010-3407. Section 4: Anthropometry, Biomechanics, and Strength; 2010.

    Google Scholar 

  22. Kerstman EL, Scheuring RA, Barnes MG, DeKorse TB, Saile LG. Space adaptation back pain: a retrospective study. Aviat Space Environ Med. 2012;83(1):2–7.

    Article  PubMed  Google Scholar 

  23. Buckey J, Lane L, Levine B, et al. Orthostatic intolerance after spaceflight. J App Physiol. 1996;81(1):7–18.

    Article  Google Scholar 

  24. Schneider V, Oganov V, LeBlanc A, et al. Bone and body mass changes during space flight. Acta Astronaut. 1995;36(8–12):463–6.

    Article  CAS  PubMed  Google Scholar 

  25. Heer M, De Santo NG, Cirillo M, Drummer C. Body mass changes, energy, and protein metabolism in space. Am J Kidney Dis. 2001;38(3):691–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kozerenko OP, Grigoriev AI, Egerov AD. Results of investigations of weightlessness effects during prolonged manned space flight onboard Salyut 6. The Physiologist. 1981;24(6 Suppl):S49–54.

    Google Scholar 

  27. Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The Nutritional Status of Astronauts is altered after long-term Space Flight Aboard the International Space Station. J Nutr. 2005;135:437–43.

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto A, Storch KJ, Stolfi A, et al. Weight loss in humans in space. Aviat Space Environ Med. 2011;82:615–21.

    Article  PubMed  Google Scholar 

  29. Zwart SR, Launius RD, Coen GK, Morgan JL, Charles JB, Smith SM. Body mass changes during long-duration spaceflight. Aviat Space Environ Med. 2014;85(9):897–904.

    Article  PubMed  Google Scholar 

  30. Grigoriev AI, Bugrov SA, Bogomolov VV, et al. Medical results of the Mir year-long mission. Physiologist. 1991;34(1 Suppl):S44–8.

    CAS  PubMed  Google Scholar 

  31. Harris BAJ, Billica RD, Bishop SL, et al. Physical examination during space flight. Mayo Clin Proc. 1997;72(4):301–8.

    Article  PubMed  Google Scholar 

  32. Draeger J, Schwartz R, Groenhoff S, Stern C. Self-tonometry under microgravity conditions. Aviat Space Environ Med. 1995;66(6):568–70.

    CAS  PubMed  Google Scholar 

  33. Chung KY, Woo SJ, Choi GH, et al. Diurnal pattern of intraocular pressure is affected by microgravity when measured in space with the pressure phosphine tonometer (PPT). J Glaucoma. 2011;20(8):488–91.

    Article  PubMed  Google Scholar 

  34. Arbeille P, et al. Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol. 2001;86:157–68.

    Article  CAS  PubMed  Google Scholar 

  35. Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR spaceflights with and without thigh cuffs (bracelets). Eur J Appl Physiol. 2000;81(5):384–90.

    Article  CAS  PubMed  Google Scholar 

  36. Guyton AC, Hall JE. Nervous regulation of the circulation, and rapid control of arterial pressure. In: Textbook of medical physiology. 10th ed. Philadelphia: W. B. Saunders; 2000. p. 184–94.

    Google Scholar 

  37. Fritsch-Yelle J, Charles J, Jones M, Wood M. Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol. 1996;80(3):910–4.

    Article  CAS  PubMed  Google Scholar 

  38. Buckey JC, Gaffney FA, Lane LD, et al. Central venous pressure in space. J Appl Physiol. 1996;81:19–25.

    Article  PubMed  Google Scholar 

  39. Norsk P, Damgaard M, Petersen L, et al. Vasorelaxation in space. Hypertension. 2006;47(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  40. Shykoff BE, Farhi LE, Olszowka AJ, et al. Cardiovascular response to submaximal exercise in sustained microgravity. J Appl Physiol Physiol. 1996;81:26032.

    Google Scholar 

  41. Verheyden B, Liu J, Beckers F, Aubert AE. Adaptation of heart rate and blood pressure to short and long duration space missions. Resp Physiol Neurobiol. 2009;169S:S13–6.

    Article  Google Scholar 

  42. Shiraishi M, Kamo T, Kamegai M, et al. Periodic structures and diurnal variation in blood pressure and heart rate in relation to microgravity on space station MIR. Biomed Pharmacother. 2004;58(Suppl 1):S31–4.

    Article  PubMed  Google Scholar 

  43. Atkov O, Bednenko VS, Fomina GA. Ultrasound techniques in space medicine. Aviat Space Environ Med. 1987;58:A69–73.

    PubMed  Google Scholar 

  44. Baevsky RM, Baranov VM, Funtova II, et al. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J Appl Physiol. 2007;103:156–61.

    Article  PubMed  Google Scholar 

  45. Hughson RL, Shoemaker JK, Blaber AP, et al. Cardiovascular regulation during long-duration spaceflights to the International Space Station. J Appl Physiol. 2012;112:719–27.

    Article  CAS  PubMed  Google Scholar 

  46. Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol. 2015;593:573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eckberg DL, Halliwill JR, Beightol LA, Brown TE, Taylor JA, Goble R. Human vagal baroreflex mechanisms in space. J Physiol. 2010;588(Pt 7):1129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Foldager N, Andersen TA, Jessen FB, et al. Central venous pressure in humans during microgravity. J Appl Physiol. 1996;81(1):408–12.

    Article  CAS  PubMed  Google Scholar 

  49. Leach CS, Alfrey CP, Suki WN, et al. Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol. 1996;81(1):105–16.

    Article  CAS  PubMed  Google Scholar 

  50. Johnson PC, Driscoll TB, LeBlanc AD. Blood volume changes. In: Johnston R, Dietlein L, editors. Biomedical results of Skylab. Washington: Scientific and Technical Information Office, NASA; 1977. p. 235–41.

    Google Scholar 

  51. Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH. Control of red blood cell mass in spaceflight. J Appl Physiol. 1996;81(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  52. Prisk G, Guy H, Elliott A, Deutschman R, West J. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J Appl Physiol. 1993;75(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  53. Verbanck S, Larsson H, Linnarsson D, Prisk GK, West JB, Paiva M. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity. J Appl Physiol. 1997;83:810–6.

    Article  CAS  PubMed  Google Scholar 

  54. Perhonen MA, Franco F, Lane LD, et al. Cardiac atrophy after bed rest and spaceflight. J Appl Physiol. 2002;92(5):2222–3.

    Article  Google Scholar 

  55. Henry WL, Epstein SE, Griffith JM, Goldstein RE, Redwood DR. Effect of prolonged space flight on cardiac functions and dimensions. In: Johnston R, Dietlein L, editors. Biomedical results from Skylab. Washington: Scientific and Technical Information Office, NASA; 1977. p. 366–71.

    Google Scholar 

  56. Verheyden B, Liu J, Beckers F, Aubert AE. Operational point of neural cardiovascular regulation in humans up to 6 months in space. J Appl Physiol. 2010;108:646–54.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang LF, Hargens AR. Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Phsyiol Rev. 2018;98(1):59–87.

    Article  Google Scholar 

  58. Estenne M, Gorini M, Van Muylem A, Ninane V, Paiva M. Rib cage shape and motion in microgravity. J Appl Physiol. 1992;73(3):946–54.

    Article  CAS  PubMed  Google Scholar 

  59. Videback R, Norsk P. Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol. 1997;83:1862–6.

    Article  Google Scholar 

  60. Buckey JC. Central venous pressure. In: Prisk GK, Paiva M, West JB, editors. Gravity and the lung: lessons from microgravity. New York: Marcel Dekker Inc.; 2001. p. 225–54.

    Google Scholar 

  61. Smith SM, Krauhs JM, Leach CS. Regulation of body fluid volume and electrolyte concentrations in spaceflight. Adv Space Biol Med. 1997;6:123–65.

    Article  CAS  PubMed  Google Scholar 

  62. Rice L, Alfrey CP. Modulation of red cell mass by neocytolysis in space and on Earth. Pflugers Arch. 2000;441(2–3 Suppl):R91–4.

    Article  CAS  PubMed  Google Scholar 

  63. Risso A, Ciana A, Achilli C, Antonutto G, Minetti G. Neocytolysis: none, one or many? A reappraisal and future perspectives. Front Physiol. 2014;5:54.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Watenpaugh DE, Hargens AR. The cardiovascular system in microgravity. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology. New York: Oxford University Press; 1996. p. 631–74.

    Google Scholar 

  65. Hamilton DR, Sargsyan AE, Martin DS, et al. On-orbit prospective echocardiography on International Space Station Crew. Echocardiography. 2011;28(5):491–501.

    Article  PubMed  Google Scholar 

  66. Summers RL, Martin DS, Meck JV. Computer systems analysis of spaceflight induced changes in left ventricular mass. Comput Biol Med. 2007;37:358–63.

    Article  PubMed  Google Scholar 

  67. Fritsch J, Eckberg D. Effects of weightlessness on human baroreflex function. (Abstract). Aviat Space Environ Med. 1992;63:439.

    Google Scholar 

  68. Fritsch JM, Charles JB, Bennett BS, Jones MM, Eckberg DL. Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses. J Appl Physiol. 1992;73(2):664–71.

    Article  CAS  PubMed  Google Scholar 

  69. Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL. Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol. 1994;77(4):1776–83.

    Article  CAS  PubMed  Google Scholar 

  70. Ertl AC, Diedrich A, Biaggioni I. Baroreflex dysfunction induced by microgravity: potential relevance to postflight orthostatic intolerance. Clin Auton Res. 2000;10(5):269–77.

    Article  CAS  PubMed  Google Scholar 

  71. Cooke WH, Ames JEI, Crossman AA, et al. Nine months in space: effects on human autonomic cardiovascular regulation. J Appl Physiol. 2000;89(3):1039–45.

    Article  CAS  PubMed  Google Scholar 

  72. Baisch F, Beck L, Blomqvist G, et al. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight. Eur J Clin Invest. 2000;30(12):1055–65.

    Article  CAS  PubMed  Google Scholar 

  73. Ertl A, Diedrich A, Biaggioni I, et al. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol. 2002;538(Pt 1):321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Rienzo M, Castiglioni F, Iellamo M, et al. Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight. J Appl Physio. 2008;105:1569–75.

    Article  Google Scholar 

  75. Iwasaki K, Levine BD, Zhang R, Zuckerman JH, et al. Human cerebral autoregulation before, during and after spaceflight. J Physiol. 2007;579:799–810.

    Article  CAS  PubMed  Google Scholar 

  76. Blaber AP, Goswami N, Bondar RL, Kassam MS. Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight. Stroke. 2011;42:1844–50.

    Article  PubMed  Google Scholar 

  77. Zuj KA, Arbeille P, Shoemaker JK, et al. Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight. Am J Phy: Heart Circul Physiol. 2012;302:H2592–8.

    CAS  Google Scholar 

  78. Blaber AP, Zuj KA, Goswami N. Cerebrovascular autoregulation: lessons learned from spaceflight research. Eur J Appl Physiol. 2013;113:1909–17.

    Article  PubMed  Google Scholar 

  79. Hawkins WR, Zieglschmid JF. Clinical aspects of crew health. In: Johnston RS, Lawrence F. Dietlein MD, Charles A. Berry MD, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, NASA; 1975. p. 71–3.

    Google Scholar 

  80. Newkirk D. Almanac of soviet manned space flight. In. Houston: Gulf Publishing Co.; 1990. p. 328–9.

    Google Scholar 

  81. Gazenko OG, Grigoriev AI, Burgov SA, Yegerov VV, Bogomolov VV, Tarasov IK. Review of the major results of medical research during the flight of the second prime crew of the Mir Space Station. Kosmich Biol i Aviakosmich Med. 1990;23:3–11.

    Google Scholar 

  82. Fritsch-Yelle J, Leuenberger U, D’Aunno D, et al. An episode of ventricular tachycardia during long-duration spaceflight. Am J Cardiol. 1998;81(11):1391–2.

    Article  CAS  PubMed  Google Scholar 

  83. Rossum AC, Wood ML, Bishop SL, Deblock H, Charles JB. Evaluation of cardiac rhythm disturbances during extravehicular activity. Am J Cardiol. 1997;79(8):1153–5.

    Article  CAS  PubMed  Google Scholar 

  84. Burton RR, Whinnery JE. Biodynamics: sustained acceleration. In: DeHart RL, Davis JR, editors. Fundamentals of aerospace medicine. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2002. p. 122–53.

    Google Scholar 

  85. Whinnery AM, Whinnery JE. The electrocardiographic response of females to centrifuge +Gz stress. Aviat Space Environ Med. 1990;61(11):1046–51.

    CAS  PubMed  Google Scholar 

  86. Prisk GK. The lung in space. Clin Chest Med. 2005;26:415–38.

    Article  PubMed  Google Scholar 

  87. Prisk GK. Microgravity and the respiratory system. Eur Respir J. 2014;43:1459–71.

    Article  PubMed  Google Scholar 

  88. Glaister D. The effects of gravity and acceleration on the lung. Technivison Services, Slough: AGARDograph; 1970. p. 133.

    Google Scholar 

  89. Michels DB, Friedman PJ, West JB. Radiographic comparison of human lung shape during normal gravity and weightlessness. J Appl Physiol. 1979;47:851–7.

    Article  CAS  PubMed  Google Scholar 

  90. Edyvean J, Estenne M, Paiva M, et al. Lung and chest wall mechanics in microgravity. J Appl Physiol. 1991;71:1956–66.

    Article  CAS  PubMed  Google Scholar 

  91. Wantier M, Estenne M, Verbanck S, Prisk GK, Paiva M. Chest wall mechanics in sustained microgravity. J Appl Physiol. 1998;84(6):2060–5.

    Article  CAS  PubMed  Google Scholar 

  92. Prisk GK, Elliott AR, Guy HJ, Kosonen JM, West JB. Pulmonary gas exchange and its determinants during sustained microgravity on Spacelabs SLS-1 and SLS-2. J Appl Physiol. 1995;79(4):1290–8.

    Article  CAS  PubMed  Google Scholar 

  93. Elliot AR, Prisk GK, Guy HJB, West JB. Lung volumes during sustained microgravity on Spacelab SLS-1. J Appl Physiol. 1994;77:2005–14.

    Article  Google Scholar 

  94. Prisk GK, Fine JM, Cooper TK, West JB. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol. 2006;101:439–47.

    Article  PubMed  Google Scholar 

  95. Prisk GK, Elliott AR, West JB. Sustained microgravity reduces the human ventilatory response to hypoxia but not hypercapnea. J Appl Physiol. 2000;88:1421–30.

    Article  CAS  PubMed  Google Scholar 

  96. Elliot AR, Prisk GK, Guy HJB, Kosonen JM, West JB. Forced expiration and maximum expiratory flow-volume curves during sustained microgravity on SLS-1. J Appl Physiol. 1996;81:33–43.

    Article  Google Scholar 

  97. Prisk GK. Microgravity and the lung. J Appl Physiol. 2000;89:385–96.

    Article  CAS  PubMed  Google Scholar 

  98. Verbandt Y, Wantier M, Prisk GK, Paiva M. Ventilation-perfusion matching in long-term microgravity. J Appl Physiol. 2000;89(6):2407–12.

    Article  CAS  PubMed  Google Scholar 

  99. Venturoli D, Semino P, Negrini D, Miserocchi G. Respiratory mechanics after 180 days space mission (EUROMIR’95). Acta Astronaut. 1998;42(1–8):185–204.

    Article  CAS  PubMed  Google Scholar 

  100. Prisk GK, Fine JM, Cooper TK, West JB. Lung function is unchanged in the 1 G environment following 6-months exposure to microgravity. Eur J Appl Pysiol. 2008;103(6):617–23.

    Article  Google Scholar 

  101. Biering-Sorensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest. 1990;20(3):330–5.

    Article  CAS  PubMed  Google Scholar 

  102. Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia. 1995;33(11):674–7.

    CAS  PubMed  Google Scholar 

  103. Smith MC, Rambaut PC, Vogel JM, Whittle MW. Bone Mineral Measurement Experiment M078. In: Johnston R, Dietlein L, editors. Biomedical results from Skylab. Washington: Scientific and Technical Information Office, NASA; 1977. p. 183–90.

    Google Scholar 

  104. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res. 1990;5(8):843–50.

    Article  CAS  PubMed  Google Scholar 

  105. Pereira-Silva JA, Costa-Dias F, Fonseca JE, Canhao H, Resende C, Viana-Queiroz M. Low bone mineral density in professional scuba divers. Clin Rheumatol. 2004;23(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  106. Whedon GD, Lutwak L, Rambaut PC, et al. Mineral and Nitrogen Metabolic Studies, Experiment M071. In: Johnston R, Dietlein L, editors. Biomedical results from Skylab. Washington: Scientific and Technical Information Office, NASA; 1977: p. 164–74.

    Google Scholar 

  107. LeBlanc A, Lin C, Shackelford L, et al. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight. J Appl Physiol. 2000;89(6):2158–64.

    Article  CAS  PubMed  Google Scholar 

  108. LeBlanc A, Schneider V, Shackelford L, et al. Bone mineral and lean tissue loss after long duration space flight. J Musculoskel Neur Interact. 2000;1(2):157–60.

    CAS  Google Scholar 

  109. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long duration spaceflight. J Bone Miner Res. 2004;19(6):1006–12.

    Article  PubMed  Google Scholar 

  110. Smith SM, Wastney ME, Morukov BV, et al. Calcium metabolism before, during, and after a 3 month spaceflight: kinetic and biochemical changes. Am J Physiol Heart Circ Physiol Regul Integrat Comp Physiol. 1999;277:R1–R10.

    Article  CAS  Google Scholar 

  111. Smith SM, Nillen JL, Leblanc A, et al. Collagen cross-links excretion during space flight and bed rest. J Clin Endocrinol Metab. 1998;83:3584–91.

    CAS  PubMed  Google Scholar 

  112. Caillot-Augusseau A, Lafage-Proust MH, Soler C, Pernod J, Dubois F, Alexandre C. Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin Chem. 1998;44(3):578–85.

    Article  CAS  PubMed  Google Scholar 

  113. Smith SM, Wastney ME, O’Brien KO, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. J Bone Miner Res. 2005;20(2):208–18.

    Article  CAS  PubMed  Google Scholar 

  114. Grigoryev AI, Dorokhova BR, Semenov VY, et al. Fluid-electrolyte metabolism and renal function in cosmonauts following 185-day spaceflight [Article in Russian]. Kosmicheskaya Biol I Aviakosmicheskaya Meditsina. 1985;19(3):21–7.

    Google Scholar 

  115. Morey-Holton ER, Schnoes HK, DeLuca HF, et al. Vitamin D metabolites and bioactive parathyroid hormone levels during Spacelab 2. Aviat Space Environ Med. 1988;59:1038–41.

    CAS  PubMed  Google Scholar 

  116. Tipton CM, Greenlead JE, Jackson CG. Neuroendocrine and immune system responses with spaceflights. Med Sci Sports Exer. 1996;28:988–98.

    Article  CAS  Google Scholar 

  117. Heer M. Nutritional interventions related to bone turnover in European space missions and simulation models. Nutrition. 2002;18(10):853–6.

    Article  CAS  PubMed  Google Scholar 

  118. Lang TF, Leblanc AD, Evans HJ, Lu Y. Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res. 2006;21(8):1224–30.

    Article  PubMed  Google Scholar 

  119. Keyak JH, Koyama AK, LeBlanc A, Lu Y, Lang TF. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44:449–53.

    Article  CAS  PubMed  Google Scholar 

  120. Smith SM, Heer MA, Shackelford L, et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J Bone Min Res. 2012;27(9):1896–906.

    Article  CAS  Google Scholar 

  121. LeBlanc A, Matsumoto T, Jones J, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24(7):2105–14.

    Article  CAS  PubMed  Google Scholar 

  122. Orwoll ES, Adler RA, Amin S, et al. Skeletal health in long-duration astronauts: nature, assessment and management recommendations from the NASA bone summit. J Bone Min Res. 2013;28(6):1243–55.

    Article  Google Scholar 

  123. Thornton W, Hoffler G, Rummel J. Muscular deconditioning and its prevention in Space Flight. In: Johnston R, Dietlein L, editors. Biomedical results of Skylab. Washington: Scientific and Technical Information Office, NASA; 1977. p. 191–97.

    Google Scholar 

  124. LeBlanc A, Rowe R, Schneider V, Evans H, Hedrick T. Regional muscle loss after short duration spaceflight. Aviat Space Environ Med. 1995;66(12):1151–4.

    CAS  PubMed  Google Scholar 

  125. Akima H, Kawakami Y, Kubo K, et al. Effect of short-duration spaceflight on thigh and leg muscle volume. Med Sci Sports Exerc. 2000;32(10):1743–7.

    Article  CAS  PubMed  Google Scholar 

  126. Edgerton VR, Zhou MY, Ohira Y, et al. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol. 1995;78(5):1733–9.

    Article  CAS  PubMed  Google Scholar 

  127. Zange J, Muller K, Schuber M, et al. Changes in calf muscle performance, energy metabolism, and muscle volume caused by long-term stay on space station MIR. Int J Sports Med. 1997;18(Suppl 4):S308–9.

    Article  PubMed  Google Scholar 

  128. Greenisen MC, Hayes JC, Siconolfi SE, Moore AD Jr. Functional performance evaluation. In: Sawin CF, Taylor GR, Smith WL, editors. Houston: National Aeronautics and Space Administration Extended duration Orbiter Medical Project / SP-1999-534; 1999. p. 3.1–24.

    Google Scholar 

  129. Lambertz D, Pérot C, Kaspranski R, Goubel F. Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol. 2001;90:179–88.

    Article  CAS  PubMed  Google Scholar 

  130. Antonutto G, Bodem F, Zamparo P, di Prampero PE. Maximal power and EMG of lower limbs after 21 days spaceflight in one astronaut. J Gravit Physiol. 1998;5(1):3–6.

    Google Scholar 

  131. Antonutto G, Capelli C, Girardis M, Zamparo P, di Prampero PE. Effects of microgravity on maximal power of lower limbs during very short efforts in humans. J Appl Physiol. 1999;86(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  132. Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol. 2000;89(2):823–39.

    Article  CAS  PubMed  Google Scholar 

  133. Widrick JJ, Knuth ST, Norenberg KM, et al. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol. 1999;516(Pt 3):915–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Goubel F. Changes in mechanical properties of human muscle as a result of spaceflight. Int J Sports Med. 1997;18(Suppl 4):S285–7.

    Article  PubMed  Google Scholar 

  135. Rummel JA, Sawin CF, Michel EL. Exercise response. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, National Aeronautics and Space Administration; 1975. p. 265–75.

    Google Scholar 

  136. Convertino VA. Physiological adaptations to weightlessness: effects on exercise and work performance. Exer Sport Sci Rev. 1990;18:119–66.

    Article  CAS  Google Scholar 

  137. Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol. 2006;100(3):951–7.

    Article  PubMed  Google Scholar 

  138. Grigoriev AI, Bugrov SA, Bogomolov VV, et al. Main medical results of extended flights on space station Mir in 1986–1990. Acta Astronaut. 1993;29(8):581–5.

    Article  CAS  PubMed  Google Scholar 

  139. Moore AD, Downs ME, Lee SM, et al. Peak exercise oxygen uptake during and following long-duration spaceflight. J Appl Physiol. 2014;117(3):231–8.

    Article  PubMed  Google Scholar 

  140. Fortney SM, Mikhaylov V, Lee SM, Kobzev Y, Gonzalez RR, Greenleaf JE. Body temperature and thermoregulation during submaximal exercise after 115-day spaceflight. Aviat Space Environ Med. 1998;69(2):137–41.

    CAS  PubMed  Google Scholar 

  141. Gundel A, Polyakov VV, Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J Sleep Res. 1997;6:1–8.

    Article  CAS  PubMed  Google Scholar 

  142. Rimmer DW, Dijk DJ, Ronda JM, et al. Efficacy of liquid cooling garments to minimize heat strain during Space Shuttle deorbit and landing. Med Sci Sport Exer. 1999;31(5):S305.

    Article  Google Scholar 

  143. Stahn AC, Werner A, Optaz O, et al. Increased core body temperature in astronauts during long-duration space missions. Scientific Reports, 7, Article No. 16180 Published 23 Nov 2017.

    Google Scholar 

  144. Clement G, Wood SJ, Reschke MF, Berthoz A, Igarashi M. Yaw and pitch visual-vestibular interaction in weightlessness. J Vestib Res. 1999;9(3):207–20.

    Article  CAS  PubMed  Google Scholar 

  145. Bock O, Fowler B, Comfort D. Human sensorimotor coordination during spaceflight: an analysis of pointing and tracking responses during the “Neurolab” Space Shuttle mission. Aviat Space Environ Med. 2001;72(10):877–83.

    CAS  PubMed  Google Scholar 

  146. Manzey D, Lorenz TB, Heuers H, Sangals J. Impairments of manual tracking performance during spaceflight: more converging evidence from a 20-day space mission. Ergonomics. 2000;43(5):589–609.

    Article  CAS  PubMed  Google Scholar 

  147. Roll R, Gilhodes JC, Roll JP, Popov K, Charade O, Gurfinkel V. Proprioceptive information processing in weightlessness. Exp Brain Res. 1998;122(4):393–402.

    Article  CAS  PubMed  Google Scholar 

  148. Reschke MF, Bloomberg JJ, Harm DL, Paloski WH, Layne C, McDonald V. Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Brain Res Rev. 1998;28(1-2):102–17.

    Article  CAS  PubMed  Google Scholar 

  149. Macho L, Koska J, Ksinantova L, et al. Effects of real and simulated microgravity on response of sympathoadrenal system to various stress stimuli. Ann N Y Acad Sci. 2004;1018:550–61.

    Article  CAS  PubMed  Google Scholar 

  150. Ertl AC, et al. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol. 2002;538:321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cox JF, Tahvanainen KU, Kuusela TA, et al. Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol. 2002;538(Pt 1):309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mader TH, Gibson CR, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118:2058–69.

    Article  PubMed  Google Scholar 

  153. Wiener TC. Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in space. Aviat Space Environ Med. 2012;83:64–6.

    Article  PubMed  Google Scholar 

  154. Marshall-Bowman K, Barratt M, Gibson R. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: An emerging understanding. Acta Astronautica. 2013;87:77–87.

    Article  CAS  Google Scholar 

  155. Zwart SR, Gibson CR, Gregory JF, Mader TH. Astronaut ophthalmic syndrome. FASEB J. 2017;31(9):3746–56.

    Article  CAS  PubMed  Google Scholar 

  156. Lee AG, Mader TH, Gibson CR, Tarver W. Space flight-associated neuro-ocular syndrome. JAMA Ophthalmol. 2017;135(9):992–4.

    Article  PubMed  Google Scholar 

  157. Stenger MB et al. Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS). Evidence Report, NASA Human Research Program, Human Health and Countermeasures Element. NASA Johnson Space Center; 2017.

    Google Scholar 

  158. Kramer LA, Sargsyan AE, Hasan KM, et al. Orbital and intracranial effects of microgravity: findings at 3-T MR Imaging. Radiology. 2012;263(3):819–27. (Epub 2012 Mar 13)

    Article  PubMed  Google Scholar 

  159. Lawley JS, Petersen LG, Howden EJ, et al. Effect of gravity and microgravity on intracranial pressure. J Physiol. 2017;595:2115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zwart SR, Gibson CR, Mader TH, et al. Vision changes after spaceflight are related to alterations in Folate- and Vitamin B-12-dependent one-carbon metabolism. J Nutr. 2012;142(3):427–31. (Epub 2012 Feb 1)

    Article  CAS  PubMed  Google Scholar 

  161. Myasnikov VI, Stepanova SI. Features of cerebral hemodynamics in cosmonauts before and after flight on the MIR orbital station. In: Orbital Station MIR, Space biology and medicine, vol. 2, Biomedical Experiments, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow; 2008. p. 300–304.

    Google Scholar 

  162. Gauer OH, Henry JP. Circulatory basis of fluid volume control. Physiol Rev. 1963;43:423–81.

    Article  CAS  PubMed  Google Scholar 

  163. Beckman EL, Coburn KR, Chambers RM, Deforest RE, Augerson WS, Benson VG. Physiologic changes observed in human subjects during zero G simulation by immersion in water up to neck level. Aeromed Acta. 1961;32:1031–41.

    CAS  Google Scholar 

  164. Graveline DE, Jackson MM. Diuresis associated with prolonged water immersion. J Appl Physiol. 1962;17:519–24.

    Article  CAS  PubMed  Google Scholar 

  165. Leach CS, Rambaut PC. Biochemical responses of the Skylab Crewmen; an overview. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab SP-377. Washington: Scientific and Technical Information Office, NASA; 1977. p. 204–16.

    Google Scholar 

  166. Schrier RW, Berl T, Anderson RJ. Osmotic and nonosmotic control of vasopressin release. Am J Physiol. 1979;236(4):F321–32.

    CAS  PubMed  Google Scholar 

  167. Eversmann T, Gottsmann M, Uhlich E, Ulbrecht G, von Werder K, Scriba PC. Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. Aviat Space Environ Med. 1978;49(1 Pt 1):53–7.

    CAS  PubMed  Google Scholar 

  168. Leach CS, Johnson PC, Rambaut PC. Metabolic and endocrine studies: the second manned Skylab mission. Aviat Space Environ Med. 1976;47:402–10.

    CAS  PubMed  Google Scholar 

  169. Drummer C, Norsk P, Heer M. Water and sodium balance in space. Am J Kidney Dis. 2001;38(3):684–90.

    Article  CAS  PubMed  Google Scholar 

  170. Liakopoulos V, Leivaditis K, Eleftheriadis T, Dombros N. The kidney in space. Int Urol Nephrol. 2012;44:1893–901.

    Article  PubMed  Google Scholar 

  171. Norsk P, Drummer C, Rocker L, et al. Renal and endocrine responses in humans to isotonic saline infusion during microgravity. J Appl Physiol. 1995;78(6):2253–9.

    Article  CAS  PubMed  Google Scholar 

  172. Gerzer R, Heer M. Regulation of body fluid and salt homeostasis—from observations in space to new concepts on Earth. Current Pharma Biotechnol. 2005;6(4):299–304.

    Article  CAS  Google Scholar 

  173. Leach CS, Johnson PC, Cintron NM. The endocrine system in space flight. Acta Astron. 1988;17:161–6.

    Article  CAS  Google Scholar 

  174. Hughson RL, Robertson AD, Arbeille P, et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am J Physiol Heart Circ Physiol. 2016;310:H628–38.

    Article  PubMed  Google Scholar 

  175. Leach CS, Leonard JI, Rambaut PC, Johnson PC. Evaporative water loss in man in a gravity-free environment. J Appl Physiol. 1978;45(3):430–6.

    Article  CAS  PubMed  Google Scholar 

  176. Whitson PA, Pietrzyk RA, Pak CY. Renal stone risk assessment during Space Shuttle flights. J Urology. 1997;158(6):2305–10.

    Article  CAS  Google Scholar 

  177. Whitson PA, Pietrzyk RA, Morukov BV, Sams CF. The risk of renal stone formation during and after long duration space flight. Nephron. 2001;89(3):264–70.

    Article  CAS  PubMed  Google Scholar 

  178. Whitson PA, Pietrzyk RA, Sams CF. Urine volume and its effects on renal stone risk in astronauts. Aviat Space Environ Med. 2001;72(4):368–72.

    CAS  PubMed  Google Scholar 

  179. Lebedev V. November: Tolia’s Illness. In: Puckett D, Harrison CW, editors. Diary of a Cosmonaut: 211 Days in Space. College Station: Phytoresource Research, Inc. Information Service (Originally published in 1983 as Dnevnik kosmonavta by Nauka i Zhizn, Moscow); 1988. p. 333–5.

    Google Scholar 

  180. Whitson PA, Pietrzyk RA, Jones JA, et al. Effect of potassium citrate therapy on the risk of renal stone formation during spaceflight. J Urology. 2009;182:2490–6.

    Article  CAS  Google Scholar 

  181. Stein TP, Schluter MD, Moldawer LL. Endocrine relationships during human spaceflight. Am J Physiol. 1999;276(1 Pt 1):E155–62.

    CAS  PubMed  Google Scholar 

  182. Stein TP, Wade CE. The catecholamine response to spaceflight: role of diet and gender. Am J Physiol Endocrinol Metab. 2001;281(3):E500–6.

    Article  CAS  PubMed  Google Scholar 

  183. Strollo F, Norsk P, Roecker L, et al. Indirect evidence of CNS adrenergic pathways activation during spaceflight. Aviat Space Environ Med. 1998;69(8):777–80.

    CAS  PubMed  Google Scholar 

  184. Stein TP, Leskiw MJ, Schluter MD. Effect of spaceflight on human protein metabolism. Am J Physiol. 1993;264(5 Pt 1):E824–8.

    CAS  PubMed  Google Scholar 

  185. Leach CS, Johnson PC, Driscoll TB. Prolonged weightlessness effect on postflight plasma thyroid hormones. Aviat Space Environ Med. 1977;48:595–7.

    CAS  PubMed  Google Scholar 

  186. McMonigal KA, Braverman LE, Dunn JT, et al. Thyroid function changes related to use of iodinated water in the U.S. Space Program. Aviat Space Environ Med. 2000;71(11):1120–5.

    CAS  PubMed  Google Scholar 

  187. Smith SM, Zwart SR, McMonigal KA, Huntoon CL. Thyroid status of Space Shuttle crewmembers: effects of iodine removal. Aviat Space Environ Med. 2011;82:49–51.

    Article  PubMed  Google Scholar 

  188. Hinghofer-Szalkay HG, Noskov VB, Rossler A, Grigoriev AI, Kvetnansky R, Polyakov VV. Endocrine status and LBNP-induced hormone changes during a 438-day spaceflight: a case study. Aviat Space Environ Med. 1999;70(1):1–5.

    CAS  PubMed  Google Scholar 

  189. Stowe RP, Sams CF, Pierson DL. Adrenocortical and immune responses following short-and long-duration spaceflight. Aviat Space Environ Med. 2011;82:627–34.

    Article  PubMed  Google Scholar 

  190. Stein TP, Schulter MD, Boden G. Development of insulin resistance by astronauts during spaceflight. Aviat Space Environ Med. 1994;65(12):1091–6.

    CAS  PubMed  Google Scholar 

  191. Smirnov KV, Ugolev AM. Digestion and absorption. In: Leach-Huntoon CS, Antipov VV, Grigoriev AI, editors. Humans in spaceflight, Book I. 2nd ed. Reston and Moscow: American Institute of Aeronautics and Astronautics; 1996. p. 211–30.

    Google Scholar 

  192. Strollo F, Riondino G, Harris B, et al. The effect of microgravity on testicular androgen secretion. Aviat Space Environ Med. 1998;69(2):133–6.

    CAS  PubMed  Google Scholar 

  193. Smith SM, Heer M, Wang Z, et al. Long-duration space flight and bed rest effects on testosterone and other steroids. J Clin Endocrinol Metab. 2012;97(1):270–8.

    Article  CAS  PubMed  Google Scholar 

  194. Arun CP. The importance of being asymmetric: the physiology of digesta propulsion on Earth and in space. Ann N Y Acad Sci. 2004;1027:74–84.

    Article  CAS  PubMed  Google Scholar 

  195. Harm DL, Sandoz GR, Stern RM. Changes in gastric myoelectric activity during space flight. Dig Dis Sci. 2002;47(8):1737–45.

    Article  PubMed  Google Scholar 

  196. Thornton WE, Linder BJ, Moore TP, Pool SL. Gastrointestinal motility in space motion sickness. Aviat Space Environ Med. 1987;58(9 Pt 2):A16–21.

    CAS  PubMed  Google Scholar 

  197. Lane HW, Whitson PA, Putcha L, et al. Regulatory physiology; gastrointestinal function during extended duration Space Flight. In: Sawin CF, Taylor GR, Smith WL, editors. Extended duration orbiter medical project final report. Houston: National Aeronautics and Space Administration, SP-1999-534; 1999. p. 2.4–2.6.

    Google Scholar 

  198. Tigranyan RA. Metabolic aspects of problems in stress in Space Flight. Problemy Kosmicheskoi Biologii. 1985;52:1–222.

    Google Scholar 

  199. Markin A, Strogonova L, Balashov O, Polyakov V, Tigner T. The dynamics of blood biochemical parameters in cosmonauts during long-term space flights. Acta Astronaut. 1998;42(1–8):247–53.

    Article  CAS  PubMed  Google Scholar 

  200. Smith SM, Davis-Street JE, Fontenot TB, Lane HW. Assessment of a portable clinical blood analyzer during space flight. Clin Chem. 1997;43(6 Pt 1):1056–65.

    Article  CAS  PubMed  Google Scholar 

  201. Cirillo M, De Santo NG, Heer M, et al. Low urinary albumin excretion in astronauts during space missions. Nephron Physiol. 2003;93(4):102–5.

    Article  CAS  Google Scholar 

  202. Kotovskaia AR, Vil’-Vil’iams I, Gavrilova LN, Elizarov S, Uliatovskii NV. Tolerance of +Gx by MIR 22—27 main crew in space flights. Aviakosm Ekolog Med. 2001;35(2):45050.

    Google Scholar 

  203. Jennings RT, Sawin CF, Barratt MR. Space operations. In: DeHart RL, Davis JR, editors. Fundamentals of aeropsace medicine. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 596–628.

    Google Scholar 

  204. Koloteva MI, Kotovskaia AR, Vil’-Vil’iams IF, Luk’ianiuk V, Gavrilova LN. G-tolerance of female cosmonauts during descent in space flights of 8 up to 169 days in duration [Article in Russian]. Aviakosm Ekolog Med. 2001;36(6):24–30.

    Google Scholar 

  205. Small RL, Oman CM, Jones TD. Space shuttle flight crew spatial orientation survey results. Aviat Space Environ Med. 2012;83:383–7.

    Article  PubMed  Google Scholar 

  206. McCluskey R, Clark J, Stepaniak P. Correlation of Space Shuttle landing performance with cardiovascular and neurovestibular dysfunction resulting from space flight. In: Human Systems 2001. Clear Lake City; 2001.

    Google Scholar 

  207. Paloski WH, Oman CM, Bloomberg JJ, et al. Risk of sensory-motor performance failures affecting vehicle control during space missions: a review of the evidence. J Grav Physiol. 2008;15(2):1–29.

    Google Scholar 

  208. Whitson PA, Charles JB, Williams WJ, Cintron NM. Changes in sympathoadrenal response to standing in humans after spaceflight. J Appl Physiol. 1995;79(2):428–33.

    Article  CAS  PubMed  Google Scholar 

  209. Convertino VA. Consequences of cardiovascular adaptation to spaceflight: implications for the use of pharmacological countermeasures. Gravit Space Biol Bull. 2005;18(2):59–69.

    PubMed  Google Scholar 

  210. Meck JV, Reyes CJ, Perez SA, Goldberger AL, Ziegler MG. Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts. Psychosom Med. 2001;63(6):865–73.

    Article  CAS  PubMed  Google Scholar 

  211. Lee SMC, Feiveson AH, Stein S, et al. Orthostatic intolerance after ISS and Space Shuttle missions. Aerosp Med Hum Perform. 2015;86(12 supple):54–67.

    Article  Google Scholar 

  212. Meck JV, Waters WW, Ziegler MG, et al. Mechanisms of post-spaceflight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight. Am J Physiol Heart Circ Physiol. 2004;286(4):H1486–95.

    Article  CAS  PubMed  Google Scholar 

  213. Gharib C, Custaud MA. Orthostatic tolerance after spaceflight or simulated weightlessness by head-down bed-rest. Bull Acad Natl Med [Article in French]. 2002;186(4):733–46. discussion 47-9

    Google Scholar 

  214. Levine BD, Pawelczyk JA, Ertl AC, et al. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight. J Physiol. 2002;1(538):331–40.

    Article  Google Scholar 

  215. Waters WW, Ziegler MG, Meck JV. Post-spaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol. 2002;92:586–94.

    Article  PubMed  Google Scholar 

  216. Perez SA, Charles JB, Fortner GW, Hurst VT, Meck JV. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat Space Environ Med. 2003;74(7):753–7.

    PubMed  Google Scholar 

  217. Gunga HC, Kirsch K, Baartz F, et al. Erythropoietin under real and simulated microgravity conditions in humans. J Appl Physiol. 1996;81(2):761–73.

    Article  CAS  PubMed  Google Scholar 

  218. Kimzey SL. Hematology and immunology studies. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington: Scientific and Technical Information Office, NASA; 1977. p. 249–82.

    Google Scholar 

  219. Grigor’ev AI, Noskov VB, Poliakov VV, et al. Dynamic changes in the reactivity of the hormonal system regulation with the impact by LBNP sessions in long-term space mission. Aviakosm Ekolog Med. 1998;32(3):18–23.

    PubMed  Google Scholar 

  220. Oganov VS. Changes in bone mineral density and human body composition in Spaceflight. In: The skeletal system, weightlessness, and osteoporosis. Moscow: Slovo; 2003. p. 56–75.

    Google Scholar 

  221. Shackelford LC, LeBlanc A, Feiveson A, Oganov V. Bone loss in space: shuttle/MIR experience and bed rest countermeasure program. In: First Biennial Space Biomedical Investigators’ Workshop. Houston: NASA Johnson Space Center; 1999.

    Google Scholar 

  222. Sibonga JD, Evans HJ, Sung HG, et al. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41(6):973–8.

    Article  CAS  PubMed  Google Scholar 

  223. Homick JL, Miller I. Apollo Flight Crew Vestibular assessment. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, NASA; 1975. p. 322–40.

    Google Scholar 

  224. Homick JL, Reschke MF. The Effects of prolonged exposure to weightlessness on postural equilibrium. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab. Washington: Scientific and Technical Information Office, NASA; 1977. p. 104–12.

    Google Scholar 

  225. Bacal K, Billica R, Bishop S. Neurovestibular symptoms following space flight. J Vestib Res. 2003;13(2–3):93–102.

    Article  PubMed  Google Scholar 

  226. Black FO, Paloski WH, Doxey-Gasway DD, Reschke MF. Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability. Acta Otolaryngol Suppl. 1995;520(Pt.2):450–4.

    Article  PubMed  Google Scholar 

  227. Hlavacka F, Kornilova LN. Velocity of head movements and sensory-motor adaptation during and after short spaceflight. J Gravit Physiol. 2004;11(2):13–6.

    Google Scholar 

  228. Mulavara AP, Feiveson AH, Fiedler J, et al. Locomotor function after long-duration space flight: effects and motor learning during recovery. Exp Brain Res. 2010;202:649–59.

    Article  PubMed  Google Scholar 

  229. Barratt M, Houser S, Wear ML. Operational monitoring of pre- and post-flight blood parameters for first time shuttle flyers. In: 67th Annual Scientific Meeting, Aerospace Medical Association; 1997.

    Google Scholar 

  230. Hoffler GW, Johnson RL. Apollo Flight Crew Cardiovascular evaluation. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo. Washington: Scientific and Technical Information Office, NASA; 1975. p. 226–64.

    Google Scholar 

Suggested Reading

Download references

Acknowledgments

The authors wish to thank Drs. Peter Norsk, Jennifer Fogarty, and Charles Gibson for their thoughtful reviews.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baker, E.S., Barratt, M.R., Sams, C.F., Wear, M.L. (2019). Human Response to Space Flight. In: Barratt, M., Baker, E., Pool, S. (eds) Principles of Clinical Medicine for Space Flight. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9889-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9889-0_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9887-6

  • Online ISBN: 978-1-4939-9889-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics