Skip to main content

Extended Decay Properties for Generalized BBM Equation

  • Chapter
  • First Online:
Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Part of the book series: Fields Institute Communications ((FIC,volume 83))

Abstract

In this note we show that all small solutions of the BBM equation must decay to zero as t → + in large portions of the physical space, extending previous known results, and only assuming data in the energy space. Our results also include decay on the left portion of the physical line, unlike the standard KdV dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Albert, On the Decay of Solutions of the Generalized Benjamin-Bona-Mahony Equation, J. Math. Anal. Appl. 141, 527–537 (1989).

    Article  MathSciNet  Google Scholar 

  2. M.A. Alejo, and C. Muñoz, Almost sharp nonlinear scattering in one-dimensional Born-Infeld equations arising in nonlinear electrodynamics, Proceedings of the AMS 146 (2018), no. 5, 2225–2237.

    Article  MathSciNet  Google Scholar 

  3. M. A. Alejo, M. F. Cortez, C. Kwak, and C. Muñoz, On the dynamics of zero-speed solutions for Camassa-Holm type equations, to appear in International Math. Research Notices, https://doi.org/10.1093/imrn/rnz038.

  4. T. B. Benjamin, The stability of solitary waves. Proc. Roy. Soc. London Ser. A 328 (1972), 153–183.

    Article  MathSciNet  Google Scholar 

  5. Benjamin, T. B.; Bona, J. L.; Mahony, J. J. (1972), Model Equations for Long Waves in Nonlinear Dispersive Systems, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 272 (1220): 47–78.

    Article  MathSciNet  Google Scholar 

  6. P. Biler, J. Dziubanski, and W. Hebisch, Scattering of small solutions to generalized Benjamin-Bona-Mahony equation in several space dimensions, Comm. PDE Vol. 17 (1992) - Issue 9-10, pp. 1737–1758.

    Google Scholar 

  7. J. L. Bona, On the stability theory of solitary waves. Proc. Roy. Soc. London A 349, (1975), 363–374.

    Article  MathSciNet  Google Scholar 

  8. J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory, J. Nonlinear. Sci. Vol. 12: pp. 283–318 (2002).

    Article  MathSciNet  Google Scholar 

  9. J. L. Bona, M. Chen, and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: The nonlinear theory, Nonlinearity 17 (2004) 925–952.

    Article  MathSciNet  Google Scholar 

  10. J. L. Bona, W.R. McKinney, J. M. Restrepo, Stable and unstable solitary-wave solutions of the generalized regularized long wave equation. J. Nonlinear Sci. 10 (2000), 603–638.

    Article  MathSciNet  Google Scholar 

  11. J. L. Bona, W. G. Pritchard, and L. R. Scott, Solitary-wave interaction, Physics of Fluids 23, 438 (1980).

    Article  Google Scholar 

  12. J. L. Bona, and N. Tzvetkov, Sharp well-posedness results for the BBM equation, Discrete Contin. Dyn. Syst. 23 (2009), no. 4, 1241–1252.

    MathSciNet  MATH  Google Scholar 

  13. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pure Appl. (2) 17 (1872), 55–108.

    Google Scholar 

  14. K. El Dika, Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation, Discrete and Contin. Dyn. Syst. 2005, 13(3): pp. 583–622. https://doi.org/10.3934/dcds.2005.13.583.

  15. K. El Dika, Smoothing effect of the generalized BBM equation for localized solutions moving to the right, Discrete and Contin. Dyn. Syst. 12 (2005), no 5, 973–982.

    Article  MathSciNet  Google Scholar 

  16. K. El Dika, and Y. Martel, Stability of N solitary waves for the generalized BBM equations, Dyn. Partial Differ. Equ. 1 (2004), no. 4, 401–437.

    Article  MathSciNet  Google Scholar 

  17. P. Germain, F. Pusateri, and F. Rousset, Asymptotic stability of solitons for mKdV, Adv. in Math. Vol. 299, 20 August 2016, pp. 272–330.

    Article  MathSciNet  Google Scholar 

  18. T. Hayashi, and P. Naumkin, Large Time Asymptotics for the BBM-Burgers Equation, Annales Henri Poincaré June 2007, Vol. 8, Issue 3, pp. 485–511.

    Article  MathSciNet  Google Scholar 

  19. M. Kowalczyk, Y. Martel, and C. Muñoz, Kink dynamics in theϕ 4model: asymptotic stability for odd perturbations in the energy space, J. Amer. Math. Soc. 30 (2017), 769–798.

    Google Scholar 

  20. M. Kowalczyk, Y. Martel, and C. Muñoz, Nonexistence of small, odd breathers for a class of nonlinear wave equations, Letters in Mathematical Physics, May 2017, Volume 107, Issue 5, pp 921–931.

    Article  MathSciNet  Google Scholar 

  21. M. Kowalczyk, Y. Martel, and C. Muñoz, On asymptotic stability of nonlinear waves, Laurent Schwartz seminar notes (2017), see url at http://slsedp.cedram.org/slsedp-bin/fitem?id=SLSEDP_2016-2017____A18_0.

  22. C. Kwak, and C. Muñoz, Asymptotic dynamics for the small data weakly dispersive one-dimensional hamiltonian ABCD system, to appear in Trans. of the AMS. Preprint arXiv:1902.00454.

    Google Scholar 

  23. C. Kwak, C. Muñoz, F. Poblete and J.-C. Pozo, The scattering problem for the hamiltonian abcd Boussinesq system in the energy space, J. Math. Pures Appl. (9) 127 (2019), 121–159.

    Google Scholar 

  24. Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl. (9) 79 (2000), no. 4, 339–425.

    Google Scholar 

  25. Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254.

    Article  MathSciNet  Google Scholar 

  26. Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical gKdV equations revisited. Nonlinearity, 18 (2005), no. 1, 55–80.

    Article  MathSciNet  Google Scholar 

  27. Y. Martel, F. Merle, and T. Mizumachi, Description of the inelastic collision of two solitary waves for the BBM equation, Arch. Rat. Mech. Anal. May 2010, Volume 196, Issue 2, pp 517–574.

    Google Scholar 

  28. F. Merle and P. Raphaël, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), no. 1, 157–222.

    Google Scholar 

  29. J. R. Miller, M. I. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave equation. Comm. Pure Appl. Math. 49 (1996), no. 4, 399–441.

    Article  MathSciNet  Google Scholar 

  30. C. Muñoz, F. Poblete, and J. C. Pozo, Scattering in the energy space for Boussinesq equations, Comm. Math. Phys. 361 (2018), no. 1, 127–141.

    Article  MathSciNet  Google Scholar 

  31. C. Muñoz, and G. Ponce, Breathers and the dynamics of solutions to the KdV type equations, Comm. Math. Phys. 367 (2019), no. 2, 581–598.

    Article  MathSciNet  Google Scholar 

  32. T. Mizumachi, Asymptotic stability of solitary wave solutions to the regularized long-wave equation, J. Differential Equations, 200 (2004), no. 2, 312–341.

    Article  MathSciNet  Google Scholar 

  33. D. H. Peregrine, Long waves on a beach. J. Fluid Mechanics 27 (1967), 815–827.

    Article  Google Scholar 

  34. P. E. Souganidis, W. A. Strauss, Instability of a class of dispersive solitary waves. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), no. 3–4, 195–212.

    Article  MathSciNet  Google Scholar 

  35. M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation. Comm. Partial Differential Equations 12 (1987), no. 10, 1133–1173.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank F. Rousset and M. A. Alejo for many interesting discussions on this subject and the BBM equation. C. K. is supported by FONDECYT Postdoctorado 2017 Proyect N 3170067. C. M. work was partly funded by Chilean research grants FONDECYT 1150202, Fondo Basal CMM-Chile, MathAmSud EEQUADD and Millennium Nucleus Center for Analysis of PDE NC130017.

Part of this work was carried out while the authors were part of the Focus Program on Nonlinear Dispersive Partial Differential Equations and Inverse Scattering (August 2017) held at Fields Institute, Canada. They would like to thank the Institute and the organizers for their warming support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Muñoz .

Editor information

Editors and Affiliations

Appendix: About the Proof of (2.18)

Appendix: About the Proof of (2.18)

In this section we estimate the nonlinear term

$$\displaystyle \begin{aligned} \begin{aligned} \mathcal N(t) =& ~{}\frac{\alpha}2\int \varphi' \left( 2f (1-\partial_x^{2})^{-1}(u^p) + ( (1-\partial_x^{2})^{-1}u^p)^2 \right) \\ & ~{} - \frac{\alpha}2\int \varphi' \left( 2f_x (1-\partial_x^{2})^{-1}(u^p)_x + (\partial_x (1-\partial_x^{2})^{-1}u^p)^2 \right)\\ &~ {} -\frac 1{p+1}(\alpha \sigma -1) \int \varphi' u^{p+1} + \int \varphi' u (1-\partial_x^2)^{-1}\left(u^p\right). \end{aligned} \end{aligned}$$

Clearly,

$$\displaystyle \begin{aligned} \left| \frac 1{p+1}(\alpha \sigma -1) \int \varphi' u^{p+1} \right| \lesssim \varepsilon^{p-1}\int |\varphi' |u^2, \end{aligned}$$

which is enough. Now, recall the following results.

Lemma A.1 ([15])

The operator \( (1-\partial _x^2)^{-1}\) satisfies the following comparison principle: for any u, v  H 1,

$$\displaystyle \begin{aligned} v \le w \quad \Longrightarrow \quad (1-\partial_x^2)^{-1} v \le (1-\partial_x^2)^{-1} w. \end{aligned} $$
(A.1)

Also,

Lemma A.2 ([15, 23])

Suppose that ϕ = ϕ(x) is such that

$$\displaystyle \begin{aligned} (1-\partial_x^2)^{-1}\phi(x) \lesssim \phi(x), \quad x\in \mathbb R, \end{aligned} $$
(A.2)

for ϕ(x) > 0 satisfying \(|\phi ^{(n)}(x)| \lesssim \phi (x)\), n ≥ 0. Then, for v, w  H 1, we have

$$\displaystyle \begin{aligned} \int\phi^{(n)} v (1-\partial_x^2)^{-1}(w^p) ~\lesssim ~\left\| v \right\|{}_{H^1}\left\| w \right\|{}_{H^1}^{p-2} \int \phi w^2 \end{aligned} $$
(A.3)

and

$$\displaystyle \begin{aligned} \int \phi v_x (1-\partial_x^2)^{-1} (w^p)_x \lesssim \left\| v \right\|{}_{H^1}\left\| w \right\|{}_{H^1}^{p-2} \int \phi (w^2 + w_x^2). \end{aligned} $$
(A.4)

Using (A.3) with n = 0,

$$\displaystyle \begin{aligned} \left| \int \varphi' u (1-\partial_x^2)^{-1}\left(u^p\right) \right| \lesssim \varepsilon \int |\varphi' | |u^p| \lesssim \varepsilon^{p-1} \int |\varphi' | u^2. \end{aligned}$$

Using (A.3) with n = 0 and (A.4), we also have from \(\|f\|{ }_{L^{\infty }}, \|f_x\|{ }_{L^{\infty }} \lesssim \|u\|{ }_{H^1}\) that

$$\displaystyle \begin{aligned} \left| \int \varphi' f (1-\partial_x^{2})^{-1}(u^p) \right| \lesssim \varepsilon \int |\varphi'| |u^p| \lesssim \varepsilon^{p-1} \int |\varphi' | u^2 \end{aligned}$$

and

$$\displaystyle \begin{aligned} \left| \int \varphi' f_x (1-\partial_x^{2})^{-1}(u^p)_x \right| \lesssim \varepsilon \int |\varphi'| |(u^p)_x| \lesssim \varepsilon^{p-1} \int |\varphi' | (u^2 + u_x^2). \end{aligned}$$

For the rest terms, using (A.3) with n = 0 and (A.4),

$$\displaystyle \begin{aligned} \int |\varphi' | ((1-\partial_x^{2})^{-1}(u^p))^2 \lesssim \| (1-\partial_x^{2})^{-1}(u^p) \|{}_{H^1} \varepsilon^{p-2} \int |\varphi' | u^2 \end{aligned}$$

and

$$\displaystyle \begin{aligned} \int |\varphi' | ((1-\partial_x^{2})^{-1}\partial_x(u^p))^2 \lesssim \| (1-\partial_x^{2})^{-1}(u^p) \|{}_{H^1} \varepsilon^{p-2} \int |\varphi' | (u^2 + u_x^2). \end{aligned}$$

Finally, \( \| (1-\partial _x^{2})^{-1}(u^p) \|{ }_{H^1} \lesssim \|u^p\|{ }_{H^{-1}} \lesssim \varepsilon ^{p}\). Gathering these estimates, we get for some δ small enough,

$$\displaystyle \begin{aligned} \left|\mathcal N(t) \right| ~\lesssim \delta \int |\varphi' | (u^2 + u_x^{2}). \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kwak, C., Muñoz, C. (2019). Extended Decay Properties for Generalized BBM Equation. In: Miller, P., Perry, P., Saut, JC., Sulem, C. (eds) Nonlinear Dispersive Partial Differential Equations and Inverse Scattering. Fields Institute Communications, vol 83. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9806-7_8

Download citation

Publish with us

Policies and ethics