Skip to main content

Gene Expression in Yeasts During Wine Fermentation

  • Chapter
  • First Online:
Yeasts in the Production of Wine

Abstract

The analysis of gene regulation and changes in transcript profiles for important model organisms in their natural environments provides critical insights into their biology and genome evolution. Such research allows the processes of adaptation to stressors present in changing environments to be delineated and the physiology of various non-proliferative states to be defined. In the context of the wine yeast, Saccharomyces cerevisiae, where there is extensive biodiversity among wild strains, changes in gene expression can be correlated with phenotypes that are important to survival and dominance in natural environments. Research in this area is leading to a comprehensive understanding of the changing physiology of yeast during the conversion of grape juice to wine. Transcript analysis is also being used to define the factors underlying complex phenotypes in wine yeast. These phenotypes are under the control of multiple independently segregating genes. Such analyses have underscored the central role that alterations in gene expression and regulation play in phenotypic expression and the development of novel phenotypes. The degree of plasticity or conservation of the regulation of metabolic pathways and cellular processes provides a basis for the elucidation of strain evolution and environmental selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceituno, F. F., Orellana, M., Tores, J., Mendoza, S., Slater, A. W., Melo, F., et al. (2012). Oxygen response of wine yeast Saccharomyces cerevisiae EC1118 grown under carbon-sufficient nitrogen-limited enological conditions. Applied and Environmental Microbiology, 78, 8340–8352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberola, T. M., Garcia-Martinez, J., Antunez, O., Viladevall, L., Barcelo, A., Arino, J., et al. (2004). A new set of DNA macrochips for the yeast Saccharomyces cerevisiae: Features and uses. International Microbiology, 7, 199–206.

    CAS  PubMed  Google Scholar 

  • Alexandre, H., Ansanay-Galeote, V., Dequin, S., & Blondin, B. (2001). Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Letters, 498, 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, P., Barbosa, R., Zalar, P., Imanishi, Y., Shimizu, K., Turchetti, B., et al. (2015). A population genomics insight into Mediterranean origins of yeast domestication. Molecular Ecology, 24, 5412–5427.

    Article  PubMed  Google Scholar 

  • Ambrona, J., & Ramirez, M. (2007). Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation. Applied and Environmental Microbiology, 73, 2486–2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrona, J., Vinagre, A., & Ramirez, M. (2005). Rapid asymmetrical evolution of Saccharomyces cerevisiae wine yeasts. Yeast, 22, 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  • Amerine, M. A., Berg, H. W., Kunkee, R. E., Ough, C. S., Singleton, V. L., & Webb, A. D. (1980). The technology of wine making (4th ed.). Westport Conn: AVI Publishing Co.

    Google Scholar 

  • Ando, A., Tanaka, F., Murata, Y., Takagi, H., & Shima, J. (2005). Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Research, 6, 249–267.

    Article  CAS  Google Scholar 

  • Ansel, J., Boltin, H., Rodriquez-Beltran, C., Damon, C., Nagarajan, M., Fehrmann, S., et al. (2008). Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PloS Genetics, 4(4), e1000049. https://doi.org/10.1371/journal.pgen.1000049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda, A., & del Olmo, M. (2004). Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively. Applied and Environmental Microbiology, 70, 1913–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backhus, L. E., DeRisi, J., & Bisson, L. F. (2001). Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Research, 1, 111–125.

    Article  CAS  PubMed  Google Scholar 

  • Bakalinsky, A. T., & Snow, R. (1990). The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast, 6, 367–382.

    Article  CAS  PubMed  Google Scholar 

  • Balaji, S., Babu, M. M., Iyer, L. M., Luscombe, N. M., & Aravind, L. (2006). Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. Journal of Molecular Biology, 360, 213–227.

    Article  CAS  PubMed  Google Scholar 

  • Baleiras Couto, M. M., Eijsma, B., Hofstra, H., & Huis in’t Veld JHJ, van der Vossen JMBM. (1996). Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Applied and Environmental Microbiology, 62, 41–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa, C., García-Martínez, J., Pérez-Ortín, J. E., & Mendes-Ferreira, A. (2015a). Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PloS ONE, 10(4), e0122709. https://doi.org/10.1371/journal.pone.0122709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa, C., Mendes-Faia, A., Lage, P., Mira, N. P., & Mendes-Ferreria, A. (2015b). Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii. Microbial Cell Factories, 14, 124. https://doi.org/10.1186/s12934-015-0318-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran, G., Novo, M., Leberre, V., Sokol, S., Labourdette, D., Guillamon, J. M., et al. (2006). Integration of transcriptomic and metabolic analysis for understanding the global responses of low-temperature winemaking fermentations. FEMS Yeast Research, 6, 1167–1183.

    Article  CAS  PubMed  Google Scholar 

  • Benaroudj, N., Lee, D. H., & Goldberg, A. L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. The Journal of Biological Chemistry, 276, 24261–24267.

    Article  CAS  PubMed  Google Scholar 

  • Bergström, A., Simpson, J. T., Salinas, F., Barré, B., Parts, L., Zia, A., et al. (2014). A high-definition view of functional genetic variation from natural yeast genomes. Molecular Biology Ecology, 31(4), 872–888.

    Google Scholar 

  • Bisson, L. F. (1999). Stuck and sluggish fermentations. American Journal of Enology and Viticulture, 50, 107–119.

    CAS  Google Scholar 

  • Bisson, L. F. (2016). Yeast hybrids in winemaking. Catalyst, 1, 27–34. https://doi.org/10.5344/catalyst.2016.16001.

    Article  Google Scholar 

  • Bisson, L. F., & Block, D. E. (2002). Ethanol tolerance in Saccharomyces. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 85–98). Trivandrum: Research Signpost.

    Google Scholar 

  • Bisson, L. F., Karpel, J. E., Ramakrishnan, V., & Joseph, L. (2007). Functional genomics of wine yeast Saccharomyces cerevisiae. Advances in Food and Nutrition Research, 53, 65–121.

    Article  CAS  PubMed  Google Scholar 

  • Borneman, A. R., Forgan, A. H., Pretorius, I. S., & Chambers, P. J. (2008). Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res, 8, 1185–1195.

    Article  CAS  PubMed  Google Scholar 

  • Bornman, A. R., Desany, B. A., Riches, D., Affourtit, J. P., Forgan, A. H., Pretorius, I. S., et al. (2011). Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PloS Genetics, 7(2), e1001287. https://doi.org/10.1371/journal.pgen.1001287.

    Article  CAS  Google Scholar 

  • Boulton, R. B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (1996). Principles and practices of winemaking. New York: Chapman & Hall.

    Book  Google Scholar 

  • Brice, C., Sanchez, I., Bigey, F., Legras, J.-L., & Blondin, B. (2014a). A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen sensing. BMC Genomics, 15, 495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brice, C., Sanchez, I., Tesnière, C., & Blondin, B. (2014b). Assessing the mechanisms responsible for differences between nitrogen requirements of Saccharomyces cerevisiae wine yeasts in alcoholic fermentation. Applied and Environmental Microbiology, 80, 1330–1339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brion, C., Ambroset, C., Sanchez, I., Legras, J.-L., & Blondin, B. (2013). Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genomics, 14, 681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briones, A. I., Ubeda, J., & Grando, M. S. (1996). Differentiation of Saccharomyces cerevisiae strains isolated from fermenting musts according to karyotype patterns. International Journal of Food Microbiology, 28, 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Cantarelli, C. (1989). Phenolics and yeast: Remarks concerning fermented beverages. In A. Martini & A. Vaughn-Martini (Eds.), Proceedings of the seventh international symposium on yeasts (pp. S51–S52). New York: Wiley.

    Google Scholar 

  • Carlson, M. (1997). Genetics of transcriptional regulation in yeast: Connections to the RNA polymerase II CTD. Annual Review of Cell and Developmental Biology, 13, 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Carro, D., & Pina, B. (2001). Genetic analysis of the karyotype instability in natural wine yeast strains. Yeast, 18, 1457–1470.

    Article  CAS  PubMed  Google Scholar 

  • Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., et al. (2001). Remodeling of yeast genome expression in response to environmental changes. Molecular Biology of the Cell, 12, 323–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalieri, D., Townsend, J. P., & Hartl, D. L. (2000). Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA Microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 12369–12374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celton, M., Sanchez, I., Goelzer, A., Fromion, V., Camarasa, C., & Dequin, S. (2012). A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics, 13, 317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidi, B. S., Rossouw, D., & Bauer, F. F. (2015). Identifying and assessing the impact of wine acid-related genes in yeast. Current Genetics. https://doi.org/10.1007/s00294-015-0489-6.

  • Clemente-Jimenez, J. M., Mingorance-Carzola, L., Martinez-Rodriguez, S., Las Heras-Vazquez, F. J., & Rodriguez-Vico, F. (2004). Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiology, 21, 149–155.

    Article  CAS  Google Scholar 

  • Cliften, P., Sudarsanam, P., Desikan, A., Fulton, L., Fulton, B., Majors, J., et al. (2003). Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science, 301, 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Codon, A. C., Benitez, T., & Korhola, M. (1998). Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Applied Microbiology and Biotechnology, 49, 154–163.

    Article  CAS  PubMed  Google Scholar 

  • Comitini, F., & Ciani, M. (2006). Survival of inoculated Saccharomyces cerevisiae strain on wine grapes during two vintages. Letters in Applied Microbiology, 42, 248–253.

    Article  CAS  PubMed  Google Scholar 

  • Cramer, A. C., Vlassides, S., & Block, D. E. (2002). Kinetic model for nitrogen-limited wine fermentations. Biotechnology and Bioengineering, 77, 49–60.

    Article  CAS  PubMed  Google Scholar 

  • Cubillos, F. A., Billi, E., Zörgö, E., Parts, L., Fargier, P., Omholt, S., et al. (2011). Addressing the complex architecture of polygenic traits in diverged yeast populations. Molecular Ecology, 20, 1401–1413.

    Article  PubMed  Google Scholar 

  • Davidson, J. F., & Schiestl, R. H. (2001). Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. Journal of Bacteriology, 183, 4580–4587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deed, R. C., Deed, N. K., & Gardner, R. C. (2015). Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation. Antonie Van Leeuwenhoek, 107, 1029–1048.

    Article  CAS  PubMed  Google Scholar 

  • DeRisi, J. L., Iyer, V. R., & Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278, 680–686.

    Article  CAS  PubMed  Google Scholar 

  • Draghici, S., Khatri, P., Eklund, A. C., & Szallasi, Z. (2006). Reliability and reproducibility issues in DNA microarray measurements. Trends in Genetics, 22, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Drebot, M. A., Barnes, C. A., Singer, R. A., & Johnston, G. (1990). Genetic assessment of stationary phase for cells of the yeast Saccharomyces cerevisiae. Journal of Bacteriology, 172, 3584–3589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn, B., Levine, R. P., & Sherlock, G. (2005). Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics, 6, 1–21.

    Article  CAS  Google Scholar 

  • Dunn, B., Richter, C., Kvitek, D., Pugh, T., & Sherlock, G. (2012). Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Research, 22, 908–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duveau, F., Yuan, D. C., Metzger, B. P. H., Hodgins-Davis, A., & Wittkopp, P. J. (2017). Effects of mutation and selection on plasticity of a promoter activity in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1713960115.

    Article  CAS  Google Scholar 

  • Dwight, S. S., Harris, M. A., Dolinski, K., Bell, C. A., Binkley, G., Christie, K. R., et al. (2002). Saccharomyces genome database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Research, 30, 69–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder, M., Sanchez, I., Brice, C., Camarasa, C., Legras, J.-L., & Dequin, S. (2018). QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics, 19, 166. https://doi.org/10.1186/s12864-018-4562-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenreich, I. M., Gerke, J. P., & Kruglyak, L. (2009). Genetic dissection of complex traits in yeast: Insights from studies of gene expression and other phenotypes in the BY × RM cross. Cold Spring Harbor Symposia on Quantitative Biology, 74, 145–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erasmus, D. J., van der Merwe, G. K., & van Vuuren, H. J. J. (2003). Genome-wide expression analyses: Metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Research, 3, 375–399.

    Article  CAS  PubMed  Google Scholar 

  • Fay, J. C., McCullough, H. L., Sniegowski, P. D., & Eisen, M. B. (2004). Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biology, 5, R26.1–R26.14.

    Article  Google Scholar 

  • Fay, J. C., & Benavides, J. A. (2005a). Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genetics, 1, e5.

    Article  PubMed Central  CAS  Google Scholar 

  • Fay, J. C., & Benavides, J. A. (2005b). Hypervariable noncoding sequences in Saccharomyces cerevisiae. Genetics, 170, 1575–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet, G. H. (1993). The microorganisms of winemaking – Isolation, enumeration and identification. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 1–26). Camberwell: Harwood Academic Publishers.

    Google Scholar 

  • Fleet, G. H., & Heard, G. M. (1993). Yeasts - Growth during fermentation. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 27–54). Camberwell: Harwood Academic Publishers.

    Google Scholar 

  • Fleet, G. H., Prakitchaiwattana, C., Beh, A. L., & Heard, G. M. (2002). The yeast ecology of wine grapes. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 1–17). Kerala: Research Signpost.

    Google Scholar 

  • Fraser, H. B., Moses, A. M., & Schadt, E. E. (2010). Evidence for widespread adaptive evolution of gene expression in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 107, 2977–2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego, F. J., Perez, M. A., Nunez, Y., & Hildago, P. (2005). Comparison of RAPDs, AFLPs and SSR marker for genetic analysis of yeast strains of Saccharomyces cerevisiae. Food Microbiology, 22, 561–568.

    Article  CAS  Google Scholar 

  • Garcia, D. M., & Jarosz, D. F. (2014). Rebels with a cause: Molecular features and physiological consequences of yeast prions. FEMS Yeast Research, 14, 136–147.

    Article  CAS  PubMed  Google Scholar 

  • García-Ríos, E., López-Malo, M., & Guillamón, J. M. (2014). Global phenotype and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations. BMC Genomics, 15, 1059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García-Ríos, E., Morard, M., Parts, L., Liti, G., & Guillamón, J. M. (2017). The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. BMC Genomics, 18, 159. https://doi.org/10.1186/s12864-017-3572-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasch, A. P. (2003). The environmental stress response: A common yeast response to diverse environmental stresses. Topics in Current Genetics, 1, 11–70.

    Article  CAS  Google Scholar 

  • Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Stortz, G., et al. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11, 4241–4257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasch, A. P., & Werner-Washburne, M. (2002). The genomics of yeast responses to environmental stress and starvation. Functional & Integrative Genomics, 2, 181–192.

    Article  CAS  Google Scholar 

  • Godard, P., Urrestarazu, A., Vissers, S., Kontos, K., Bontempi, G., van Helden, J., et al. (2007). Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biology, 27, 3065–3086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddard, M. R., & Greig, D. (2015). Saccharomyces cerevisiae: A nomadic yeast with no niche? FEMS Yeast Research, 15, fov009. https://doi.org/10.1093/femsyr/fov009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., et al. (1996). Life with 6000 genes. Science, 274, 546–567.

    Article  CAS  PubMed  Google Scholar 

  • Goffeau, A., Park, J., Paulsen, I. T., Jonniaux, J.-L., Dinh, T., Mordant, P., et al. (1997). Multidrug-resistant transport proteins in yeast: Complete inventory and phylogenetic characterization of yeast open reading frames within the major facilitator superfamily. Yeast, 13, 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Granot, D., & Snyder, M. (1993). Carbon source induces growth of stationary phase yeast cells, independent of carbon source metabolism. Yeast, 9, 465–479.

    Article  CAS  PubMed  Google Scholar 

  • Gray, J. V., Petsco, G. A., Johnston, G. C., Ringe, D., Singer, R. A., & Werner-Washburne, M. (2004). “Sleeping beauty”: Quiescence in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 68, 187–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gresham, D., Ruderfer, D. M., Pratt, S. C., Schacherer, J., Dunham, M. J., Botstein, D., et al. (2006). Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science, 311, 1932–1936.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, A. R., Santamaria, P., Epifanio, S., Garijo, P., & Lopez, R. (1999). Ecology of spontaneous fermentation in one winery during 5 consecutive years. Letters in Applied Microbiology, 29, 411–415.

    Article  Google Scholar 

  • Halfmann, R., Alberti, A., & Lindquist, S. (2010). Prions, protein homeostasis, and phenotypic diversity. Trends in Cell Biology, 20(3), 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfmann, R., Jarosz, D. F., Jones, S. K., Chang, A., Lancaster, A. K., & Lindquist, S. (2012). Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature, 482((7385)l), 363–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna-Rose, W., & Hansen, U. (1996). Active repression mediated by eukaryotic factors: Molecular targets and potential mechanisms. Trends Genetics, 12, 229–234.

    Article  CAS  Google Scholar 

  • Hauser, N. C., Fellenberg, K., Gil, R., Bastuck, S., Hoheisel, J. D., & Perez-Ortin, J. E. (2001). Whole genomes of a wine yeast strain. Comparative and Functional Genomics, 2, 69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herschbach, B. M., & Johnson, A. D. (1993). Transcriptional repression in eukaryotes. Annual Review of Cell Biology, 9, 479–509.

    Article  CAS  PubMed  Google Scholar 

  • Hittinger, C. T. (2013). Saccharomyces diversity and evolution: A budding model genus. Trends in Genetics, 29, 309–317.

    Article  CAS  PubMed  Google Scholar 

  • Holland, M. J. (2002). Transcript abundance in yeast varies over six orders of magnitude. The Journal of Biological Chemistry, 277, 14363–14366.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, D. L., Lancaster, A. K., Lindquist, S., & Halfmann, R. (2013). Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell. https://doi.org/10.1016/j.cell.2013.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meer, M. R., Slade, D., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genetics, 25, 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Infante, J. J., Dombek, K. M., Rebordinos, L., Cantoral, J. M., & Young, E. T. (2003). Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics, 165, 1745–1759.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ihmels, J., Levy, R., & Barkai, N. (2004). Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nature Biotechnology, 22, 86–92.

    Article  CAS  PubMed  Google Scholar 

  • Insa, G., Sablayrolles, J.-M., & Douzal, V. (1995). Alcoholic fermentation under oenological conditions. Bioprocess and Biosystems Engineering, 13, 171–176.

    Article  CAS  Google Scholar 

  • Ivorra, C., Perez-Ortin, J. E., & del Olmo, M. (1999). An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnology and Bioengineering, 64, 698–708.

    Article  CAS  PubMed  Google Scholar 

  • Izawa, S., Takemura, R., Miki, T., & Inoue, Y. (2005). Characterization of the export of bulk Poly(A)+ mRNA in Saccharomyces cerevisiae during the wine-making process. Applied and Environmental Microbiology, 71, 2179–2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo Canas, P. M., Ubeda Iranzo, J. F., & Briones Perez, A. I. (1997). Study of the karyotype of wine yeasts isolated in the region of Valdepenas in two consecutive vintages. Food Microbiology, 14, 221–225.

    Article  Google Scholar 

  • Jara, M., Cubillos, F. A., García, V., Salinas, F., Aguilera, O., Liti, G., et al. (2014). Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. PloS One, 9(1), e86533. https://doi.org/10.1374/journal.pone.0086533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Marti, E., Aranda, A., Mendes-Ferreira, A., Mendes-Faia, A., & del Olmo, M. (2007). The nature of the nitrogen source added to nitrogen depleted vinifications conducted by a Saccharomyces cerevisiae strain in synthetic must affects gene expression and the levels of several volatile compounds. Antonie Van Leeuwenhoek, 92, 61–75.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Marti, E., & del Olmo, M. (2008). Addition of ammonia or amino acids to a nitrogen-depleted medium affects gene expression patterns in yeast cells during alcoholic fermentation. FEMS Yeast Research, 8, 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, J. R., Baccari, C., & Mortimer, R. K. (2000). Genotypic characterization of strains of commercial wine yeasts by tetrad analysis. Research Microbiology, 151, 583–590.

    Article  CAS  Google Scholar 

  • Kal, A. J., van Zonneveld, A. J., Benes, V., van den Berg, M., Koerkamp, M. G., Albermann, K., et al. (1999). Dynamics of gene expression revealed by comparison of Serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Molecular Biology of the Cell, 10, 1859–1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, W., Augustyn, O. P. H., Van der Westhuizen, T. J., Lambrechts, M. G., & Pretorius, I. S. (2000). Geographic distribution and evaluation of Saccharomyces cerevisiae strains isolated from vineyards in the warmer inland regions of the Western Cape in South Africa. South African Journal of Enology and Viticulture, 21, 17–31.

    CAS  Google Scholar 

  • Kingston, R. E., Bunker, C. A., & Imbalzano, A. N. (1996). Repression and activation by multiprotein complexes that alter chromatin structure. Genes & Development, 10, 905–920.

    Article  CAS  Google Scholar 

  • Kita, R., Venkataram, S., Zhou, Y., & Fraser, H. B. (2017). High-resolution mapping of cis-regulatory variation in budding yeast. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1717421114.

    Article  CAS  Google Scholar 

  • Kobayashi, N., & McEntee, K. (1990). Evidence for a heat shock transcription factor –independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 87, 6550–6554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, N., & McEntee, K. (1993). Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 13, 248–256.

    Article  CAS  Google Scholar 

  • Kosel, J., Cadez, N., Schuller, D., Carreto, L., Franco-Duarté, R., & Raspor, P. (2017). The influence of Dekkera bruxellensis on the transcriptome of Saccharomyces cerevisiae and on the aromatic profile of synthetic wine must. FEMS Yeast Research. https://doi.org/10.1093/femsyr/fox018.

  • Krantz, M., Nordlander, B., Valadi, H., Johansson, M., Gustafsson, L., & Hohmann, S. (2004). Anerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Euc Cell, 3, 1381–1390.

    Article  CAS  Google Scholar 

  • Kudo, M., Vagnoli, P., & Bisson, L. F. (1998). Imbalance of potassium and hydrogen ion concentrations as a cause of stuck enological fermentations. American Journal of Enology and Viticulture, 49, 295–301.

    CAS  Google Scholar 

  • Kuhn, K. M., DeRisi, J. L., Brown, P. O., & Sarnow, P. (2001). Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Journal of Molecular Cell Biology, 21, 916–927.

    Article  CAS  Google Scholar 

  • Kumar, A., Harrison, P. M., Cheung, K.-H., Lan, N., Echols, N., Bertone, P., et al. (2002). An integrated approach for finding overlooked genes in yeast. Nature Biotechnology, 20, 58–63.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Sharma, P., Gomar-Alba, M., Shcheprova, Z., Daulny, A., Sanmartín, T., et al. (2018). Daughter-cell-specific modulation of nuclear pore complexes controls cell cycle entry during asymmetric division. Nature Cell Biology, 20, 432–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkee, R. E., & Bisson, L. F. (1993). Winemaking yeasts. In A. H. Rose & J. S. Harrison (Eds.), The yeasts: Yeast technology (pp. 69–126). London: Academic.

    Chapter  Google Scholar 

  • Kuo, W. P., Liu, F., Trimarchi, J., Punzo, C., Lombardi, M., Sarang, J., et al. (2006). A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nature Biotechnology, 24, 832–840.

    Article  CAS  PubMed  Google Scholar 

  • Kuthan, M., Devaux, F., Janderova, B., Slaninova, I., Jacq, C., & Palkova, Z. (2003). Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Molecular Microbiology, 47, 745–754.

    Article  CAS  PubMed  Google Scholar 

  • Kvitek, D. J., Will, J. L., & Gasch, A. (2008). Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genetics, 4(10), e1000223. https://doi.org/10.1371/journal.pgen.1000223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry, C. R., Oh, J., Hart, D. L., & Cavalieri, D. (2006a). Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene, 366, 343–351.

    Article  CAS  PubMed  Google Scholar 

  • Landry, C. R., Townsend, J. P., Hartl, D. L., & Cavalieri, D. (2006b). Ecological and evolutionary genomics of Saccharomyces cerevisiae. Molecular Ecology, 15, 575–591.

    Article  CAS  PubMed  Google Scholar 

  • Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y., et al. (1997). Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proceedings of the National Academy of Sciences of the United States of America, 94, 13057–13062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M.-L. T., Kuo, F. C., Whitmore, G. A., & Sklar, J. (2000). Importance of replication and microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proceedings of the National Academy of Sciences of the United States of America, 97, 9834–9839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legras, J. L., Merdinoglu, D., Cornuet, J. M., & Karst, F. (2007). Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology, 16, 2091–2102.

    Article  CAS  PubMed  Google Scholar 

  • Liti, G., Barton, D. B. H., & Louis, E. J. (2006). Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics, 174, 839–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., et al. (2009). Population genomics of domestic and wild yeast. Nature. preprint. https://doi.org/10.1038/nature07743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liti, G., & Louis, E. J. (2012). Advances in quantitative trait analysis in yeast. PloS Genetics, 8(8), e1002912. https://doi.org/10.1371/journal.pgen.1002912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Martin-Yken, H., Bigey, F., Dequin, S., François, J.-M., & Capp, J.-P. (2015). Natural yeast promoter variants reveal epistasis in the generation of transcriptional mediated noise and its potential benefit in stressful conditions. Genome Biology and Evolution, 7(4), 969–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallow, M. V., Chee, M. S., et al. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnology, 14, 1675–1680.

    Article  CAS  PubMed  Google Scholar 

  • Lockhart, D. J., & Winzeler, E. A. (2000). Genomics, gene expression and DNA arrays. Nature, 405, 827–836.

    Article  CAS  PubMed  Google Scholar 

  • Longo, E., & Vezinhet, F. (1993). Chromosomal rearrangements during vegetative growth of a wild strain of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 59, 322–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes, C. A., van Broock, M., Querol, A., & Caballero, A. C. (2002). Saccharomyces cerevisiae wine yeast populations in a cold region in Argentinean Patagonia. A study at different fermentation scales. Journal of Applied Microbiology, 93, 608–615.

    Article  CAS  PubMed  Google Scholar 

  • Maginot, C., Roustan, J. L., & Sablayrolles, J.-M. (1998). Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of the stationary phase. Enzyme and Microbial Technology, 23, 511–517.

    Article  Google Scholar 

  • Marchler, G., Schuller, C., Adam, G., & Ruis, H. (1993). A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. The EMBO Journal, 12, 1997–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks, V. D., van der Merwe, G. K., & van Vuuren, H. J. J. (2003). Transcriptional profiling of wine yeast in fermenting grape juice: Regulatory effect of diammonium phosphate. FEMS Yeast Research, 3, 269–287.

    Article  CAS  PubMed  Google Scholar 

  • Marks, V. D., Sui, S. J. H., Erasmus, D., van der Merwe, G. K., Brumm, J., Wasserman, W. W., et al. (2008). Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Research, 8, 35–52.

    Article  CAS  PubMed  Google Scholar 

  • Martini, A., Ciani, M., & Scorzetti, G. (1996). Direct enumeration and isolation of wine yeasts from grape surfaces. American Journal of Enology and Viticulture, 47, 435–440.

    Google Scholar 

  • Marsit, S., & Dequin, S. (2015). Diversity and adaptive evolution of Saccharomyces wine yeast: A review. FEMS Yeast Research, 15, fov067. https://doi.org/10.1093/femsyr/fov067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Ferreira, A., del Olmo, M., Garcia-Martinez, J., Jimenez-Marti, E., Leao, C., Mendes-Faia, A., et al. (2007a). Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Applied and Environmental Microbiology, 73, 5363–5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Ferreira, A., del Olmo, M., Garcia-Martinez, J., Jimenez-Marti, E., Mendes-Faia, A., Perez-Ortin, J. E., et al. (2007b). Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Applied and Environmental Microbiology, 73, 3049–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-Ferreira, A., Barbosa, C., Jimenez-Marti, E., del Olmo, M & Mendes-Faia, A. (2010) The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability. Journal of Microibology and Biotechnology 20:1314-1321

    Google Scholar 

  • Mitchell, A., Romano, G. H., Groisman, B., Yona, A., Dekel, E., Kupiec, M., et al. (2009). Adaptive prediction of environmental changes by microorganisms. Nature. https://doi.org/10.1038/nature08112.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer, R. K. (2000). Evolution and variation of the yeast (Saccharomyces) genome. Genome Research, 10, 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer, R., & Polsinelli, M. (1999). On the origin of wine yeast. Research in Microbiology, 150, 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer, R. K., Romano, P., Suzzi, G., & Polsinelli, M. (1994). Genome renewal: A new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast, 10, 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  • Myers, C. L., Dunham, M. J., Kung, S. Y., & Troyanskaya, O. G. (2004). Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics, 20, 3533–3543.

    Article  CAS  PubMed  Google Scholar 

  • Naumov, G. (1996). Genetic identification of biological species in the Saccharomyces sensu stricto complex. Journal of Industrial Microbiology, 17, 295–302.

    Article  CAS  Google Scholar 

  • Novo, M., Beltran, G., Rozes, N., Guillamon, J. M., Sokol, S., Leberre, V., et al. (2006). Early transcriptional response of wine yeast after rehydration: Osmotic shock and metabolic activation FEMS. Yeast Research, 7, 304–316.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends Biotechnology, 16, 373–378.

    Article  CAS  Google Scholar 

  • Orellana, M., Aceituno, F. F., Slater, A. W., Almonacid, L. I., Melo, F., & Agosin, E. (2013). Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient nitrogen-limited fermentation conditions. FEMS Yeast Research, 14, 412–424.

    Article  CAS  Google Scholar 

  • Orphanides, G., Lagrange, T., & Reinberg, D. (1996). The general transcription factors of RNA polymerase II. Genes & Development, 10, 2657–2683.

    Article  CAS  Google Scholar 

  • Oshiro, G., & Winzeler, E. A. (2000). Aneuploidy- it’s more common than you think. Nature Biotechnology, 18, 715–716.

    Article  CAS  PubMed  Google Scholar 

  • Österlund, T., Nookaew, I., & Nielsen, J. (2012). Fifteen years of large scale metabolic modeling of yeast: Development and impacts. Biotechnology Advances, 30, 979–988.

    Article  PubMed  CAS  Google Scholar 

  • Palkova, Z. (2004). Multicellular microorganisms: Laboratory versus nature. EMBO Reports, 5, 470–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelechano, V., Chávez, S., & Pérez-Ortín, J. I. (2010). A complete set of nascent transcription rates for yeast genes. PloS ONE, 5(11), e15442. https://doi.org/10.1371/journal.pone.0015442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena-Castillo, L., & Hughes, T. R. (2007). Why are there still over 1000 uncharacterized yeast genes? Genetics, 176, 7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Ortín, J. E., Alepuz, P. M., & Moreno, J. (2007). Genomics and gene transcription kinetics in yeast. Trends in Genetics, 23, 250–257.

    Article  PubMed  CAS  Google Scholar 

  • Pizarro, F., Vargas, F. A., & Agosin, E. (2007). A systems biology perspective of wine fermentations. Yeast, 24, 977–991.

    Article  CAS  PubMed  Google Scholar 

  • Powers, S., DeJongh, M., Best, A. A., & Tintle, N. L. (2015). Cautions about the reliability of pairwise gene correlations based on expression data. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2015.00650.

  • Puig, S., & Perez-Ortin, J. E. (2000). Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift. Yeast, 16, 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Quackenbush, J. (2005). Using DNA microarrays to assay gene expression. In A. D. Baxevanis & B. F. F. Ouellette (Eds.), Bioinformatics: A practical guide to the analysis of genes and proteins (Third ed., pp. 410–444). New York: Wiley.

    Google Scholar 

  • Rachidi, N., Barre, P., & Blondin, B. (2000). Examination of the transcriptional specificity of an enological yeast. A pilot experiment on the chromosome-III right arm. Current Genetics, 37, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan, V., Walker, G. A., Fan, Q., Ogawa, M., Luo, Y., Leung, P., et al. (2016). Inter-kingdom modification of metabolic behavior: [GAR+] prion induction in Saccharomyces cerevisiae mediated by wine ecosystem bacteria. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2016.00137.

  • Renouf, V., Perello, M. C., Strehaiano, P., & Lonvaud-Funel, A. (2006). Global survey of the microbial ecosystem during alcoholic fermentation in winemaking. Journal International des Sciences de la Vigne et du Vin, 40, 101–116.

    CAS  Google Scholar 

  • Rep, M., Krantz, M., Thevelein, J. M., & Hohmann, S. (2000). The transcriptional response of Saccharomyces cerevisiae to osmotic shock: Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. The Journal of Biological Chemistry, 275, 8290–8300.

    Article  CAS  PubMed  Google Scholar 

  • Riou, C., Nicaud, J.-M., Barre, P., & Gaillardin, C. (1997). Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation. Yeast, 13, 903–915.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Pena, J. M., Perez-Diaz, R. M., Alvarez, S., Bermejo, C., Garcia, R., Santiago, C., et al. (2005). The ‘yeast cell wall chip’ – a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae. Microbiology, 151, 2241–2249.

    Article  CAS  PubMed  Google Scholar 

  • Roosen, J. Oesterhelt, C., Pardons, K., Swinnen, E.& Winderickx, J. (2004). Integration of nutrient signaling pathways in the yeast Saccharomyces cerevisiae. In J. Winderickx, P.M. Taylor (Eds) Nutrient-Induced Responses in Eukaryotic CellsTopics in Current Genetics, 7, 277–318. Springer-Verlag Berlin Heidelberg

    Google Scholar 

  • Rossignol, T., Dulau, L., Julien, A., & Blondin, B. (2003). Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast, 20, 1369–1385.

    Article  CAS  PubMed  Google Scholar 

  • Rossignol, T., Kobi, D., Jacquet-Gutfreund, L., & Blondin, B. (2009). The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. Journal of Applied Microbiology. https://doi.org/10.1111/j.1365-2672.2009.04156:1-10.

  • Rossignol, T., Postaire, O., Storai, J., & Blondin, B. (2006). Analysis of the genomic response of a wine yeast to rehydration and inoculation. Applied Microbiology and Biotechnology, 71, 699–712.

    Article  CAS  PubMed  Google Scholar 

  • Rossouw, D., Naes, T., & Bauer, F. (2008). Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact the production of volatile aroma compounds in yeast. BMC Genomics. https://doi.org/10.1186/1471-2164-9-530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossouw, D., van den Dool, A. H., Jacobson, D., & Bauer, F. F. (2010). Comparative transcriptomic and proteomic profiling of industrial wine yeast strains. Applied and Environmental Microbiology, 76, 3911–3023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossouw, D., Jacobson, D., & Bauer, F. F. (2012). Transcriptional regulation and the diversification of metabolism in wine yeast. Genetics, 190, 251–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabate, J., Cano, J., Querol, A., & Guillamon, J. M. (1998). Diversity of Saccharomyces strains in wine fermentations: Analysis for two consecutive years. Letters in Applied Microbiology, 26, 452–455.

    Article  CAS  PubMed  Google Scholar 

  • Sahara, T., Goda, T., & Ohgiya, S. (2002). Comprehensive expression analysis of time-dependent responses of yeast cells to low temperature. The Journal of Biological Chemistry, 51, 50015–50021.

    Article  Google Scholar 

  • Salinas, F., Mandakovic, D., Urzua, U., Massera, A., Miras, S., Combina, M., et al. (2010). Genomic and phenotypic comparison between similar wine yeast strains of Saccharomyces cerevisiae from different geographic origins. Journal of Applied Microbiology, 108(5), 1850–1858. https://doi.org/10.1111/j.1365-2672.2010.04689.x.

    Article  CAS  PubMed  Google Scholar 

  • Salinas, F., de Boer, C. G., Abarca, V., García, V., Cuevas, M., Araos, S., et al. (2016). Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Scientific Reports. https://doi.org/10.10381/srep21849.

  • Sardu, A., Treu, L., & Campanara, S. (2014). Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software. BMC Genomics, 15, 1045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schacherer, J., Ruderfer, D. M., Gresham, D., Dolinski, K., Botstein, D., & Kruglyak, L. (2007). Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. PLoS One, 3, e322.

    Article  CAS  Google Scholar 

  • Schacherer, J., Shapiro, J. A., Ruderfer, D. M., & Kruglyak, L. (2009). Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature preprint https://doi.org/10.1038/nature07670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schadt, E. E., Li, C., Su, C., & Wong, W. H. (2000). Analyzing high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry, 80, 192–202.

    Article  CAS  PubMed  Google Scholar 

  • Schaefke, B., Emerson, J. J., Wang, T.-Y., Lu, M.-Y. J., Hsieh, L.-C., & Li, W.-H. (2013). Inheritance of gene expression level and selective constraints on trans- and cis-regulatory changes in yeast. Molecular Biology and Evolution, 30(9), 2122–2133.

    Article  CAS  Google Scholar 

  • Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.

    Article  CAS  PubMed  Google Scholar 

  • Schoondermark-Stolk, S. A., Jansen, M., Verkleij, A. J., Verrips, C. T., Euvernink, G. J. W., Dijkhuizen, L., et al. (2006). Genome-wide transcription survey on flavour production in Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 22, 1347–1356.

    Article  CAS  Google Scholar 

  • Schuller, H.-J. (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Current Genetics, 43, 139–160.

    PubMed  Google Scholar 

  • Schuller, D., Alves, H., Dequin, S., & Casal, M. (2005). Ecological survey of Saccharomyces cerevisiae strains from vineyards in the Vinho Verde region of Portugal. FEMS Microbiology Ecology, 51, 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Schutz, M., & Gafner, J. (1993). Analysis of yeast diversity during spontaneous and induced alcoholic fermentations. Journal of Applied Microbiology, 75, 551–558.

    Google Scholar 

  • Schutz, M., & Gafner, J. (1994). Dynamics of the yeast strain population during spontaneous alcoholic fermentation determined by CHEF gel electrophoresis. Letters in Applied Microbiology, 19, 253–257.

    Article  CAS  Google Scholar 

  • Shields, R. (2006). MIAME, we have a problem. Trends Genetics, 22, 65–66.

    Article  CAS  Google Scholar 

  • Siderius, M., & Mager, W. H. (2003). Conditional response to stress in yeast. Monatsheft fur Chemie, 134, 1433–1444.

    Article  CAS  Google Scholar 

  • Sipiczki, M. (2002). Taxonomic and physiological diversity of Saccharomyces bayanus. In M. Ciani (Ed.), Biodiversity and biotechnology of wine yeasts (pp. 53–69). Kerala: Research Signpost.

    Google Scholar 

  • Skelly, D. A., & Magwene, P. M. (2016). Population perspectives on functional genomic variation in yeast. Briefings in Functional Genomics, 15, 138–146.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, G., Ben Salem, S. N., Chen, L., Zhao, B., & Farabaugh, P. J. (2004). Translational accuracy during exponential, postdiauxic and stationary growth phases in Saccharomyces cerevisiae. Eukaryotic Cell, 3, 331–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenwyk, J., & Rokas, A. (2017). Extensive copy number variation in fermentation-related genes among Saccharomyces cerevisiae wine strains. Genes Genomes Genetics, 7, 1475–1485.

    Google Scholar 

  • Stefanini, I., et al. (2012). Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proceedings of the National Academy of Sciences of the United States of America, 109, 13398–13403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanini, I., Dapporto, L., Berna, L., Polsinelli, M., Turillazzi, S., & Cavalieri, D. (2016). Social wasps are a Saccharomyces mating nest. Proceedings of the National Academy of Sciences of the United States of America, 113, 2247–2251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steyer, D., Ambroset, C., Brion, C., Claudel, P., Delobel, P., Sanchez, I., et al. (2012). QTL mapping of the production of wine aroma compounds by yeast. BMC Genomics, 13, 573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struhl, K. (1995). Yeast transcriptional regulatory mechanisms. Annual Review of Genetics, 29, 651–674.

    Article  CAS  PubMed  Google Scholar 

  • Svetlov, V., & Cooper, T. G. (1995). Review: Compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast, 11, 1439–1484.

    Article  CAS  PubMed  Google Scholar 

  • Terry, L. J., Shows, E. B., & Vente, S. R. (2007). Crossing the nuclear envelope: Hierarchical regulation of nucleocytoplasmic transport. Science, 318, 1412–1416.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, D. A., & Cubillos, F. A. (2017). Natural gene expression variation studies in yeast. Yeast, 34, 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Thomsson, E., Gustafsson, L., & Larsson, C. (2005). Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon- limited chemostat cultures. Applied and Environmental Microbiology, 71, 3007–3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torija, M. J., Rozes, N., Poblet, M., Guillamon, J. M., & Mas, A. (2001). Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek, 79, 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Torok, T., Mortimer, R. K., Romano, P., Suzzi, G., & Polsinelli, M. (1996). Quest for wine yeasts – an old story revisited. Journal of Industrial Microbiology, 17, 303–313.

    Article  CAS  Google Scholar 

  • Townsend, J. P., Cavalieri, D., & Hartl, D. L. (2003). Population genetic variation in genome-wide gene expression. Molecular Biology and Evolution, 20, 955–963.

    Article  CAS  PubMed  Google Scholar 

  • Treu, L., Campanaro, S., Nadai, C., Toniolo, C., Nardi, T., Giacomini, A., et al. (2014a). Oxidative stress response and nitrogen utilization are strongly variable in Saccharomyces cerevisiae wine strains with different fermentation performances. Applied Microbiology and Biotechnology, 98, 4119–4135.

    Article  CAS  PubMed  Google Scholar 

  • Treu, L., Toniolo, C., Nadai, C., Sardu, A., Giacomini, A., Corich, V., et al. (2014b). The impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains. Environmental Microbiology, 16, 1378–1379.

    Article  CAS  PubMed  Google Scholar 

  • Tronchoni, J., Curiel, J. A., Morales, P., Torres-Pérez, R., & Gonzalez, R. (2017). Early transcriptional response to biotic stress in mixed fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii. International Journal of Food Microbiology, 241, 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, I. J., Bensasson, D., Burt, A., & Koufopanou, V. (2008). Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle. Proceedings of the National Academy of Sciences of the United States of America, 105, 4957–4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valero, E., Cambon, B., Schuller, D., Casal, M., & Dequin, S. (2006). Biodiversity of Saccharomyces yeast strains from grape berries of wine producing areas using starter commercial yeasts. FEMS Yeast Research, 7, 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Valero, E., Schuller, D., Cambon, B., Casal, M., & Dequin, S. (2005). Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Research, 5, 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Van der Westhuizen, T. J., Augustyn, O. H. P., & Pretorius, I. S. (2000a). Geographical distribution of indigenous Saccharomyces cerevisiae strains isolated from vineyards in the costal regions of the Western Cape in South Africa. South African Journal of Enology and Viticulture, 21, 3–9.

    Google Scholar 

  • Van der Westhuizen, T. J., Augustyn, O. H. P., Kahn, W., & Pretorius, I. S. (2000b). Seasonal variation of indigenous Saccharomyces cerevisiae strains isolated from vineyards of the Western Cape in South Africa. South African Journal of Enology and Viticulture, 21, 10–16.

    Google Scholar 

  • Varela, C., Cardenas, J., Melo, F., & Agosin, E. (2005). Quantitative analysis of wine yeast gene expression profiles under winemaking conditions. Yeast, 22, 369–383.

    Article  CAS  PubMed  Google Scholar 

  • Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270, 484–487.

    Article  CAS  PubMed  Google Scholar 

  • Versavaud, A., Courcoux, P., Roulland, C., Dulau, L., & Hallet, J.-N. (1995). Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. Applied and Environmental Microbiology, 61, 3521–3529.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen, K. J., Iserentant, D., Malcorps, P., Derdelinckx, G., Van Dijck, P., Winderickx, J., et al. (2004). Glucose and sucrose: Hazardous fast-food for industrial yeast? Trends Biotechnology, 22, 531–537.

    Article  CAS  Google Scholar 

  • Vezinhet, F., Hallet, J.-N., Valade, M., & Poulard, A. (1992). Ecological survey of wine yeast strains by molecular methods of identification. American Journal of Enology and Viticulture, 43, 83–86.

    Google Scholar 

  • Wang, Y., Barbacioru, C., Hyland, F., Xiao, W., Hunkapiller, K. L., Blake, J., et al. (2006). Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genomics, 7, 1–16.

    Article  CAS  Google Scholar 

  • Wang, Z., Gerstein, M., & Synder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews/Genetics, 10, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Werner, T. (2003). Yeast expression-array analysis goes molecular. Trends in Genetics, 19, 467–469.

    Article  CAS  PubMed  Google Scholar 

  • Winzeler, E. A., Castillo-Davis, C. I., Oshiro, G., Liang, D., Richards, D. R., Zhou, Y., et al. (2003). Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics, 163, 79–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winzeler, E. A., Shoemaker, D. D., Astromoff, A., et al. (1999). Functional characterization of the S cerevisiae genome by gene deletion and parallel analysis. Science, 285, 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Wodicka, L., Dong, H., Mittmann, M., Ho, M. H., & Lockhart, D. J. (1997). Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnology, 15, 1539–1367.

    Article  Google Scholar 

  • Wohlschlegel, J. A., & Yates, J. R. (2003). Where’s Waldo in yeast? Nature, 425, 671–672.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, A., Durand, D., Loira, N., Durrens, P., Sherman, D. J., & Marullo, P. (2014). QTL dissection of lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite. PloS ONE, 9(1), e86298. https://doi.org/10.1371/journal.pone.0086298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuzuarregui, A., & del Olmo, M. (2004). Expression of stress response genes in wine strains with different fermentative behavior. FEMS Yeast Research, 4, 699–710.

    Article  CAS  PubMed  Google Scholar 

  • Zuzuarregui, A., Carrasco, P., Palacios, A., Julien, A., & del Olmo, M. (2005). Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification. Journal of Applied Microbiology, 98, 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Zuzuarregui, A., Monteolivia, L., Gil, C., & del Olmo, M. (2006). Transcriptomic and proteomic approach for understanding the molecular basis of adaptation in Saccharomyces cerevisiae to wine fermentation. Applied and Environmental Microbiology, 72, 836–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda F. Bisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bisson, L.F. (2019). Gene Expression in Yeasts During Wine Fermentation. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_5

Download citation

Publish with us

Policies and ethics