Skip to main content

Genetic Improvement of Wine Yeasts

  • Chapter
  • First Online:
Book cover Yeasts in the Production of Wine

Abstract

In recent years, wine market is undergoing a change due to the ever-growing request to improve the sensory features and nutritional properties of the final product. Most wine production is based on the use of starter cultures consisting of selected strains of Saccharomyces cerevisiae, able to ensure quick and controlled fermentations. However, the reduced number of really different starters can lead to a wine standardization resulting in flattening of taste. Moreover, there is a still growing request of winemaking process innovation of the and, in this sense, yeasts can play a central role. In order to gain innovative characteristics, the research relies on the isolation and selection of new oenological strains of S. cerevisiae and non-Saccharomyces species showing interesting metabolic or technological features, or on the improvement of wine yeasts at genetic level. In the case of the latter approach, examples to obtain both non-Genetically Modified (GM) and GM organisms (GMO) are available in literature. In this chapter we discuss the significant developments of the genetic engineering based on standard homologous integration, the inter and intraspecific hybridization in wine yeasts, the use of random mutagenesis, the foundation of the experimental evolution strategy and we describe the CRISPR/Cas9 genome editing approach that has been revolutionizing the field of biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, W. G. (2018). A history of genome editing in Saccharomyces cerevisiae. Yeast, 35, 355–360. https://doi.org/10.1002/yea.3300.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, W. G., Peris, D., Pfannenstiel, B. T., Opulente, D. A., Kuang, M., & Hittinger, C. T. (2016). Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces. Fungal Genetics and Biology, 89, 10–17.

    Article  CAS  PubMed  Google Scholar 

  • Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T., & Zhao, H. (2015). Homology-integrated CRISPR−Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 4(5), 585–594. https://doi.org/10.1021/sb500255k.

    Article  CAS  PubMed  Google Scholar 

  • Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  • Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., & Cullin, C. (1993). A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Research, 21(14), 3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belloch, C., Orlic, S., Barrio, E., & Querol, A. (2008). Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. International Journal of Food Microbiology, 122(1), 188–195.

    Article  CAS  PubMed  Google Scholar 

  • Belloch, C., Pérez-Torrado, R., González, S. S., Pérez-Ortín, J. E., García-Martínez, J., Querol, A., & Barrio, E. (2009). Chimeric genomes of natural hybrids of Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Applied and Environmental Microbiology, 75(8), 2534–2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellon, J. R., Eglinton, J. M., Siebert, T. E., Pollnitz, A. P., Rose, L., de Barros Lopes, M., & Chambers, P. J. (2011). Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines. Applied Microbiology and Biotechnology, 91(3), 603–612.

    Article  CAS  PubMed  Google Scholar 

  • Bellon, J. R., Schmid, F., Capone, D. L., Dunn, B. L., & Chambers, P. J. (2013). Introducing a new breed of wine yeast: Interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae. PLoS One, 8(4), e62053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson, L. F. (1999). Stuck and sluggish fermentations. American Journal of Enology and Viticulture, 50(1), 107–119.

    CAS  Google Scholar 

  • Bisson, L. F. (2004). The biotechnology of wine yeast. Food Biotechnology, 18(1), 63–96.

    Article  CAS  Google Scholar 

  • Boeke, J. D., La Croute, F., & Fink, G. R. (1984). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Molecular and General Genetics MGG, 197(2), 345–346.

    Article  CAS  PubMed  Google Scholar 

  • Borneman, A. R., Desany, B. A., Riches, D., Affourtit, J. P., Forgan, A. H., Pretorius, I. S., Egholm, M., & Chambers, P. J. (2012). The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Research, 12(1), 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Botstein, D., & Fink, G. R. (2011). Yeast: An experimental organism for 21st century biology. Genetics, 189(3), 695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulton, R. B., Singleton, V. I., Bisson, I. F., & Kunkee, R. E. (2013). Principles and practices of winemaking. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Bradbury, J. E., Richards, K. D., Niederer, H. A., Lee, S. A., Dunbar, P. R., & Gardner, R. C. (2006). A homozygous diploid subset of commercial wine yeast strains. Antonie Van Leeuwenhoek, 89(1), 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Brouns, S. J. (2012). Molecular biology. A swiss army knife of immunity. Science, 337, 808–809. https://doi.org/10.1126/science.1227253.

    Article  CAS  PubMed  Google Scholar 

  • Burke, M. K., Liti, G., & Long, A. D. (2014). Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Molecular Biology and Evolution, 31(12), 3228–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadière, A., Ortiz-Julien, A., Camarasa, C., & Dequin, S. (2011). Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metabolic Engineering, 13(3), 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Cambon, B., Monteil, V., Remize, F., Camarasa, C., & Dequin, S. (2006). Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Applied and Environmental Microbiology, 72(7), 4688–4694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona, F., Carrasco, P., Pérez-Ortín, J. E., lí del Olmo, M., & Aranda, A. (2007). A novel approach for the improvement of stress resistance in wine yeasts. International Journal of Food Microbiology, 114(1), 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Casey, G. P., Xiao, W., & Rank, G. H. (1988). A convenient dominant selection marker for gene transfer in industrial strains of Saccharomyces yeast: SMRI encoded resistance to the herbicide sulfometuron methyl. Journal of the Institute of Brewing, 94(2), 93–97.

    Article  CAS  Google Scholar 

  • Cebollero, E., & Gonzalez, R. (2004). Comparison of two alternative dominant selectable markers for wine yeast transformation. Applied and Environmental Microbiology, 70(12), 7018–7023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cebollero, E., Martinez-Rodriguez, A., Carrascosa, A. V., & Gonzalez, R. (2005). Overexpression of csc1-1. A plausible strategy to obtain wine yeast strains undergoing accelerated autolysis. FEMS Microbiology Letters, 246(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Cebollero, E., González-Ramos, D., Tabera, L., & González, R. (2007). Transgenic wine yeast technology comes of age: Is it time for transgenic wine? Biotechnology Letters, 29, 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Chang, S., Wang, Y., Lu, J., Gai, J., Li, J., Chu, P., Guan, R., Zhao, T., & Xu, Y. (2013). The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS One, 8(2), e56502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, D. (2005). Molecular biology. Elsevier Academic Press. ISBN: 0-12-175551-7.

    Google Scholar 

  • Cordente, A. G., Heinrich, A., Pretorius, I. S., & Swiegers, J. H. (2009). Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Research, 9(3), 446–459.

    Article  CAS  PubMed  Google Scholar 

  • Cordente, A. G., Cordero-Bueso, G., Pretorius, I. S., & Curtin, C. D. (2013). Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Research, 13(1), 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Cost, G. J., & Boeke, J. D. (1996). A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast, 12(10), 939–941.

    Article  CAS  PubMed  Google Scholar 

  • Coulon, J., Husnik, J. I., Inglis, D. L., van der Merwe, G. K., Lonvaud, A., Erasmus, D. J., & van Vuuren, H. J. (2006). Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. American Journal of Enology and Viticulture, 57(2), 113–124.

    CAS  Google Scholar 

  • Cuello, R., Flores Montero, K. J., Mercado, L. A., Combina, M., & Ciklic, F. (2017). Construction of low-ethanol–wine yeasts through partial deletion of the Saccharomyces cerevisiae PDC2 gene. AMB Express, 7(1), 67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curiel, J. A., Salvadó, Z., Tronchoni, J., Morales, P., Rodrigues, A. J., Quirós, M., & Gonzalez, R. (2016). Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Microbial Cell Factories, 15(1), 156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curran, B. P., & Bugeja, V. C. (1996). Protoplast fusion in Saccharomyces cerevisiae. In Yeast protocols (pp. 45–49). New Jersey: Humana Press.

    Chapter  Google Scholar 

  • Cvijović, I., Nguyen Ba, A. N., & Desai, M. M. (2018). Experimental studies of evolutionary dynamics in microbes. Trends in Genetics, 34(9), 693–703.

    Article  PubMed  CAS  Google Scholar 

  • de Barros Lopes, M., Bellon, J. R., Shirley, N. J., & Ganter, P. F. (2002). Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Research, 1(4), 323–331.

    Article  PubMed  Google Scholar 

  • de Carvalho, B. T., Holt, S., Souffriau, B., Lopes Brandão, R., Foulquié-Moreno, M. R., & Thevelein, J. M. (2017). Identification of novel alleles conferring superior production of rose flavor phenylethyl acetate using polygenic analysis in yeast. mBio, 8, e01173–e01117. https://doi.org/10.1128/mBio.01173-17.

    Article  Google Scholar 

  • Deaner, M., & Alper, H. S. (2017). Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae. Metabolic Engineering, 40, 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Dequin, S., & Barre, P. (1994). Mixed lactic acid–alcoholic fermentation by Saccharomyes cerevisiae expressing the Lactobacillus casei L (+)–LDH. Nature Biotechnology, 12(2), 173.

    Article  CAS  Google Scholar 

  • DiCarlo, J. E., Norville, J. E., Mali, P., Rios, X., Aach, J., & Church, G. M. (2013). Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acid Research, 41(7), 4336–4343.

    Article  CAS  Google Scholar 

  • Dufour, M., Zimmer, A., Thibon, C., & Marullo, P. (2013). Enhancement of volatile thiol release of Saccharomyces cerevisiae strains using molecular breeding. Applied Microbiology and Biotechnology, 97, 5893–5905.

    Article  CAS  PubMed  Google Scholar 

  • Duina, A. A., Miller, M. E., & Keeney, J. B. (2014). Budding yeast for budding geneticists: A primer on the Saccharomyces cerevisiae model system. Genetics, 197(1), 33–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunham, M. J., Badrane, H., Ferea, T., Adams, J., Brown, P. O., Rosenzweig, F., & Botstein, D. (2002). Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 99(25), 16144–16149.

    Article  CAS  Google Scholar 

  • Dunn, B., Richter, C., Kvitek, D. J., Pugh, T., & Sherlock, G. (2012). Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Research. https://doi.org/10.1101/gr.130310.

  • Ehsani, M., Fernández, M. R., Biosca, J. A., Julien, A., & Dequin, S. (2009). Engineering of 2, 3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Applied and Environmental Microbiology, 75(10), 3196–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elena, S. F., & Lenski, R. E. (2003). Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews Genetics, 4(6), 457–469.

    Article  CAS  PubMed  Google Scholar 

  • Erny, C., Raoult, P., Alais, A., Butterlin, G., Delobel, P., Matei-Radoi, F., Casaregola, S., & Legras, J. L. (2012). Ecological success of a group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrids in the northern European wine making environment. Applied and Environmental Microbiology. AEM-06752.

    Google Scholar 

  • Eschenbruch, R., Cresswell, K. J., Fisher, B. M., & Thornton, R. J. (1982). Selective hybridisation of pure culture wine yeasts. European Journal of Applied Microbiology and Biotechnology, 14(3), 155–158.

    Article  Google Scholar 

  • Fraczek, M. G., Naseeb, S., & Delneri, D. (2018). History of genome editing in yeast. Yeast, 35, 361–368. https://doi.org/10.1002/yea.3308.

    Article  CAS  PubMed  Google Scholar 

  • Francis, J. C., & Hansche, P. E. (1972). Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum in S. cerevisiae. Genetics, 70, 59–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francis, J. C., & Hansche, P. E. (1973). Directed evolution of metabolic pathways in microbial populations II. A repeatable adaptation in Saccharomyces cerevisiae. Genetics, 74, 259–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31, 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganga, M. A., Pinaga, F., Valles, S., Ramón, D., & Querol, A. (1999). Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. International Journal of Food Microbiology, 47(3), 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature, 418(6896), 387.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, B., & Liti, G. (2015). Saccharomyces pastorianus: Genomic insights inspiring innovation for industry. Yeast, 32(1), 17–27.

    CAS  PubMed  Google Scholar 

  • Giersch, R. M., & Finnigan, G. C. (2017). Yeast still a beast: Diverse applications of CRISPR/Cas editing Technology in S. cerevisiae. Yale Journal of Biology and Medicine, 90, 643–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein, A. L., & McCusker, J. H. (1999). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast, 15(14), 1541–1553.

    Article  CAS  PubMed  Google Scholar 

  • González Ramos, D., Muñoz, A., Ortiz Julien, A., Palacios García, A. T., Heras Manso, J. M., & González García, R. (2010). A Saccharomyces cerevisiae wine yeast strain overproducing mannoproteins selected through classical genetic methods. International Journal of Vine and Wine Sciences, 44(4), 243–249.

    Google Scholar 

  • Gonzalez, R., Martínez-Rodríguez, A. J., & Carrascosa, A. V. (2003). Yeast autolytic mutants potentially useful for sparkling wine production. International Journal of Food Microbiology, 84(1), 21–26.

    Article  CAS  PubMed  Google Scholar 

  • González, S. S., Barrio, E., Gafner, J., & Querol, A. (2006). Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Research, 6(8), 1221–1234.

    Article  PubMed  CAS  Google Scholar 

  • González, S. S., Barrio, E., & Querol, A. (2008). Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Applied and Environmental Microbiology, 74(8), 2314–2320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez, R., Munoz, R., & Carrascosa, A. V. (2011). In A. V. Carrascosa, R. Munoz, & R. González (Eds.), Production of wine starter cultures. Molecular wine microbiology (pp. 279–302). Amsterdam/Boston: Elsevier.

    Google Scholar 

  • González-Candelas, L., Cortell, A., & Ramón, D. (1995). Construction of a recombinant wine yeast strain expressing a fungal pectate lyase gene. FEMS Microbiology Letters, 126(3), 263–269.

    Article  PubMed  Google Scholar 

  • Gonzalez-Ramos, D., Cebollero, E., & Gonzalez, R. (2008). A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze. Applied and Environmental Microbiology, 74, 5533–5540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Ramos, D., Quiros, M., & Gonzalez, R. (2009). Three different targets for the genetic modification of wine yeast strains resulting in improved effectiveness of bentonite fining. Journal of Agricultural and Food Chemistry, 57(18), 8373–8378.

    Article  CAS  PubMed  Google Scholar 

  • Gorter de Vries, A. R., de Groot, P. A., van den Broek, M., & Daran, J.-M. G. (2017). CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus. Microbial Cell Factories, 16, 222. https://doi.org/10.1186/s12934-017-0835-1.

    Article  CAS  PubMed  Google Scholar 

  • Govender, P., Bester, M., & Bauer, F. F. (2010). FLO gene-dependent phenotypes in industrial wine yeast strains. Applied Microbiology and Biotechnology, 86(3), 931–945.

    Article  CAS  PubMed  Google Scholar 

  • Gratz, S. J., Harrison, M. M., O’Connor-Giles, K. M., & Wildonger, J. (2013). CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly, 7(4), 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossmann, M., Kießling, F., Singer, J., Schoeman, H., Schröder, M. B., & von Wallbrunn, C. (2011). Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process. Annals of Microbiology, 61(1), 103–115.

    Article  CAS  Google Scholar 

  • Hashimoto, S., Ogura, M., Aritomi, K., Hoshida, H., Nishizawa, Y., & Akada, R. (2005). Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Applied and Environmental Microbiology, 71(1), 312–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich, A. J. (2006). Identification of genomic differences between laboratory and commercial strains of Saccharomyces cerevisiae (Doctoral dissertation).

    Google Scholar 

  • Horwitz, A. A., Walter, J. M., Schubert, M. G., Kung, S. H., Hawkins, K., Platt, D. M., Hernday, A. D., Mahatdejkul-Meadows, T., Szeto, W., Chandran, S. S., & Newman, J. D. (2015). Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Systems, 1(1), 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Hryhorowicz, M., Lipinski, D., Zeyland, J., & Stomski, R. (2017). CRISPR/Cas9 immune system as a tool for genome engineering. Archivum Immunologiae et Therapiae Experimentalis, 65, 233–240. https://doi.org/10.1007/s00005-016-0427-5.

    Article  CAS  PubMed  Google Scholar 

  • Husnik, J. I., Volschenk, H., Bauer, J., Colavizza, D., Luo, Z., & van Vuuren, H. J. (2006). Metabolic engineering of malolactic wine yeast. Metabolic Engineering, 8(4), 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Husnik, J. I., Delaquis, P. J., Cliff, M. A., & van Vuuren, H. J. (2007). Functional analyses of the malolactic wine yeast ML01. American Journal of Enology and Viticulture, 58(1), 42–52.

    CAS  Google Scholar 

  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito-Harashima, S., & McCusker, J. H. (2004). Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae. Yeast, 21(1), 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Jakočiūnas, T., Bonde, I., Herrgård, M., Harrison, S. J., Kristensen, M., Pedersen, L. E., Jensen, M. K., & Keasling, J. D. (2015). Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 28, 213–222.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, E. D., Ferreira, R., Jakociunas, T., Arsovska, D., Zhang, J., Ding, L., et al. (2017). Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies. Microbial Cell Factories, 16(1), 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, J., Sumby, K. M., Sundstrom, J. F., Grbin, P. R., & Jiranek, V. (2018). Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment. Food Microbiology, 73, 150–159.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Martí, E., Zuzuarregui, A., Ridaura, I., Lozano, N., & Del Olmo, M. (2009). Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. International Journal of Food Microbiology, 130(2), 122–130.

    Article  PubMed  CAS  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. (2012). Experimental evolution. Trends in Ecology & Evolution, 27(10), 547–560.

    Article  Google Scholar 

  • Kim, J. S. (2016). Genome editing comes of age. Nature Protocols, 11(9), 1573–1578. https://doi.org/10.1038/nprot.2016.104.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto, M. (1994). Fermentation characteristics of hybrids between the cryophilic wine yeast Saccharomyces bayanus and the mesophilic wine yeast Saccharomyces cerevisiae. Journal of Fermentation and Bioengineering, 77(4), 432–435.

    Article  CAS  Google Scholar 

  • Krogerus, K., Holmström, S., & Gibson, B. (2018). Enhanced wort fermentation with de novo lager hybrids adapted to high-ethanol environments. Applied and Environmental Microbiology, 84(4), e02302–e02317.

    PubMed  PubMed Central  Google Scholar 

  • Kupferschmidt, K. (2018). EU verdict on CRISPR crops dismays scientists.

    Google Scholar 

  • Kutyna, D. R., Varela, C., Stanley, G. A., Borneman, A. R., Henschke, P. A., & Chambers, P. J. (2012). Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Applied Microbiology and Biotechnology, 93(3), 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  • Laing, E., & Pretorius, I. S. (1993). Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an E. carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 39(2), 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E. S. (2016). The heroes of CRISPR. Cell, 164(1–2), 18–28.

    Article  CAS  PubMed  Google Scholar 

  • Ledford, H. (2015). Crispr, the disruptor. Nature, 522, 20.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D., Lloyd, N. D., Pretorius, I. S., & Borneman, A. R. (2016). Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microbial Cell Factories, 15(1), 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legras, J. L., Merdinoglu, D., Cornuet, J. M., & Karst, F. (2007). Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology, 16(10), 2091–2102.

    Article  CAS  PubMed  Google Scholar 

  • Libkind, D., Hittinger, C. T., Valério, E., Gonçalves, C., Dover, J., Johnston, M., Gonçalves, P., & Sampaio, J. P. (2011). Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1105430108.

    Article  CAS  Google Scholar 

  • Lilly, M., Lambrechts, M. G., & Pretorius, I. S. (2000). Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Applied and Environmental Microbiology, 66(2), 744–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopandic, K., Gangl, H., Wallner, E., Tscheik, G., Leitner, G., Querol, A., Borth, N., Breitenbach, M., Prillinger, H., & Tiefenbrunner, W. (2007). Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Research, 7(6), 953–965.

    Article  CAS  PubMed  Google Scholar 

  • Lopandic, K., Pfliegler, W. P., Tiefenbrunner, W., Gangl, H., Sipiczki, M., & Sterflinger, K. (2016). Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation. Applied Microbiology and Biotechnology, 100(14), 6331–6343.

    Article  CAS  PubMed  Google Scholar 

  • López-Malo, M., García-Rios, E., Chiva, R., Guillamon, J. M., & Martí-Raga, M. (2014). Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast. Biotechnology Progress, 30(4), 776–783.

    Article  PubMed  CAS  Google Scholar 

  • Mahfouz, M. M., Piatek, A., & Stewart, C. N. (2014). Genome engineering via TALENs and CRISPR/Cas9 systems: Challenges and perspectives. Plant Biotechnology Journal, 12, 1006–1014. https://doi.org/10.1111/pbi.12256.

    Article  CAS  PubMed  Google Scholar 

  • Malherbe, D. F., Du Toit, M., Otero, R. C., Van Rensburg, P., & Pretorius, I. S. (2003). Expression of the Aspergillus Niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Applied Microbiology and Biotechnology, 61(5–6), 502–511.

    Article  CAS  PubMed  Google Scholar 

  • Mangado, A., Morales, P., Gonzalez, R., & Tronchoni, J. (2018). Evolution of a yeast with industrial background under winemaking conditions leads to diploidization and chromosomal copy number variation. Frontiers in Microbiology, 9, 1816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mans, R., van Rossum, H. M., Wijsman, M., Backx, A., Kuijpers, N. G., van den Broek, M., Daran-Lapujade P., Pronk J. T., van Maris A. J., Daran J. M. (2015). CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces. FEMS Yeast Research, 15(2). pii: fov004. https://doi.org/10.1093/femsyr/fov004.

  • Manzanares, P., Orejas, M., Gil, J. V., De Graaff, L. H., Visser, J., & Ramón, D. (2003). Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an alpha-L-rhamnosidase of enological interest. Applied and Environmental Microbiology, 69, 7558–7562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marullo, P., Bely, M., Masneuf-Pomarède, I., Pons, M., Aigle, M., & Dubourdieu, D. (2006). Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Research, 6(2), 268–279.

    Article  CAS  PubMed  Google Scholar 

  • Marullo, P., Mansour, C., Dufour, M., Albertin, W., Sicard, D., Bely, M., & Dubourdieu, D. (2009). Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Research, 9, 1148–1160.

    Article  CAS  PubMed  Google Scholar 

  • Masneuf-Pomarède, I., Hansen, J., Groth, C., Piskur, J., & Dubourdieu, D. (1998). New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Applied and Environmental Microbiology, 64, 3887–3892.

    Google Scholar 

  • Masneuf-Pomarède, I., Bely, M., Marullo, P., Lonvaud-Funel, A., & Dubourdieu, D. (2010). Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains. International Journal of Food Microbiology, 139(1), 79–86.

    Article  PubMed  CAS  Google Scholar 

  • McBryde, C., Gardner, J. M., de Barros Lopes, M., & Jiranek, V. (2006). Generation of novel wine yeast strains by adaptive evolution. American Journal of Enology and Viticulture, 57, 423–430.

    CAS  Google Scholar 

  • Michnick, S., Roustan, J. L., Remize, F., Barre, P., & Dequin, S. (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast, 13(9), 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Mojica, F. J. M., Juez, G., & Rodriguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology, 9(3), 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Mojica, F. J., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174–182.

    Article  CAS  PubMed  Google Scholar 

  • Morrison-Whittle, P., Lee, S. A., Fedrizzi, B., & Goddard, M. R. (2018). Co-evolution as tool for diversifying flavour and aroma profiles of wines. Frontiers in Microbiology, 9, 910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakazawa, N., Okawa, K., Sato, T., Enei, H., & Harashima, S. (1999). Mass mating method in combination with G418-and aureobasidin A-resistance markers for efficient selection of hybrids from homothallic strains in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 88(5), 468–471.

    Article  CAS  PubMed  Google Scholar 

  • Naseeb, S., James, S. A., Alsammar, H., Michaels, C. J., Gini, B., Nueno-Palop, C., Bond, C. J., McGhie, H., Roberts, I. N., & Delneri, D. (2017). Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur. International Journal of Systematic and Evolutionary Microbiology., 67, 2046–2052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumova, E. S., Naumov, G. I., Masneuf-Pomarède, I., Aigle, M., & Dubourdieu, D. (2005). Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae. Yeast, 22(14), 1099–1115.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, H. V., Legras, J. L., Neuvéglise, C., & Gaillardin, C. (2011). Deciphering the hybridisation history leading to the lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC1948 and CBS380T. PLoS One, 6(10), e25821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., Cambon, B., Legras, J. L., Wincker, P., Casaregola, S., & Dequin, S. (2009). Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0904673106.

    Article  CAS  Google Scholar 

  • Novo, M., Gonzalez, R., Bertran, E., Martínez, M., Yuste, M., & Morales, P. (2014). Improved fermentation kinetics by wine yeast strains evolved under ethanol stress. LWT-Food Science and Technology, 58(1), 166–172.

    Article  CAS  Google Scholar 

  • Núñez, Y. P., Carrascosa, A. V., Gonzalez, R., Polo, M. C., & Martínez-Rodríguez, A. (2006). Isolation and characterization of a thermally extracted yeast cell wall fraction potentially useful for improving the foaming properties of sparkling wines. Journal of Agricultural and Food Chemistry, 54, 7898–7903.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, Y. P., Carrascosa, A. V., Gonzalez, R., Polo, M. C., & Martínez-Rodríguez, A. J. (2005). Effect of accelerated autolysis of yeast on the composition and foaming properties of sparkling wines elaborated by a Champenoise method. Journal of Agricultural and Food Chemistry, 53, 7232–7237.

    Article  CAS  PubMed  Google Scholar 

  • Paget, C. M., Schwartz, J. M., & Delneri, D. (2014). Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures. Molecular Ecology, 23(21), 5241–5257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-González, J. A., Gonzalez, R., Querol, A., Sendra, J., & Ramón, D. (1993). Construction of a recombinant wine yeast strain expressing beta-(1, 4)-endoglucanase and its use in microvinification processes. Applied and Environmental Microbiology, 59(9), 2801–2806.

    PubMed  PubMed Central  Google Scholar 

  • Pérez-Ortín, J. E., Querol, A., Puig, S., & Barrio, E. (2002). Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Research, 12(10), 1533–1539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Través, L., Lopes, C. A., Barrio, E., & Querol, A. (2014a). Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions. International Microbiology, 17, 213–224. https://doi.org/10.2436/20.1501.01.224.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Través, L., Lopes, C. A., Querol, A., & Barrio, E. (2014b). On the complexity of the Saccharomyces bayanus taxon: Hybridization and potential hybrid speciation. PLoS One, 9(4), e93729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Través, L., Lopes, C. A., González, R., Barrio, E., & Querol, A. (2015). Physiological and genomic characterisation of Saccharomyces cerevisiae hybrids with improved fermentation performance and mannoprotein release capacity. International Journal of Food Microbiology, 205, 30–40.

    Article  PubMed  CAS  Google Scholar 

  • Peris, D., Belloch, C., Lopandić, K., Álvarez-Pérez, J. M., Querol, A., & Barrio, E. (2012a). The molecular characterization of new types of Saccharomyces cerevisiae× S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast, 29(2), 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Peris, D., Lopes, C. A., Arias, A., & Barrio, E. (2012b). Reconstruction of the evolutionary history of Saccharomyces cerevisiae x S. kudriavzevii hybrids based on multilocus sequence analysis. PLoS One, 7(9), e45527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peris, D., Lopes, C. A., Belloch, C., Querol, A., & Barrio, E. (2012c). Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins. BMC Genomics, 13(1), 407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peris, D., Moriarty, R. V., Alexander, W. G., Baker, E., Sylvester, K., Sardi, M., Leducq, J. B., et al. (2017). Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnology for Biofuels, 10(1), 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfliegler, W. P., Atanasova, L., Karanyicz, E., Sipiczki, M., Bond, U., Druzhinina, I. S., Sterflinger, K., & Lopandic, K. (2014). Generation of new genotypic and phenotypic features in artificial and natural yeast hybrids. Food Technology and Biotechnology, 52(1), 46–57.

    CAS  Google Scholar 

  • Pretorius, I. S. (2017). Synthetic genome engineering forging new frontiers for wine yeast. Critical Reviews in Biotechnology, 37(1), 112–136.

    Article  CAS  PubMed  Google Scholar 

  • Pretorius, I. S., & Bauer, F. F. (2002). Meeting the consumer challenge through genetically customized wine-yeast strains. Trends in Biotechnology, 20, 426–432.

    Article  CAS  PubMed  Google Scholar 

  • Pronk, J. T. (2002). Auxotrophic yeast strains in fundamental and applied research. Applied and Environmental Microbiology, 68(5), 2095–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig, S., Querol, A., Ramón, D., & Pérez-Ortín, J. E. (1996). Evaluation of the use of phase-specific gene promoters for the expression of enological enzymes in an industrial wine yeast strain. Biotechnology Letters, 18(8), 887–892.

    Article  CAS  Google Scholar 

  • Puig, S., Ramón, D., & Pérez-Ortín, J. E. (1998). Optimized method to obtain stable food-safe recombinant wine yeast strains. Journal of Agricultural and Food Chemistry, 46(4), 1689–1693.

    Article  CAS  Google Scholar 

  • Querol, A., Fernández-Espinar, M. T., lı del Olmo, M., & Barrio, E. (2003). Adaptive evolution of wine yeast. International Journal of Food Microbiology, 86(1–2), 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Quirós, M., Gonzalez-Ramos, D., Tabera, L., & Gonzalez, R. (2010). A new methodology to obtain wine yeast strains overproducing mannoproteins. International Journal of Food Microbiology, 139(1), 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Remize, F., Andrieu, E., & Dequin, S. (2000). Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: Role of the cytosolic mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Applied and Environmental Microbiology, 66, 3151–3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano, P., Soli, M. G., Suzzi, G., Grazia, L., & Zambonelli, C. (1985). Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Applied and Environmental Microbiology, 50, 1064–1067.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rous, C. V., Snow, R., & Kunkee, R. E. (1983). Reduction of higher alcohols by fermentation with a leucine-auxotrophic mutant of wine yeast. Journal of the Institute of Brewing, 89(4), 274–278.

    Article  CAS  Google Scholar 

  • Ryan, O. W., & Cate, J. H. D. (2014). Multiplex engineering of industrial yeast genomes using CRISPRm. Methods in Enzymology, 546, 473–489. https://doi.org/10.1016/B978-0-12-801185-0.00023-4.

    Article  CAS  PubMed  Google Scholar 

  • Salmon, J. M., & Barre, P. (1998). Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Applied and Environmental Microbiology, 64(10), 3831–3837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvadó, Z., Arroyo-López, F. N., Guillamón, J. M., Salazar, G., Querol, A., & Barrio, E. (2011). Temperature adaptation markedly determines evolution within the genus Saccharomyces. Applied and Environmental Microbiology, 77(7), 2292–2302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvadó, Z., Ramos-Alonso, L., Tronchoni, J., Penacho, V., García-Ríos, E., Morales, P., Gonzalez, R., & Guillamón, J. M. (2016). Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae. International Journal of Food Microbiology, 236, 38–46.

    Article  PubMed  CAS  Google Scholar 

  • Sampaio, J. P., & Gonçalves, P. (2008). Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Applied and Environmental Microbiology, 74(7), 2144–2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Torres, P., González-Candelas, L., & Ramón, D. (1996). Expression in a wine yeast strain of the Aspergillus Niger abfB gene. FEMS Microbiology Letters, 145(2), 189–194.

    Article  PubMed  Google Scholar 

  • Shinohara, T., Saito, K., Yanagida, F., & Goto, S. (1994). Selection and hybridization of wine yeasts for improved winemaking properties: Fermentation rate and aroma productivity. Journal of Fermentation and Bioengineering, 77, 428–431.

    Article  CAS  Google Scholar 

  • Sicard, D., & Legras, J. L. (2011). Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus Biologies, 334(3), 229–236.

    Article  PubMed  Google Scholar 

  • Soares, E. V. (2011). Flocculation in Saccharomyces cerevisiae: A review. Journal of Applied Microbiology, 110, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, J. F., & Spencer, D. M. (1996). Rare-mating and cytoduction in Saccharomyces cerevisiae. In Yeast protocols (pp. 39–44). New Jersey: Humana Press.

    Chapter  Google Scholar 

  • Steensels, J., Meersman, E., Snoek, T., Saels, V., & Verstrepen, K. J. (2014). Large-scale selection and breeding to generate industrial yeasts with superior aroma production. Applied and Environmental Microbiology, 80, 6965–6975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stovicek, V., Holkenbrink, C., & Borodina, I. (2017). CRISPR/Cas system for yeast genome engineering: Advances and applications. FEMS Yeast Research, 17(5). https://doi.org/10.1093/femsyr/fox030.

  • Swiegers, J. H., Capone, D. L., Pardon, K. H., Elsey, G. M., Sefton, M. A., Francis, I. L., & Pretorius, I. S. (2007). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast, 24, 561–574.

    Article  CAS  PubMed  Google Scholar 

  • Tabera, L., Muñoz, R., & Gonzalez, R. (2006). Deletion of BCY1 from the Saccharomyces cerevisiae genome is semidominant and induces autolytic phenotypes suitable for improvement of sparkling wines. Applied and Environmental Microbiology, 72(4), 2351–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton, R. J. (1982). Selective hybridisation of pure culture wine yeasts. European Journal of Applied Microbiology and Biotechnology, 14(3), 159–164.

    Article  CAS  Google Scholar 

  • Thornton, R. J. (1985). The introduction of flocculation into a homothallic wine yeast. A practical example of the modification of winemaking properties by the use of genetic techniques. American Journal of Enology and Viticulture, 36(1), 47–49.

    Google Scholar 

  • Tilloy, V., Ortiz-Julien, A., & Dequin, S. (2014). Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Applied and Environmental Microbiology, 80(8), 2623–2632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tronchoni, J., Gamero, A., Arroyo-López, F. N., Barrio, E., & Querol, A. (2009). Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. International Journal of Food Microbiology, 134(3), 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen, K. J., & Klis, F. M. (2006). Flocculation, adhesion and biofilm formation in yeasts. Molecular Microbiology, 60, 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Verstrepen, K. J., Derdelnckx, G., Delvaux, F. R., Winderickx, J., Thevelein, J. M., Bauer, F. F., & Pretorius, I. S. (2001). Late fermentation expression of FLO1 in Saccharomyces cerevisiae. Journal of the American Society of Brewing Chemists, 59, 69–76.

    Article  CAS  Google Scholar 

  • Verwaal, R., Buiting-Wiessenhaan, N., Dalhuijsen, S., & Roubos, J. A. (2018). CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast, 35, 201–211. https://doi.org/10.1002/yea.3278.

    Article  CAS  PubMed  Google Scholar 

  • Vigentini, I., Gebbia, M., Belotti, A., Foschino, R., & Roth, F. P. (2017). CRISPR/Cas9 system as a valuable genome editing tool applicable to wine yeasts: The decrease of urea production as a case of study. Frontiers in Microbiology, 8(2194), 2017. https://doi.org/10.3389/fmicb.2017.02194.

    Article  Google Scholar 

  • Vilanova, M., Blanco, P., Cortés, S., Castro, M., Villa, T. G., & Sieiro, C. (2000). Use of a PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentations. Journal of Applied Microbiology, 89(5), 876–883.

    Article  CAS  PubMed  Google Scholar 

  • Volschenk, H., Viljoen-Bloom, M., Subden, R. E., & Van Vuuren, H. J. J. (2001). Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast, 18(10), 963–970.

    Article  CAS  PubMed  Google Scholar 

  • Walker, M. E., Gardner, J. M., Vystavelova, A., McBryde, C., de Barros Lopes, M., & Jiranek, V. (2003). Application of the reuseable, KanMX selectable marker to industrial yeast: Construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences. FEMS Yeast Research, 4(3), 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Wang, Z., Liu, N., He, X., & Zhang, B. (2008). Genetic modification of industrial yeast strains to obtain controllable NewFlo flocculation property and lower diacetyl production. Biotechnology Letters, 30, 2013–2018.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry, 85, 227–264.

    Article  CAS  PubMed  Google Scholar 

  • Warringer, J., Zörgö, E., Cubillos, F. A., Zia, A., Gjuvsland, A., Simpson, J. T., et al. (2011). Trait variation in yeast is defined by population history. PLoS Genetics, 7(6), e1002111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters, E. J. (1994). A Saccharomyces mannoprotein that protects wine from protein haze. Carbohydrate Polymers, 23, 185.

    Article  CAS  Google Scholar 

  • Yona, H., Manor, Y. S., Herbst, R. H., Romano, G. H., Mitchell, A., Kupiec, M., Pilpel, Y., & Dahan, O. (2012). Chromosomal duplication is a transient evolutionary solution to stress. Proceedings of the National Academy of Sciences, 109(51), 21010–21015.

    Article  CAS  Google Scholar 

  • Zackrisson, M., Hallin, J., Ottosson, L.-G., Dahl, P., Fernandez-Parada, E., Ländström, E., Fernandez-Ricaud, L., Kaferle, P., Skyman, A., Stenberg, S., Omholt, S., Petrovič, U., Warringer, J., & Blomberg, A. (2016). Scan-o-matic: High-resolution microbial phenomics at a massive scale. G3: Genes, Genomes, Genetics, 6(9), 3003–3014.

    Article  CAS  Google Scholar 

  • Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPRCas system. Cell, 163(3), 759–771. https://doi.org/10.1016/j.cell.2015.09.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J., Tsai, H.-J., Gordon, M. R., & Li, R. (2018). Cellular stress associated with aneuploidy. Developmental Cell, 44(4), 420–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Vigentini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vigentini, I., Gonzalez, R., Tronchoni, J. (2019). Genetic Improvement of Wine Yeasts. In: Romano, P., Ciani, M., Fleet, G. (eds) Yeasts in the Production of Wine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9782-4_10

Download citation

Publish with us

Policies and ethics