Skip to main content

Models for HIV/AIDS

  • Chapter
  • First Online:
Mathematical Models in Epidemiology

Part of the book series: Texts in Applied Mathematics ((TAM,volume 69))

  • 4719 Accesses

Abstract

Acquired immunodeficiency syndrome (AIDS) was first identified as a new disease in the homosexual community in San Francisco in 1981. The human immunodeficiency virus (HIV) was identified as the causative agent for AIDS in 1983. The disease has several very unusual aspects. After the initial infection, there are symptoms, including headaches and fever for 2 or 3 weeks. Transmissibility is high for about 2 months, and then there is a very long latent period during which transmissibility is low. At the end of this latent period, which may last 10 years, transmissibility rises, signaling the development of full-blown AIDS. In the absence of treatment, AIDS is invariably fatal. Now, HIV can be treated with a combination of highly active antiretroviral therapy (HAART) drugs, which both reduce the symptoms and prolong the period of low infectivity. While there is still no cure for AIDS, treatment has made it no longer a necessarily fatal disease. To describe the variation of infectivity for HIV, one possibility would be to use a staged progression model, with multiple infective stages having different infectivity. Another possibility would be to use an age of infection model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Raddad, L.J., A.S. Magaret, C., Celum, A. Wald, I.M. Longini Jr, S.G. Self, and L. Corey (2008) Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa. PloS one, 3(5): e2230.

    Google Scholar 

  2. Alvey, C., Z. Feng, and J.W. Glasser (2015) A model for the coupled disease dynamics of HIV and HSV-2 with mixing among and between genders. Math. Biosci. 265: 82–100.

    MathSciNet  MATH  Google Scholar 

  3. Anderson, R.M., R.M. May, G.F. Medley, and A. Johnson (1986) A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Med. Bio. 3: 229–263.

    MATH  Google Scholar 

  4. Anderson, R.M. and R.M. May (1987) Transmission dynamics of HIV infection, Nature 326: 137–142.

    Google Scholar 

  5. Anderson, R.M. (1988) The epidemiology of HIV infection: variable incubation plus infectious periods and heterogeneity in sexual activity, J. Roy. Statistical Society A. 151: 66–93.

    MathSciNet  MATH  Google Scholar 

  6. Anderson, R.M., D.R. Cox, and H.C. Hillier (1989) Epidemiological and statistical aspects of the AIDS epidemic: introduction, Phil. Trans. Roy. Soc. Lond. B 325: 39–44.

    Google Scholar 

  7. Anderson, R. M., S.P. Blythe, S. Gupta, and E. Konings (1989) The transmission dynamics of the human immunodeficiency virus type 1 in the male homosexual community in the United Kingdom: the influence of changes in sexual behavior, Phil. Trans. R. Soc. Lond. B 325: 145–198.

    Google Scholar 

  8. Anderson, R.M. and R.M. May (1991) Infectious Diseases of Humans, Oxford Science Publications, Oxford.

    Google Scholar 

  9. Aparicio J.P., A.F. Capurro, and C. Castillo-Chávez (2002) Markers of disease evolution: the case of tuberculosis, J. Theor. Biol. 215: 227–237.

    MathSciNet  Google Scholar 

  10. Bailey, N.T.J. (1988) Statistical problems in the modeling and prediction of HIV/AIDS, Aust. J. Stat. 3OA: 41–55.

    MATH  Google Scholar 

  11. Barré-Sinoussi, F., J.C. Chermann, F. Rey, M.T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vézinet-Brun, C. Rouzioux, et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science 220: 868–870.

    Google Scholar 

  12. Blower, S.M., A.N. Aschenbach, H.B. Gershengorn, and J.O. Kahn (2001) Predicting the unpredictable: transmission of drug-resistant HIV. Nature medicine, 7(9): 1016.

    Google Scholar 

  13. Blower, S.M. and H. Dowlatabadi (1994) Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. International Statistical Review/Revue Internationale de Statistique, 229–243.

    Google Scholar 

  14. Blower, S.M., H.B. Gershengorn, and R.M. Grant (2000) A tale of two futures: HIV and antiretroviral therapy in San Francisco. Science, 287(5453): 650–654.

    Google Scholar 

  15. Blower, S. M., K. Koelle, D.E. Kirschner, and J. Mills (2001) Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety. Proc. Natl. Acad. Sci. 98(6): 3618–3623.

    Google Scholar 

  16. Blower, S., and L. Ma (2004) Calculating the contribution of herpes simplex virus type 2 epidemics to increasing HIV incidence: treatment implications. Clinical Infectious Diseases, 39(Supplement 5), S240–S247.

    Google Scholar 

  17. Blower, S.M., T.C. Porco, and G. Darby (1998) Predicting and preventing the emergence of antiviral drug resistance in HSV-2. Nature medicine, 4(6): 673.

    Google Scholar 

  18. Blower S., P. Small, and P. Hopewell (1996) Control strategies for tuberculosis epidemics: new models for old problems, Science, 273: 497–500.

    Google Scholar 

  19. Blythe, S.P. and R.M. Anderson (1988) Distributed incubation and infectious periods in models of the transmission dynamics of the human immunodeficiency virus (HIV), IMA J. Math. Med. Bio. 5: 1–19.

    MATH  Google Scholar 

  20. Blythe, S.P. and C. Castillo-Chavez (1989) Like-with-like preference and sexual mixing models, Math. Biosci. 96: 221–238.

    MATH  Google Scholar 

  21. Blythe, S.P., C. Castillo-Chavez, J. Palmer, and M. Cheng (1991) Towards a unified theory of mixing and pair formation, Math. Biosc. 107: 379–405.

    MATH  Google Scholar 

  22. Blythe S.P., K. Cooke, C. Castillo-Chavez (1991 Autonomous risk-behavior change, and non-linear incidence rate, in models of sexually transmitted diseases, Biometrics Unit Technical Report B-1048-M.

    Google Scholar 

  23. Blythe, S.P., C. Castillo-Chavez and G. Casella (1992) Empirical methods for the estimation of the mixing probabilities for socially structured populations from a single survey sample, Math. Pop. Studies. 3: 199–225.

    MATH  Google Scholar 

  24. Blythe, S.P., S. Busenberg and C. Castillo-Chavez (1995) Affinity and paired-event probability, Math. Biosc. 128: 265–284.

    MathSciNet  MATH  Google Scholar 

  25. Boily, M.C., F.I. Bastos, K. Desai, and B. Masse (2004) Changes in the transmission dynamics of the HIV epidemic after the wide-scale use of antiretroviral therapy could explain increases in sexually transmitted infections: results from mathematical models, Sexually transmitted diseases, 31(2): 100–113.

    Google Scholar 

  26. Brookmeyer, R. and M. H. Gail (1988) A method for obtaining short-term projections and lower bounds on the size of the AIDS epidemic, J. Am. Stat. Assoc., 83:301–308.

    MATH  Google Scholar 

  27. Busenberg, S., and C. Castillo-Chavez (1989) Interaction, Pair Formation and Force of Infection Terms in Sexually Transmitted Diseases, Lect. Notes Biomath. 83, Springer-Verlag, New York.

    Google Scholar 

  28. Busenberg, S., and C. Castillo-Chavez (1991) A general solution of the problem of mixing subpopulations, and its application to risk- and age-structured epidemic models for the spread of AIDS. IMA J. Math. Applied in Med. and Biol. 8: 1–29.

    MathSciNet  MATH  Google Scholar 

  29. Castillo-Chavez, C., H.W. Hethcote, V. Andreasen, S.A. Levin, S.A. and W-M, Liu (1988) Cross-immunity in the dynamics of homogeneous and heterogeneous populations, Mathematical Ecology, T. G. Hallam, L. G. Gross, and S. A. Levin (eds.), World Scientific Publishing Co., Singapore, pp. 303–316.

    Google Scholar 

  30. Castillo-Chavez, C., ed. (1989) Mathematical and Statistical Approaches to AIDS Epidemiology, Lect. Notes Biomath. 83, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  31. Castillo-Chavez, C. (1989) Review of recent models of HIV/AIDS transmission, in Applied Mathematical Ecology (ed. S. Levin), Biomathematics Texts, Springer-Verlag, 18: 253–262.

    Google Scholar 

  32. Castillo-Chavez, C., K. Cooke, W. Huang, S.A. Levin (1989) The role of long periods of infectiousness in the dynamics of acquired immunodeficiency syndrome. In: Castillo-Chavez, C., S.A. Levin, C. Shoemaker (eds.) Mathematical Approaches to Resource Management and Epidemiology, (Lecture Notes Biomathematics, 81, Springer-Verlag, Berlin, Heidelberg. New York. London, Paris, Tokyo, Hong Kong, pp. 177–189.

    Google Scholar 

  33. Castillo-Chavez, C., K.L. Cooke, W. Huang, and S.A. Levin (1989) Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus, Applied Math. Letters, 2: 327–331.

    MATH  Google Scholar 

  34. Castillo-Chavez, C., K. Cooke, W. Huang, and S.A. Levin (1989) On the role of long incubation periods in the dynamics of HIV/AIDS. Part 2: Multiple group models, Mathematical and Statistical Approaches to AIDS Epidemiology, C. Castillo-Chávez, (ed.), Lecture notes in Biomathematics 83, Springer-Verlag, Berlin-Heidelberg-New York, pp. 200–217.

    Google Scholar 

  35. Castillo-Chavez, C., K. Cooke, W. Huang, and S.A. Levin (1989) The role of long incubation periods in the dynamics of HIV/AIDS. Part 1: Single populations models, J. Math. Biol. 27: 373–398.

    MathSciNet  MATH  Google Scholar 

  36. Castillo-Chavez, C. and S. Busenberg (1990) On the solution of the two-Sex mixing problem, Proceedings of the International Conference on Differential Equations and Applications to Biology and Population Dynamics, S. Busenberg and M. Martelli (eds.), Lecture Notes in Biomathematics Springer-Verlag, Berlin-Heidelberg-New York 92: 80–98.

    Google Scholar 

  37. Castillo-Chavez, C., S. Busenberg and K. Gerow (1990) Pair formation in structured populations, Differential Equations with Applications in Biology, Physics and Engineering, J. Goldstein, F. Kappel, W. Schappacher (eds.), Marcel Dekker, New York. pp. 4765.

    Google Scholar 

  38. Castillo-Chavez, C., J.X. Velasco-Hernandez, and S. Fridman (1993) Modeling contact structures in biology,(Lect. Notes Biomath. 100, Springer-Varlag.

    Google Scholar 

  39. Castillo-Chavez, C., W. Huang and J. Li (1996) On the existence of stable pair distributions, J. Math. Biol. 34: 413–441.

    MathSciNet  MATH  Google Scholar 

  40. Castillo-Chavez, C. and Z. Feng (1998) Mathematical models for the disease dynamics of tuberculosis, in Advances in mathematical population dynamics-molecules, cells and man (eds. M.A. Horn, G. Simonett, and G. Webb), Vanderbilt University Press, 117–128.

    Google Scholar 

  41. Castillo-Chavez, C. and S-F Hsu Schmitz (1997) The evolution of age-structured marriage functions: It takes two to tango, In, Structured-Population Models Marine, Terrestrial, and Freshwater Systems. S. Tuljapurkar and H. Caswell, (eds.), Chapman & Hall, New York, pages 533–550.

    Google Scholar 

  42. Castillo-Chavez, C. and Z. Feng (1997) To treat or not to treat: The case of tuberculosis, J. Math. Biol., 35: 629–656.

    MathSciNet  MATH  Google Scholar 

  43. Castillo-Chavez, C. and Z. Feng (1998) Global stability of an age-structure model for TB and its applications to optimal vaccination, Math. Biosc. 151: 135–154.

    MATH  Google Scholar 

  44. Cohen, M.S., N. Hellmann, J.A. Levy, K. DeCock, and J. Lange (2008) The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. The Journal of clinical investigation, 118(4): 1244–1254.

    Google Scholar 

  45. Corey, L., A. Wald, R. Patel, S.L. Sacks, S.K. Tyring, T. Warren, T., …and L.S. Stratchounsky (2004) Once-daily valacyclovir to reduce the risk of transmission of genital herpes. New England Journal of Medicine, 350(1): 11–20.

    Google Scholar 

  46. Cox, D.R. and G.F. Medley (1989) A process of events with notification delay and the forecasting of AIDS, Phil. Trans. Roy. Soc. Lond. B 325: 135–145.

    Google Scholar 

  47. Crawford, C.M., S.J. Schwager, and C. Castillo-Chavez (1990) A methodology for asking sensitive questions among college undergraduates, Technical Report #BU-1105-M in the Biometrics Unit series, Cornell University, Ithaca, NY.

    Google Scholar 

  48. Dietz, K. (1988) On the transmission dynamics of HIV, Math. Biosc. 90: 397–414.

    MathSciNet  MATH  Google Scholar 

  49. Dietz, K. and K.P. Hadeler (1988) Epidemiological models for sexually transmitted diseases, J. Math. Biol. 26: 1–25.

    MathSciNet  MATH  Google Scholar 

  50. Feng, Z. and C. Castillo-Chavez (2000) A model for Tuberculosis with exogenous reinfection, Theor. Pop. Biol., 57: 235–247.

    MATH  Google Scholar 

  51. Feng, Z., W. Huang, and C. Castillo-Chavez (2001) On the role of variable latent periods in mathematical models for tuberculosis, J. Dyn. Differential Equations, 13: 425–452.

    MathSciNet  MATH  Google Scholar 

  52. Feng, Z., Z. Qiu, Z. Sang, C. Lorenzo, and J.W. Glasser (2013) Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy. Math. Biosci. 245(2): 171–187.

    MathSciNet  MATH  Google Scholar 

  53. Foss, A.M., P.T. Vickerman, Z. Chalabi, P. Mayaud, M. Alary, and C.H. Watts (2009) Dynamic modeling of herpes simplex virus type-2 (HSV-2) transmission: issues in structural uncertainty. Bull Math. Biol. 71(3): 720–749.

    MathSciNet  MATH  Google Scholar 

  54. Foss, A.M., P.T. Vickerman, P. Mayaud, H.A. Weiss, B.M. Ramesh, S. Reza-Paul, S., …and M. Alary (2011) Modelling the interactions between herpes simplex virus type 2 and HIV: implications for the HIV epidemic in southern India. Sexually transmitted infections, 87(1): 22–27.

    Google Scholar 

  55. Gallo, R.C., S.Z. Salahuddin, M. Popovic, G.M. Shearer, M. Kaplan, B.F. Haynes, T. Palker, R. Redfield, J. Oleske, B. Safai, G. White, P. Foster, P.D., Markhamet (1984) Frequent detection and isolation of sytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS, Science 224: 500–503.

    Google Scholar 

  56. Gallo, R.C. (1986) The first human retrovirus, Scientific American 255: 88–98.

    Google Scholar 

  57. Gupta S., R.M. Anderson, and R.M. May (1989) Networks of sexual contacts: implications for the pattern of spread of HIV, AIDS 3: 1–11.

    Google Scholar 

  58. Francis, D.P., P.M. Feorino, J.R. Broderson, H.M. Mcclure, J.P. Getchell, C.R. Mcgrath, B. Swenson, J.S. Mcdougal, E.L. Palmer, and A.K. Harrison (1984) Infection of chimpanzees with lymphadenopathy-associated virus, Lancet 2: 1276–1277.

    Google Scholar 

  59. Hadeler, K.P. (1989) Modeling AIDS in structured populations, 47th Session of the International Statistical Institute, Paris, August/September. Conf. Proc., C1-2: 83–99.

    Google Scholar 

  60. Hadeler, K.P. and C. Castillo-Chavez (1995) A core group model for disease transmission, Math. Biosc. 128: 41–55.

    MATH  Google Scholar 

  61. Hethcote, H.W., H.W. Stech, P. van den Driessche (1981) Nonlinear oscillations in epidemic models, SIAM J. Appl. Math. 40: 1–9.

    MathSciNet  MATH  Google Scholar 

  62. Hethcote, H.W., J.W. van Ark (1987) Epidemiological methods for heterogeneous populations: proportional mixing, parameter estimation, and immunization programs. Math. Biosc. 84: 85–118.

    MATH  Google Scholar 

  63. Hethcote, H.W., and J.W. Van Ark (1992) Modeling HIV Transmission and AIDS in the United States, Lecture Notes in Biomathematics 95, Springer-Verlag, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  64. Hopf, E. (1942) Abzweigung einer periodischen Lösungen von einer stationaren Lösung eines Differentialsystems,Berlin Math-Phys. Sachsiche Akademie der Wissenschaften, Leipzig, 94: 1–22.

    Google Scholar 

  65. Hsu Schmitz, S.F. (1993) Some theories, estimation methods and applications of marriage functions and two-sex mixing functions in demography and epidemiology. Unpublished doctoral dissertation, Cornell University, Ithaca, New York, U.S.A.

    Google Scholar 

  66. Hsu Schmitz S.F. and C. Castillo-Chavez (1994) Parameter estimation. Brit. Med. J. 293: 1459–1462.

    Google Scholar 

  67. Huang, W., K.L.Cooke, and C. Castillo-Chavez, (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math. —textbf52: 835–854.

    MathSciNet  MATH  Google Scholar 

  68. Hyman, J.M., E.A. Stanley (1988) A risk base model for the spread of the AIDS virus. Math. Biosciences 90 415–473.

    Google Scholar 

  69. Hyman, J.M. and E.A. Stanley (1989) The Effects of Social Mixing Patterns on the Spread of AIDS, Mathematical Approaches to Problems in Resource Management and Epidemiology,(Ithaca, NY, 1987), 190–219, Lecture Notes in Biomathematics, 81, C. Castillo-Chávez, S. A. Levin, and C. A. Shoemaker (Eds.), Springer, Berlin.

    Google Scholar 

  70. Isham, V. (1989) Estimation of the incidence of HIV infection, Phil. Trans. Roy. Soc. Lond. B, 325: 113–121.

    Google Scholar 

  71. Kaplan, E.H. What Are the Risks of Risky Sex?, Operations Research, 1989.

    Google Scholar 

  72. Kingsley, R. A., R. Kaslow, C.R. Jr Rinaldo, K. Detre, N. Odaka, M. VanRaden, R. Detels, B.F. Polk, J. Chimel, S.F. Kersey, D. Ostrow, B. Visscher (1987) Risk factors for seroconversion to human immunodeficiency virus among male homosexuals, Lancet 1, 345–348.

    Google Scholar 

  73. Kirschner, D. (1999) Dynamics of co-infection with M. tuberculosis and HIV-1, Theor. Pop. Biol., 55: 94–109.

    MATH  Google Scholar 

  74. Koelle, K., S. Cobey, B. Grenfell, M. Pascual (2006) Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in Humans Science 314: 1898–1903.

    Google Scholar 

  75. Koopman, J, C.P. Simon, J.A. Jacquez, J. Joseph, L. Sattenspiel and T Park (1988) Sexual partner selectiveness effects on homosexual HIV transmission dynamics. Journal of AIDS 1: 486–504.

    Google Scholar 

  76. Lagakos, S.W., L. M. Barraj, and V. de Gruttola (1988) Nonparametric analysis of truncated survival data, with applications to AIDS, Biometrika, 75: 515–523.

    MathSciNet  MATH  Google Scholar 

  77. Lange, J. M. A., Paul, D. A., Huisman, H. G., De Wolf, F., Van den Berg, H., Roe!, C. A., Danner, S. A., Van der Noordaa, J., Goudsmit, J. Persistent HIV antigenaemia and decline of HIV core antibodies associated with transition to AIDS. Brit. Med. J. 293, 1459–1462 (1986).

    Google Scholar 

  78. Luo, X., and C. Castillo-Chavez. (1991) Limit behavior of pair formation for a large dissolution rate. J. Mathematical Systems, Estimation, and Control, 3: 247–264.

    MathSciNet  MATH  Google Scholar 

  79. May, R.M. and R.M. Anderson (1989) Possible demographic consequence of HIV/AIDS epidemics: II, assuming HIV infection does not necessarily lead to AIDS, in: Mathematical Approaches to Problems in Resource Management and Epidemiology, C. Castillo-Chávez, S.A. Levin, and C.A. Shoemaker (Eds.) Lecture Notes in Biomathematics 81, Springer-Verlag, Berlin-Heidelberg, New York, London, Paris, Tokyo, Hong Kong. pp. 220–248.

    Google Scholar 

  80. May, R.M. and R.M. Anderson (1989) The transmission dynamics of human immunodeficiency virus (HIV), in Applied Mathematical Ecology, (ed. S. Levin), Biomathematics Texts, 18, Springer-Verlag, New York.

    Google Scholar 

  81. Medley, G.F., R.M. Anderson, D.R. Cox, and L. Billiard (1987) Incubation period of AIDS in patients infected via blood transfusions, Nature 328: 719–721.

    Google Scholar 

  82. Miller, R.K. (1971) The implications and necessity of affinity, J. Biol. Dyn. 4: 456–477.

    Google Scholar 

  83. Morin, B., Castillo-Chavez, C. Hsu Schmitz, S-F, Mubayi, A., and X. Wang. Notes From the Heterogeneous: A Few Observations on the Implications and Necessity of Affinity. Journal of Biological Dynamics, Vol. 4, No. 5, 2010, 456–477.

    MathSciNet  MATH  Google Scholar 

  84. Mukandavire, Z., and W. Garira (2007) Age and sex structured model for assessing the demographic impact of mother-to-child transmission of HIV/AIDS. Bull. Math. Biol. 69: 2061–2092.

    MathSciNet  MATH  Google Scholar 

  85. Mukandavire, Z., and W. Garira (2007) Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe. J. Math. Biol. 54(5): 669–699.

    MathSciNet  MATH  Google Scholar 

  86. Naresh, R. and A. Tripathi (2005) Modelling and analysis of HIV-TB Co-infection in a variable size population, Mathematical Modelling and Analysis, 10: 275–286.

    MathSciNet  MATH  Google Scholar 

  87. Newton, E. A., and J.M. Kuder (2000) A model of the transmission and control of genital herpes. Sexually transmitted diseases, 27: 363–370.

    Google Scholar 

  88. Pickering, J., J.A. Wiley, N.S. Padian, et al. (1986) Modeling the incidence of acquired immunodeficiency syndrome (AIDS) in San Francisco, Los Angeles, and New York, Math. Modelling 7: 661–688.

    Google Scholar 

  89. Porco T. and S. Blower (1998) Quantifying the intrinsic transmission dynamics of tuberculosis, Theor. Pop. Biol., 54: 117–132.

    MATH  Google Scholar 

  90. Porco, T., P. Small, and S. Blower (2001) Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks, Journal of AIDS, 28: 437–444.

    Google Scholar 

  91. Raimundo, S.M., A.B. Engel, H.M. Yang, and R.C. Bassanezi (2003) An approach to estimating the transmission coefficients for AIDS and for tuberculosis using mathematical models, Systems Analysis Modelling Simulation, 43: 423–442.

    MathSciNet  MATH  Google Scholar 

  92. Roeger, L.-I.W., Z. Feng and C. Castillo-Chavez (2009) The impact of HIV infection on tuberculosis, Math. Biosc. Eng. 6: 815–837.

    MATH  Google Scholar 

  93. Rubin, G., D. Umbauch, D., S.-F. Shyu and C. Castillo-Chavez (1992) Application of capture-recapture methodology to estimation of size of population at risk of AIDS and/or Other sexually-transmitted diseases, Statistics in Medicine 11: 1533–49.

    Google Scholar 

  94. Salahuddin, S.Z., J.E. Groopman, P.D. Markham, M.G. Sarngaharan, R.R. Redfield, M.F. McLane, M. Essex, A. Sliski, R.C. Gallo (1984) HTLV-III in symptom-free seronegative persons, Lancet 2: 1418–1420.

    Google Scholar 

  95. Sattenspiel, L. (1989) The structure and context of social interactions and the spread of HIV. In Mathematical and Statistical Approaches to AIDS Epidemiology, Castillo-Chavez, C. (ed.) Lecture Notes in Biomathematics 83. Berlin: Springer-Verlag, pp. 242–259.

    Google Scholar 

  96. Sattenspiel, L., J. Koopman, C.P. Simon, and J.A. Jacquez (1990) The effects of population subdivision on the spread of the HIV infection, Am. J. Physical Anthropology 82: 421–429.

    Google Scholar 

  97. Sattenspiel, L. and C. Castillo-Chavez (1990) Environmental context, social interactions, and the spread of HIV, Am. J. Human Biology 2: 397–417.

    Google Scholar 

  98. Schinazi, R.B. (2003) Can HIV invade a population which is already sick? Bull. Braz. Math. Soc. (N.S.), 34: 479–488.

    MathSciNet  MATH  Google Scholar 

  99. Schwager, S., C. Castillo-Chavez, and H.W. Hethcote (1989) Statistical and mathematical approaches to AIDS epidemiology: A review, In: C. Castillo-Chávez (ed.), Mathematical and Statistical Approaches to AIDS Epidemiology, pp. 2–35. Lecture Notes in Biomathematics, Vol. 83, Springer-Verlag: Berlin.

    Google Scholar 

  100. Schinazi, R. B. (1999) Strategies to control the genital herpes epidemic. Math. Biosci. 159(2): 113–121.

    MATH  Google Scholar 

  101. Schulzer, M., M.P. Radhamani, S. Grybowski, E. Mak, and J.M. Fitzgerald (1994) A mathematical model for the prediction of the impact of HIV infection on tuberculosis, Int. J. Epidemiol., 23: 400–407.

    Google Scholar 

  102. Thieme, H. and C. Castillo-Chavez (1989) On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic, Mathematical and statistical approaches to AIDS epidemiology, C. Castillo-Chavez, (ed.), pp. 157–176. Lecture Notes in Biomathematics 83, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong.

    Google Scholar 

  103. Thieme, H.R. and C. Castillo-Chavez (1993) How may infection-age dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53: 1447–1479.

    MathSciNet  MATH  Google Scholar 

  104. Wald, A., A.G. Langenberg, K. Link, A.E. Izu, R. Ashley, T. Warren, …and L. Corey (2001) Effect of condoms on reducing the transmission of herpes simplex virus type 2 from men to women. JAMA, 285(24): 3100–3106.

    Google Scholar 

  105. West R. and J. Thompson (1996) Modeling the impact of HIV on the spread of tuberculosis in the United States, Math. Biosci., 143: 35–60.

    MATH  Google Scholar 

  106. White, R.G., E.E.Freeman, K.K. Orroth, R. Bakker, H.A. Weiss, N. O’farrell, …and J.R. Glynn (2008) Population-level effect of HSV-2 therapy on the incidence of HIV in sub-Saharan Africa. Sexually transmitted infections, 84(Suppl 2): ii12–ii18.

    Google Scholar 

  107. Wong-Staal, F., R.C. Gallo (1985) Human T-lymphotropic retroviruses. Nature 317: 395–403.

    Google Scholar 

  108. Wu L.-I., and Z. Feng (2000) Homoclinic bifurcation in an SIQR model for childhood diseases, J. Diff. Equ. 168: 150–167.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brauer, F., Castillo-Chavez, C., Feng, Z. (2019). Models for HIV/AIDS. In: Mathematical Models in Epidemiology. Texts in Applied Mathematics, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9828-9_8

Download citation

Publish with us

Policies and ethics