Skip to main content

Wine Yeasts and Consumer Health

  • Chapter
  • First Online:
Yeasts in the Production of Wine

Abstract

This chapter provides an updated overview on the role of wine yeasts in determining the content of different compounds affecting wine consumer health. The first part deals with the ability of some yeast species (Saccharomyces cerevisiae and non-Saccharomyces) to produce, during alcoholic fermentation, health-promoting compounds (tyrosol, hydroxytyrosol, tryptophol, melatonin and glutathione). Results display that these metabolic properties and the total antioxidant capacity of wine are dependent on yeast species as well as yeast strain. The second part looks at the role of yeasts in producing or reducing toxic compounds in wine such as biogenic amine (BA), ethyl carbamate (EC), Ochratoxin A (OTA) and sulphites. According to different studies, yeasts usually scarcely contribute to BA accumulation in wine, while they are indirectly involved in formation of EC by producing precursor compounds and ethanol during the alcoholic fermentation. Finally, yeasts used in minimizing OTA and sulphites levels are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez, M. A., & Moreno-Arribas, M. V. (2014). The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science and Technology, 39, 146–155.

    Article  CAS  Google Scholar 

  • Amézqueta, S., González-Peñas, E., Murillo-Arbizu, M., & López de Cerain, A. (2009). Ochratoxin A decontamination: A review. Food Control, 20, 326–333.

    Article  CAS  Google Scholar 

  • Anderson, M. E. (1998). Glutathione: An overview of biosynthesis and modulation. Chemico-Biological Interactions, 111, 1–14.

    Article  PubMed  Google Scholar 

  • Angioni, A., Caboni, P., Garau, A., Farris, A., Orro, D., Budroni, M., & Cabras, P. (2007). In vitro interaction between ochratoxin A and different strains of Saccharomyces cerevisiae and Kloeckera apiculata. Journal of Agricultural and Food Chemistry, 55(5), 2043–2048.

    Article  CAS  PubMed  Google Scholar 

  • Badea, G. A., & Antoce, A. O. (2015). Glutathione as a possible replacement of sulfur dioxide in winemaking technologies: A review. Scientific Papers., Series B, Horticulture, LIX, 123–139.

    Google Scholar 

  • Bakalinsky, A. T. (1996). Sulfites, wine and health. In A. L. Waterhouse & R. M. Rantz (Eds.), Wine in context: Nutrition, physiology, policy (pp. 35–42). Davis: American Society for Enology and Viticulture.

    Google Scholar 

  • Bassig, B. A., Lan, Q., Rothman, N., Zhang, Y., & Zheng, T. (2012). Current understanding of lifestyle and environmental factors and risk of non-hodgkin lymphoma: An epidemiological update. Journal of Cancer Epidemiology, 978930: 1–27.

    Google Scholar 

  • Battilani, P., Giorni, P., & Pietri, A. (2003). Epidemiology of toxin-producing fungi and ochratoxin A occurrence in grape. European Journal of Plant Pathology, 109(7), 715–722.

    Article  CAS  Google Scholar 

  • Belda, I., Ruiz, J., Esteban-Fernández, A., Navascués, E., Marquina, D., Santos, A., & Moreno-Arribas, M. V. (2017). Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules, 22(189), 29.

    Google Scholar 

  • Benito, Á., Jeffares, D., Palomero, F., Calderón, F., Bai, F.-Y., Bähler, J., & Benito, S. (2016). Selected Schizosaccharomyces pombe strains have characteristics that are beneficial for winemaking. PLoS One, 11, e0151102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bisquert, R., Muñiz-Calvo, S., & Guillamón, M. (2018). Protective role of intracellular melatonin against oxidative stress and UV radiation in Saccharomyces cerevisiae. Frontiers in Microbiology, 9, 318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandolini, V., Fiore, C., Maietti, A., Tedeschi, P., & Romano, P. (2007). Influence of Saccharomyces cerevisiae strains on wine total antioxidant capacity evaluated by photochemiluminescence. World Journal of Microbiology and Biotechnology, 23, 581–586.

    Article  CAS  Google Scholar 

  • Brandolini, V., Maietti, A., Tedeschi, P., Capece, A., & Romano, P. (2011). Influence of Saccharomyces cerevisiae wine strains on total antioxidant capacity. Annales de Microbiologie, 61, 125–130.

    Article  CAS  Google Scholar 

  • Caruso, M., Fiore, C., Contursi, M., Salzano, G., Paparella, A., & Romano, P. (2002). Formation of biogenic amines as criteria for the selection of wine yeasts. World Journal of Microbiology and Biotechnology, 18, 159–163.

    Article  CAS  Google Scholar 

  • Cheynier, V., Souquet, J. M., & Moutounet, M. (1989). Glutathione content and glutathione to hydroxycinnamic acid ratio in Vitis vinifera grapes and musts. American Journal of Enology and Viticulture, 40, 320–324.

    CAS  Google Scholar 

  • Comitini, F., Capece, A., Ciani, M., & Romano, P. (2017). New insights on the use of wine yeasts. Current Opinion in Food Science, 13, 44–49.

    Article  Google Scholar 

  • Costanigro, M., Appleby, C., & Menke, S. D. (2014). The wine headache: Consumer perceptions of sulfites and willingness to pay for non-sulfited wines. Food Quality and Preference, 31, 81–89.

    Article  Google Scholar 

  • Coulon, J., Husnik, J. I., Inglis, D. L., van der Merwe, G. K., Lonvaud, A., Erasmus, D. J., & van Vuuren, H. J. J. (2006). Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. American Journal of Enology and Viticulture, 57, 113–124.

    CAS  Google Scholar 

  • Cubaiu, L., Abbas, H., Dobson, A. D., Budroni, M., & Migheli, Q. (2012). A Saccharomyces cerevisiae wine strain inhibits growth and decreases Ochratoxin A biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus. Toxins, 4(12), 1468–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta, S., Timson, D. J., & Annapurea, U. S. (2017). Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. Journal of the Science of Food and Agriculture, 97, 3039–3049.

    Article  CAS  PubMed  Google Scholar 

  • De Vero, L., Solieri, L., & Giudici, P. (2011). Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway. Letters in Applied Microbiology, 53(5), 572–575.

    Article  PubMed  Google Scholar 

  • De Vero, L., Bonciani, T., Verspohl, A., Mezzetti, F., & Giudici, P. (2017). High-glutathione producing yeasts obtained by genetic improvement strategies: A focus on adaptive evolution approaches for novel wine strains. AIMS Microbiology, 3, 155–170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Divol, B., du Toit, D., & Duckitt, E. (2012). Surviving in the presence of sulphur dioxide: Strategies developed by wine yeasts. Applied Microbiology and Biotechnology, 95, 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, W. S., & Derek, J. J. (1996). Glutathione is an important molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiology Letters, 141, 207–212.

    Article  Google Scholar 

  • EFSA: European Food Safety Authority. (2011). Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA Journal, 9, 1–93.

    Google Scholar 

  • El Darra, N., Turk, M. F., Ducasse, M. A., Grimi, N., Maroun, R. G., Louka, N., & Vorobiev, E. (2016). Changes in polyphenol profiles and color composition of freshly fermented model wine due to pulsed electric field, enzymes and thermovinification pretreatments. Food Chemistry, 194, 944–950.

    Article  PubMed  CAS  Google Scholar 

  • El Khoury, A., & Atoui, A. (2010). Ochratoxin a: General overview and actual molecular status. Toxins, 2(4), 461–493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elskens, M. T., Jaspers, C. H., & Penninckx, M. J. (1991). Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. Journal of General Microbiology, 137, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Fenwick, E. K., Xie, J., Man, R. E. K., Lim, L. L., Flood, V. M., Finger, R. P., Wong, T. Y., & Lamoureux, E. L. (2015). Moderate consumption of white and fortified wine is associated with reduced odds of diabetic retinopathy. Journal of Diabetes and its Complications, 29, 1009–1014.

    Article  PubMed  Google Scholar 

  • Fernandes, I., Pérez-Gregorio, R., Soares, S., Mateus, N., & De Freitas, V. (2017). In J. Frías, C. Martínez-Villaluenga, & E. Peñas (Eds.), Fermented foods in health and disease prevention (pp. 593–621). New York: Elsevier Inc.. ISBN 978-0-12-802309-9.

    Chapter  Google Scholar 

  • Fernández-Cruz, E., Álvarez-Fernández, M. A., Valero, E., Troncoso, A. M., & García-Parrilla, M. C. (2017). Melatonin and derived L-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains. Food Chemistry, 217, 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Mar, M. I., Mateos, R., García-Parrilla, M. C., Puertas, B., & Cantos-Villar, E. (2012). Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chemistry, 130, 797–813.

    Article  CAS  Google Scholar 

  • Ferreira, V., Fernandes, F., Pinto-Carnide, O., Valentão, P., Falco, V., Martín, J. P., Ortiz, J. M., Arroyo-García, R., Andrade, P. B., & Castro, I. (2016). Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chemistry, 194, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Fleet, G. H. (2007). Yeasts in foods and beverages: Impact on product quality and safety. Current Opinion in Biotechnology, 18, 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Fragopoulou, E., Choleva, M., Antonopoulou, S., & Demopoulos, C. A. (2018). Wine and its metabolic effects. A comprehensive review of clinical trials. Metabolism Clinical and Experimental, 83, 102–119.

    Article  CAS  PubMed  Google Scholar 

  • Gabrielli, M., Aleixandre-Tudo, J. L., Kilmartin, P. A., Sieczkowski, N., & du Toit, W. J. (2017). Additions of glutathione or specific glutathione-rich dry inactivated yeast preparation (DYP) to Sauvignon blanc must: Effect on wine chemical and sensory composition. South African Journal of Enology and Viticulture, 38, 18–28.

    Article  CAS  Google Scholar 

  • Gamero-Sandemetrio, E., Payá-Tormo, L., Gómez-Pastor, R., Aranda, A., & Matallana, E. (2018). Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production. Microbial Cell, 5, 184–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Moruno, E., Sanlorenzo, C., Boccaccino, B., & Di Stefano, R. (2005). Treatment with yeast to reduce the concentration of Ochratoxin A in Red Wine. American Journal of Enology and Viticulture, 56(1), 73–76.

    Google Scholar 

  • Giovannini, C., Straface, E., Modesti, D., Coni, E., Cantafora, A., De Vincenzi, M., Malorni, W., & Masella, R. (1999). Tyrosol, the major olive oil biophenol, protects against oxidized-LDL- induced injury in Caco-2 cells. The Journal of Nutrition, 129, 1269–1277.

    Article  CAS  PubMed  Google Scholar 

  • Granchi, L., Romano, P., Mangani, S., Guerrini, S., & Vincenzini, M. (2005). Production of biogenic amines by wine microorganisms. Bulletin de l’O.I.V., 895, 596–609.

    Google Scholar 

  • Guaadaoui, A., Benaicha, S., Elmajdoub, N., Bellaoui, M., & Hamal, A. (2014). What is a bioactive compound? A combined definition for a preliminary consensus. International Journal of Food Sciences and Nutrition, 3, 174–179.

    Google Scholar 

  • Guerrero, R. F., & Cantos-Villar, E. (2015). Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends in Food Science and Technology, 42, 27–43.

    Article  CAS  Google Scholar 

  • Guerrini, S., Mangani, S., Romboli, Y., Luti, S., Pazzagli, L., & Granchi, L. (2018). Impact of Saccharomyces cerevisiae strains on health-promoting compounds in wine. Fermentation, 4, 14.

    Article  CAS  Google Scholar 

  • Guilford, J. M., & Pezzuto, J. M. (2011). Wine and health: A review. American Journal of Enology and Viticulture, 62, 471–486.

    Article  CAS  Google Scholar 

  • Henschke, P. A. (1997). Wine yeast. In F. K. Zimmermann & K.-D. Entian (Eds.), Yeast sugar metabolism (pp. 527–560). Lancaster: Technomic Publishing.

    Google Scholar 

  • Henschke, P. A., & Jiranek, V. (1993). Yeast: Metabolism of nitrogen compounds. In G. H. Fleet (Ed.), Wine microbiology and biotechnology (pp. 77–164). GmbH, Chur-London-New York: Harwood Academic Publishers.

    Google Scholar 

  • Herbert, P., Cabrita, M. J., Ratola, N., Laureano, O., & Alves, A. (2005). Free amino acid and biogenic amines in wines and musts from the Alentejo region. Evolution of amines during alcoholic fermentation and relationship with variety, sib-region and vintage. Journal of Food Engineering, 66, 315–322.

    Article  Google Scholar 

  • Hocking, A. D., Leong Su-lin, L., Kaz Benozir, A., Emmett, R. W., & Scott, E. S. (2007). Fungi and mycotoxins in vineyards and grape product. International Journal of Food Microbiology, 119, 84–88.

    Article  CAS  PubMed  Google Scholar 

  • IARC. (2002). Monograph on the evaluation of carcinogenic risks to human: Some traditional herbal medicines, some mycotoxins, Naphtalene and styrene. IARC Monographs, 82: 68–128.

    Google Scholar 

  • Ingledew, W. M., Magnus, C. A., & Patterson, J. R. (1987). Yeast foods and ethyl carbamate formation in wine. American Journal of Enology and Viticulture, 38, 332–335.

    CAS  Google Scholar 

  • Jolly, N. P., Varela, C., & Pretorius, I. S. (2014). Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14, 215–237.

    Article  CAS  PubMed  Google Scholar 

  • Kritzinger, E. C., Bauer, F. F., & du Toit, W. J. (2013a). Role of glutathione in winemaking: A review. Journal of Agricultural and Food Chemistry, 61, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Kritzinger, E. C., Bauer, F. F., & du Toit, W. J. (2013b). Influence of yeast strain, extended lees contact and nitrogen supplementation on glutathione concentration in wine. Australian Journal of Grape and Wine Research, 19, 161–170.

    Article  CAS  Google Scholar 

  • Landete, J. M., Ferrer, S., & Pardo, I. (2007). Biogenic amine production by lactic acid bacteria acetic. Food Control, 18, 1569–1574.

    Article  CAS  Google Scholar 

  • Lavigne, V., Pons, A., & Dubourdieu, D. (2007). Assay of glutathione in must and wines using capillary electrophoresis and laser-induced fluorescence detection – changes in concentration in dry white wines during alcoholic fermentation and aging. Journal of Chromatography. A, 1139, 130–135.

    Article  CAS  PubMed  Google Scholar 

  • Lavigne-Cruège, V., & Dubourdieu, D. (2002). Role of glutathione on development of aroma defects in dry white wines. 13th international enology symposium, management and wine marketing, montpellier, proceedings. In H. Trogus, J. Gafner, & A. Sütterlin (Eds.), International association of enology, management and wine marketing (pp. 331–347). Breisach Germany: TS Verlag, Neuenburg a. Rhein.

    Google Scholar 

  • Lehtonen, P. (1996). Determination of amines and amino acids in wine – a review. American Journal of Enology and Viticulture, 47, 127–133.

    CAS  Google Scholar 

  • Li, Y., Wei, G., & Chen, J. (2004). Glutathione: A review on biotechnological production. Applied Microbiology and Biotechnology, 66, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Lindberg, M. L., & Amsterdam, E. A. (2008). Alcohol, wine, and cardiovascular health. Clinical Cardiology, 31, 347–351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., Liu, X., & Li, J. (2018). Updating techniques on controlling mycotoxins – A review. Food Control, 89, 123–132.

    Article  CAS  Google Scholar 

  • Marques, A. P., Leitão, M. C., & San Romão, M. V. (2007). Biogenic amines in wines: Influence of oenological factors. Food Chemistry, 107, 853–860.

    Article  CAS  Google Scholar 

  • Martuscelli, M., Arfelli, G., Manetta, A. C., & Suzzi, G. (2013). Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy). Food Chemistry, 140, 590–597.

    Article  CAS  PubMed  Google Scholar 

  • Mas, A., Guillamon, J. M., Torija, M. J., Beltran, G., Cerezo, A. B., Troncoso, A. M., & Garcia-Parrilla M.C. (2014). Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. BioMed Research International, 898045: 1–7.

    Google Scholar 

  • Medina, K., Boido, E., Farîna, L., Gioia, O., Gomez, M. E., Barquet, M., Gaggero, C., Dellacassa, E., & Carrau, F. (2013). Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chemistry, 141, 2513–2521.

    Article  CAS  PubMed  Google Scholar 

  • Mehdi, K., & Penninckx, M. J. (1997). An important role for glutathione and gamma-glutamylpeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology, 143, 1885–1889.

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti, F., De Vero, L., & Giudici, P. (2014). Evolved Saccharomyces cerevisiae wine strains with enhanced glutathione production obtained by an evolution-based strategy. FEMS Yeast Research, 14, 977–987.

    Article  CAS  PubMed  Google Scholar 

  • Monagas, M., Bartolome, B., & Gomez-Cordoves, C. (2005). Updated knowledge about the presence of phenolic compounds in wine. Critical Reviews in Food Science and Nutrition, 45, 85–118.

    Article  CAS  PubMed  Google Scholar 

  • Moss, M. (2002). Mycotoxin review – 1. Aspergillus and Penicillium. Mycologist, 16, 116–119.

    Google Scholar 

  • Muller, C. J., & Fugelsang, K. C. (1997). Red wine but not white: The importance of fully characterizing wines used in health studies. The American Journal of Clinical Nutrition, 66, 447.

    Article  CAS  PubMed  Google Scholar 

  • Nikolantonaki, M., Julien, P., Coelho, C., Roullier-Gall, C., Ballester, J., Schmitt-Kopplin, P., & Gougeon, R. D. (2018). Impact of glutathione on wines oxidative stability: A combined sensory and metabolomic study. Frontiers in Chemistry, 6, 182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nisamedtinov, I., Kevvai, K., Orumets, K., Arike, L., Sarand, I., Korhola, M., & Paalme, T. (2011). Metabolic changes underlying the higher accumulation of glutathione in Saccharomyces cerevisiae mutants. Applied Microbiology and Biotechnology, 89, 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  • OIV (Organisation of Vine and Wine). (2011). Resolution OIV-CST 369-2011. 9th General Assembly Porto, Portugal.

    Google Scholar 

  • OIV (Organisation of Vine and Wine). (2015). Resolutions OIV-OENO 445-2015 and OIV-OENO 446-2015. 13th General Assembly, Mainz.

    Google Scholar 

  • Otteneder, H., & Majerus, P. (2000). Occurrence of ochratoxin A (OTA) in wines: Influence of the type of wine and its geographical origin. Food Additives and Contaminants, 17, 793–798.

    Article  CAS  PubMed  Google Scholar 

  • Ough, C. S., Crowell, E. A., & Gutlove, L. B. R. (1988). Carbamyl compound reactions with ethanol. American Journal of Enology and Viticulture, 39, 239–242.

    CAS  Google Scholar 

  • Padilla, B., Gil, J. G., & Manzanares, P. (2016). Past and future of Non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology, 7(411), 20.

    Google Scholar 

  • Park, S. K., Boulton, R. B., & Noble, A. C. (2000a). Formation of hydrogen sulphide and glutathione during fermentation of white grape must. American Journal of Enology and Viticulture, 51, 91–97.

    CAS  Google Scholar 

  • Park, S. K., Boulton, R. B., & Noble, A. C. (2000b). Automated HPLC analysis of glutathione and other volatile thiols in grape musts and wine using pre-column derivatization with fluorescence detection. Food Chemistry, 69, 475–480.

    Article  Google Scholar 

  • Parker, M., Capone, D. L., Francis, I. L., & Herderich, M. J. (2017). Aroma precursors in grapes and wine: Flavor release during wine production and consumption. Journal of Agricultural and Food Chemistry, 10, 2281–2286.

    Google Scholar 

  • Penninckx, M. J. (2000). A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme and Microbial Technology, 26, 737–742.

    Article  CAS  PubMed  Google Scholar 

  • Penninckx, M. J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Research, 2, 295–305.

    CAS  PubMed  Google Scholar 

  • Petruzzi, L., Sinigaglia, M., Corbo, M. R., Campaniello, D., Speranza, B., & Bevilacqua, A. (2014). Decontamination of ochratoxin A by yeasts: possible approaches and factors leading to toxin removal in wine. Applied Microbiology and Biotechnology, 98, 6555–6567.

    Article  CAS  PubMed  Google Scholar 

  • Petruzzi, L., Baiano, A., De Gianni, A., Sinigaglia, M., Corbo, M. R., & Bevilacqua, A. (2015). Differential adsorption of Ochratoxin A and anthocyanins by inactivated yeasts and yeast cell walls during simulation of wine aging. Toxins, 7, 4350–4365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petzinger, E., & Weidenbach, A. (2002). Mycotoxins in the food chain: The role of ochratoxins. Livestock Production Science, 76, 245–250.

    Article  Google Scholar 

  • Peyrot des Gachons, C., Tominaga, T., & Dubourdieu, D. (2002). Sulfur aroma precursor present in S-glutathione conjugate form: Identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon Blanc. Journal of Agricultural and Food Chemistry, 50, 4076–4079.

    Article  CAS  PubMed  Google Scholar 

  • Pfohl-Leszkowicz, A., & Manderville, R. A. (2007). Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Molecular Nutrition & Food Research, 51, 61–99.

    Article  CAS  Google Scholar 

  • Pierini, R., Gee, J. M., Belshaw, N. J., & Johnson, I. T. (2008). Flavonoids and intestinal cancers. The British Journal of Nutrition, 99, ES53–ES59.

    Article  PubMed  Google Scholar 

  • Piotrowska, M., Nowak, A., & Czyzowska, A. (2013). Removal of ochratoxin A by wine Saccharomyces cerevisiae strains. European Food Research and Technology, 236, 441–447.

    Article  CAS  Google Scholar 

  • Poli, A., Marangoni, F., Avogaro, A., Barba, G., Bellentani, S., Bucci, M., Cambieri, R., Catapano, A. L., Costanzo, S., Cricelli, C., de Gaetano, G., Di Castelnuovo, A., Faggiano, P., Fattirolli, F., Fontana, L., Forlani, G., Frattini, S., Giacco, R., La Vecchia, C., Lazzaretto, L., Loffredo, L., Lucchin, L., Marelli, G., Marrocco, W., Minisola, S., Musicco, M., Novo, S., Nozzoli, C., Pelucchi, C., Perri, L., Pieralli, F., Rizzoni, D., Sterzi, R., Vettor, R., Violi, F., & Visioli, F. (2013). Moderate alcohol use and health: A consensus document. Nutrition, Metabolism, and Cardiovascular Diseases, 23, 487–504.

    Article  CAS  PubMed  Google Scholar 

  • Pozo-Bayón, M. A., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Scientific evidences beyond the application of inactive dry yeast preparations in winemaking. Food Research International, 42, 754–761.

    Article  CAS  Google Scholar 

  • Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast, 16, 675–729.

    Article  CAS  PubMed  Google Scholar 

  • Rauhut, D. (2003). Impact of volatile sulfur compounds on wine quality. In Hrsg, J.-C. Davidian, D. Grill, L. J. De Kok, I. Stulen, M. J. Hawkesford, E. Schnug, & H. Rennenberg (Eds.), Sulfur transport and assimilation in plants. Regulation, Interaction and Signaling (pp. 121–131). Leiden: Backhuys Publishers.

    Google Scholar 

  • Rauhut, D. (2017). Usage and formation of sulfur compounds. In H. König, G. Unden, & J. Fröhlich (Eds.), Biology of microorganisms on grapes, in must and in wine (pp. 255–291). Cham: Springer International Publishing AG.

    Chapter  Google Scholar 

  • Rauhut, D., & Micheloni, C. (2010). Current issues in organic winemaking: Consumer expectations, producer attitudes and oenological innovation. Chapter 10. In A. G. Reynolds (Ed.), Managing wine quality, Volume 2: Oenology and wine quality (pp. 271–289). Woodhead Publishing Limited.

    Google Scholar 

  • Renaud, S. D., & de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 339, 1523–1526.

    Article  CAS  PubMed  Google Scholar 

  • Renaud, S., & Gueguen, R. (1998). The French paradox and wine drinking. Novartis Foundation Symposium, 216, 208–217.

    CAS  PubMed  Google Scholar 

  • Restuccia, D., Loizzo, M. R., & Spizzirri, U. G. (2018). Accumulation of biogenic amines in wine: role of alcoholic and malolactic fermentation. Fermentation, 4, 6–18.

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000). Phenolic compounds. In P. Ribéreau-Gayon, Y. Glories, A. Maujean, & D. Dubourdieu (Eds.), Handbook of enology, the chemistry of wine stabilization and treatments (Vol. 2, 2nd ed., pp. 141–201). Chichester: Wiley.

    Google Scholar 

  • Ribéreau-Gayon, P., Dubourdieu, D., Doneche, B., & Lonvaud, A. (2006). Handbook of enology. In The microbiology of wine and vinifications (Vol. 1, 2nd ed., pp. 193–220). The Atrium/Southern Gate/Chichester: Wiley.

    Chapter  Google Scholar 

  • Rodriguez-Naranjo, M. I., Gil-Izquierdo, A., Troncoso, A. M., Cantos, E., & Garcia-Parrilla, M. C. (2011). Melatonin: A new bioactive compound present in wine. Journal of Food Composition and Analysis, 24, 603–608.

    Article  CAS  Google Scholar 

  • Rodriguez-Naranjo, M. I., Torija, M. J., Mas, A., Cantos-Villar, E., & del Carmen Garcia-Parrilla, M. (2012). Production of melatonin by Saccharomyces strains under growth and fermentation conditions. Journal of Pineal Research, 53, 219–224.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Naranjo, M. I., Ordóñez, J. L., Callejón, R. M., Cantos-Villar, E., & Garcia-Parrilla, M. C. (2013). Melatonin is formed during winemaking at safe levels of biogenic amines. Food and Chemical Toxicology, 57, 140–146.

    Article  CAS  PubMed  Google Scholar 

  • Romano, P., & Suzzi, G. (1993). Sulfur dioxide and wine microorganisms. In G. H. Fleet (Ed.),. Chapter 13 Wine microbiology and biochemistry (pp. 373–393). Chur: Harward Academic Publishers.

    Google Scholar 

  • Romano, P., Fiore, C., Paraggio, M., Caruso, M., & Capece, A. (2003). Function of yeast species and strains in wine flavour. International Journal of Food Microbiology, 86, 169–180.

    Article  CAS  PubMed  Google Scholar 

  • Romboli, Y., Mangani, S., Buscioni, G., Granchi, L., & Vincenzini, M. (2015). Effect of Saccharomyces cerevisiae and Candida zemplinina on quercetin, vitisin A and hydroxytyrosol contents in Sangiovese wines. World Journal of Microbiology and Biotechnology, 31, 1137–1145.

    Article  CAS  PubMed  Google Scholar 

  • Roussis, I. G., Lambropoulos, I., & Tzimas, P. (2007). Protection of volatiles in a wine with low sulfur dioxide by caffeic acid or glutathione. American Journal of Enology and Viticulture, 58, 274–278.

    CAS  Google Scholar 

  • Samoticha, J., Wojdyło, A., Chmielewska, J., Politowicz, J., & Antoni, S. (2017). The effects of enzymatic pre-treatment and type of yeast on chemical properties of white wine. LWT – Food Science and Technology, 79, 445–453.

    Article  CAS  Google Scholar 

  • Samuel, S. M., Thirunavukkarasu, M., Penumathsa, S. V., Paul, D., & Maulik, N. (2008). Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: Switching gears toward survival and longevity. Journal of Agricultural and Food Chemistry, 56, 9692–9698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, M. C., Nunes, C., Saraiva, J. A., & Coimbra, M. A. (2012). Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. European Food Research and Technology, 234, 1–12.

    Article  CAS  Google Scholar 

  • Schwartz, G. G. (2002). Hypothesis: Does ochratoxin A cause testicular cancer? Cancer Causes & Control, 13, 91–100.

    Article  Google Scholar 

  • Soufleros, E., Barrios, M., & Bertrand, A. (1998). Correlation between the content of biogenic amines and other wine compounds. American Journal of Enology and Viticulture, 49, 266–278.

    CAS  Google Scholar 

  • Suzzi, G., Romano, P., & Zambonelli, C. (1985). Saccharomyces strain selection in minimizing SO2 requirement during vinification. American Journal of Enology and Viticulture, 36, 199–202.

    CAS  Google Scholar 

  • Thomas, D., & Surdin-Kerjan, Y. (1997). Metabolism of sulphur amino acids in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 61, 503–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Til, H. P., Feron, V. J., & de Groot, A. P. (1972). The toxicity of sulphite. I. Long-term feeding and multigeneration studies in rats. Food and Cosmetics Toxicology, 10, 291–310.

    Article  CAS  PubMed  Google Scholar 

  • Torrea, D., & Ancin, C. (2001). Influence of yeast strain on biogenic amines content in wines: Relationship with the utilization of amino acids during fermentation. American Journal of Enology and Viticulture, 52, 185–190.

    Google Scholar 

  • Torrea, D., & Ancìn, C. (2002). Content of biogenic amines in a Chardonnay wine obtained through spontaneous and inoculated fermentations. Journal of Agricultural and Food Chemistry, 50, 4895–4899.

    Article  CAS  PubMed  Google Scholar 

  • Uemura, T., Tomonari, Y., Kashiwagi, K., & Igarashi, K. (2004). Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 315, 1082–1087.

    Article  CAS  PubMed  Google Scholar 

  • Ugliano, M., & Henschke, P. A. (2009). Yeasts and wine flavour. Chapter 8D. In M. V. Moreno-Arribas & M. C. Polo (Eds.), Wine chemistry and biochemistry (pp. 313–392). New York: Springer Science Business Media, LLC.

    Chapter  Google Scholar 

  • Ugliano, M., Kwiatkowski, M., Vidal, S. P., Capone, D., Siebert, T., Dieval, J.-B., Aaagard, O., & Waters, E. J. (2011). Evolution of 3-mercaptohexanol, hydrogen sulfide, and methyl mercaptan during bottle storage of Sauvignon blanc wines. Effect of glutathione, copper, oxygen exposure, and closure-derived oxygen. Journal of Agricultural and Food Chemistry, 59, 2564–2572.

    Article  CAS  PubMed  Google Scholar 

  • Vigentini, I., Romano, A., Compagno, C., Merico, A., Molinari, F., Tirelli, A., Foschino, R., & Volonterio, G. (2008). Physiological and oenological traits of different Dekkera/Brettanomyces bruxellensis strains under wine-model conditions. FEMS Yeast Research, 8, 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  • Vincenzini, M., Guerrini, S., Mangani, S., & Granchi, L. (2017). Amino acid metabolisms and production of biogenic amines and ethyl carbamate. In H. König, G. Unden, & J. Fröhlich (Eds.), Biology of microorganisms on grapes, in must and in wine (pp. 231–253). Cham: Springer International Publishing AG.

    Chapter  Google Scholar 

  • Wang, J., Ho, L., Zhao, Z., Seror, I., Humala, N., Dickstein, D. L., Thiyagarajan, M., Percival, S. S., Talcott, S. T., & Pasinetti, G. M. (2006). Moderate consumption of Cabernet Sauvignon attenuated beta-amyloid neuropathology in a mouse model of Alzheimer’s disease. The FASEB Journal, 20, 2313–2320.

    Article  CAS  PubMed  Google Scholar 

  • Webber, V., Dutra, S. V., Spinelli, F. R., Carnieli, G. J., Cardozo, A., & Vanderlinde, R. (2017). Effect of glutathione during bottle storage of sparkling wine. Food Chemistry, 216, 254–259.

    Article  CAS  PubMed  Google Scholar 

  • Wegmann-Herr, P., Ullrich, S., Schmarr, H. G., & Durner, D. (2016). Use of glutathione during white wine production – impact on S-off-flavors and sensory production. BIO Web of Conferences, 7, 02031.

    Article  Google Scholar 

  • Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. The Journal of Nutrition, 134(3), 489–492.

    Article  CAS  PubMed  Google Scholar 

  • Xia, Q., Yang, C., Wu, C., Zhou, R., & Li, Y. (2018). Quantitative strategies for detecting different levels of ethyl carbamate (EC) in various fermented food matrices: An overview. Food Control, 84, 499–512.

    Article  CAS  Google Scholar 

  • Zechmann, B., Liou, L. C., Koffler, B. E., Horvat, L., Tomašić, A., Fulgosi, H., & Zhang, Z. (2011). Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, 11, 631–642.

    Article  CAS  PubMed  Google Scholar 

  • Zell, J. A., McEligot, A. J., Ziogas, A., Holcombe, R. F., & Anton-Culver, H. (2007). Differential effects of wine consumption on colorectal cancer outcomes based on family history of the disease. Nutrition and Cancer, 59, 36–45.

    Article  PubMed  Google Scholar 

  • Zimmerli, B., & Dick, R. (1996). Ochratoxin A in table wine and grape-juice: Occurrence and risk assessment. Food Additives and Contaminants, 13, 655–668.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Granchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Granchi, L., Budroni, M., Rauhut, D., Zara, G. (2019). Wine Yeasts and Consumer Health. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_11

Download citation

Publish with us

Policies and ethics