Skip to main content

Production and Utilisation of Yeast Biomass for Wine Fermentation

  • Chapter
  • First Online:
Yeasts in the Production of Wine

Abstract

In this chapter, the current practices in the production of various wine yeasts in the format of active dry yeast (ADY) have been elucidated, with focuses on multi-stage yeast fed-batch fermentation and ADY production using fluid bed drying technology. Even though the equipment and processes currently used to produce wine active dry yeast (WADY) have not be changed significantly in the last 25 years or so, progresses have been made on the process control front during the yeast fed-batch fermentation process. In addition, our understanding of yeast genetics and physiology has tremendously improved. These advances are certainly beneficial for enhancing the production of WADY in terms of both production efficiency and yeast quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amerine, M. A., Berg, H. W., Kunkee, R. E., Ough, C. S., Singleton, V. L., & Webb, A. D. (1980). The composition of grapes and wines. In The technology of wine making (4th ed.). Westport: Avi Publishing Company.

    Google Scholar 

  • Bauer, F. F., & Pretorius, I. S. (2000). Yeast stress response and fermentation efficiency: How to survive the making of wine – A review. South African Journal of Enology and Viticulture, 21, 27–51.

    CAS  Google Scholar 

  • Beker, M. J., Blumbergs, J. E., Ventina, E. J., & Rapoport, A. I. (1984). Characteristics of cellular membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 19, 347–352.

    Article  Google Scholar 

  • Bely, M., Sablayrolles, J. M., & Barre, P. (1991). Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in enological conditions. Journal of Fermentation and Bioengineering, 70, 246–252.

    Article  Google Scholar 

  • Bely, M., Salmon, J. M., & Barre, P. (1994). Assimilable nitrogen addition and hexose transport system activity during enological fermentations. Journal of the Institute of Brewing, 100, 279–282.

    Article  CAS  Google Scholar 

  • Bordone, L., & Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: Mnderstanding longevity. Nature Reviews. Molecular Cell Biology, 6, 298–305.

    CAS  PubMed  Google Scholar 

  • Carro, D., & Pina, B. (2001). Genetic analysis of the karyotype instability in natural wine yeast strains. Yeast, 18, 1457–1470.

    Article  CAS  Google Scholar 

  • Cavalieri, D., Townsend, J. P., & Hartl, D. L. (2000). Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 12369–12374.

    Article  CAS  Google Scholar 

  • Chen, S. L., & Chiger, M. (1985). Production of baker’s yeast. In M. Moo-Young (Ed.), Comprehensive biotechnology. Oxford: Pergamon Press.

    Google Scholar 

  • Coleman, M. C., Fish, R., & Block, D. E. (2007). Temperature-dependent kinetic model for nitrogen-limited wine fermentations. Applied and Environmental Microbiology, 73, 5875–5884.

    Article  CAS  Google Scholar 

  • Coulon, J., et al. (2006). Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. American Journal of Enology and Viticulture, 57, 113–124.

    CAS  Google Scholar 

  • De Dekken, R. H. (1966). The crabtree effect: A regulatory system in yeast. Journal of General Microbiology, 44, 149–156.

    Article  Google Scholar 

  • De Winde, J. H., & Thevelein, J. M. (Eds.). (1997). From feast to famine: Adaptation to nutrient depletion in yeast. Austin: R.G. Landes Company.

    Google Scholar 

  • Degré, R. (1993). Selection and commercial cultivation of wine yeast and bacteria. In G. H. Fleet (Ed.), Wine microbiology and biotechnology. Chur: Harwood Academic Publishers.

    Google Scholar 

  • Fornairon-Bonnefond, C., Demaretz, V., Rosenfeld, E., & Salmon, J.-M. (2002). Oxygen addition and sterol synthesis in Saccharomyces cerevisiae during enological fermentation. Journal of Bioscience and Bioengineering, 93, 176–182.

    Article  CAS  Google Scholar 

  • Gancedo, J. M. (1998). Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews, 62, 334–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasch, A. P., et al. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11, 4241–4257.

    Article  CAS  Google Scholar 

  • James, T. C., Campbell, S., Donnelly, D., & Bond, U. (2003). Transcription profile of brewery yeast under fermentation conditions. Journal of Applied Microbiology, 94, 432–448.

    Article  CAS  Google Scholar 

  • Jiranek, V., Langridge, P., & Henschke, P. A. (1991). Yeast nitrogen demand: Selection criterion for wine yeasts for fermenting low nitrogen musts. In J. Rantz (Ed.), Proceedings of the International symposium on nitrogen in grapes and wines. The American society for enology and viticulture (pp. 266–269). Washington: Seattle.

    Google Scholar 

  • Julien, A., Roustan, J.-L., Dulau, L., & Sablayrolles, J.-M. (2001). Variabilité des besoins en oxygène et en azote assimilable suivant les souches de levures œnologiques. Revue Française d’œnologie, 189, 20–22.

    CAS  Google Scholar 

  • Kobayashi, N., & McEntee, K. (1993). Identification of Cis and Trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Molecular and Cellular Biology, 13, 248–256.

    Article  CAS  Google Scholar 

  • Lee, T. I., et al. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799–804.

    Article  CAS  Google Scholar 

  • Luparia, V., Soubeyrand, V., Berges, T., Julien, A., & Salmon, J.-M. (2004). Assimilation of grape phytosterols by Saccharomyces cerevisiae and their impact on enological fermentations. Applied Microbiology and Biotechnology, 65, 25–32.

    Article  CAS  Google Scholar 

  • Magasanik, B., & Kaiser, C. A. (2002). Nitrogen regulation in Saccharomyces cerevisiae. Gene, 290, 1–18.

    Article  CAS  Google Scholar 

  • Mager, W. H., & De Kruijff, A. J. (1995). Stress-induced tanscriptional activation. Microbiological Reviews, 59, 506–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manginot, C., Sablayrolles, J. M., Roustan, J. L., & Barre, P. (1997). Use of constant rate alcoholic fermentations to compare the effectiveness of different nitrogen sources added during the stationary phase. Enzyme and Microbial Technology, 20, 373–380.

    Article  CAS  Google Scholar 

  • Manginot, C., Roustan, J. L., & Sablayrolles, J. M. (1998). Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of the stationary phase. Enzyme and Microbial Technology, 23, 511–517.

    Article  CAS  Google Scholar 

  • Martinez-Pastor, M. T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the Stress Response Element (STRE). The EMBO Journal, 15, 2227–2235.

    Article  CAS  Google Scholar 

  • Nadal, D., Carro, D., Fernandez-Larrea, J., & Pina, B. (1999). Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains. Applied and Environmental Microbiology, 65, 1688–1695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Torrado, R., Bruno-Barcena, J. M., & Matallana, E. (2005). Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Applied and Environmental Microbiology, 71, 6831–6837.

    Article  CAS  Google Scholar 

  • Puig, S., & Perez-Ortin, J. E. (2000). Stress response and expression patterns in wine fermentations of yeast genes expressed at the diauxic shift. Yeast, 16, 139–148.

    Article  CAS  Google Scholar 

  • Reed, G. (1982). Production of baker’s yeast. In G. Reed (Ed.), Prescott and dunn’s industrial microbiology. Westport: Avi Publishing Company.

    Google Scholar 

  • Reed, G., & Nagodawithana, T. W. (1991). Yeast technology. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Ribereau-Gayon, J., & Peynaud, E. (1960). Traité d’œnologie. In Librairie polytechnique (pp. 325–333 et 455–458). Paris: Béranger.

    Google Scholar 

  • Rossignol, T., Dulau, L., Julien, A., & Blondin, B. (2003). Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast, 20, 1369–1385.

    Article  CAS  Google Scholar 

  • Rossignol, T., Postaire, O., Storai, J., & Blondin, B. (2006). Analysis of the genomic response of a wine yeast to rehydration and inoculation. Applied Microbiology and Biotechnology, 71, 699–712.

    Article  CAS  Google Scholar 

  • Ruis, H., & Schuller, C. (1995). Stress signaling in yeast. BioEssays, 17, 959–965.

    Article  CAS  Google Scholar 

  • Sablayrolles, J. M., & Barre, P. (1986). Évaluation des besoins en oxygène de fermentations alcooliques en conditions œnologiques simulées. Sciences des Aliments, 6, 373–383.

    CAS  Google Scholar 

  • Sablayrolles, J. M., Dubois, C., Manginot, C., Roustan, J. L., & Barre, P. (1996). Effectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck wine fermentations. Journal of Fermentation and Bioengineering, 82, 377–381.

    Article  CAS  Google Scholar 

  • Schuller, D., Pereira, L., Alves, H., Cambon, B., Dequin, S., & Casal, M. (2007). Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments. Yeast, 24, 625–636.

    Article  CAS  Google Scholar 

  • Sinclair, D. A. (2005). Toward a unified theory of caloric restriction and longevity regulation. Mechanisms of Ageing and Development, 126, 987–1002.

    Article  CAS  Google Scholar 

  • Soubeyrand, V., et al. (2005). Formation of micella containing solubilized sterols during rehydration of active dry yeasts improves their fermenting capacity. Journal of Agricultural and Food Chemistry, 53, 8025–8032.

    Article  CAS  Google Scholar 

  • Sweigers, J. H., et al. (2007). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast, 24, 561–574.

    Article  CAS  Google Scholar 

  • Treger, J. M., Magee, T. R., & McEntee, K. (1998). Functional analysis of the stress response element and its role in the multistress response of S. cerevisiae. Biochemical and Biophysical Research Communications, 243, 13–19.

    Article  CAS  Google Scholar 

  • Valero, E., Millan, M. C., Mauricio, J. C., & Ortega, J. M. (1998). Effect of grape skin maceration on sterol, phospholipid, and fatty acid contents of Saccharomyces cerevisiae during alcoholic fermentation. American Journal of Enology and Viticulture, 49, 119–124.

    CAS  Google Scholar 

  • Volschenk, H., Viljoen-Bloom, M., Van Staden, J., Husnik, J., & van Vuuren, H. J. J. (2004). Genetic engineering of an industrial strain of Saccharomyces bayanus, for L-malic acid degradation via an efficient malo-ethanolic pathway. South African Journal of Enology and Viticulture, 25, 63–73.

    Article  CAS  Google Scholar 

  • Wardrop, F. R., Liti, G., Cardinali, G., & Walker, G. M. (2004). Physiological responses of crabtree positive and crabtree negative yeasts to glucose upshifts in a chemostat. Annals of Microbiology, 54, 103–114.

    CAS  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 339–353.

    Article  Google Scholar 

  • Zadeh, L. A. (1976). A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. International Journal of Man-Machine Studies, 8, 249–291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Degré, R., Ortiz-Julien, A., Wardrop, F., Zhang, Z. (2019). Production and Utilisation of Yeast Biomass for Wine Fermentation. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_8

Download citation

Publish with us

Policies and ethics