Skip to main content

Classical Theory of Estimation

  • Chapter
  • First Online:
A Graduate Course on Statistical Inference

Part of the book series: Springer Texts in Statistics ((STS))

  • 4116 Accesses

Abstract

This chapter is a concise description of the classical theory of point estimation, which seeks optimal estimator among the class of all unbiased estimators, in the sense that it has the smallest variance. The optimal problem involved is intrinsically connected with the notions of sufficiency, minimal sufficiency, completeness, Fisher information, and the Cramer-Rao lower bound. An important class of distributions where sufficient and complete statistics are available is the exponential family, which is also covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in Statistical Theory. Wiley.

    Google Scholar 

  • Basu, D. (1955). On statistics independence of a complete sufficient statistic. Sankhya. 15, 377–380.

    Google Scholar 

  • Bhattacharyya, A. (1946). On some analogues of the amount of information and their use in statistical estimation. Sankhya: The Indian Journal of Statistics. 8, 1–14.

    Google Scholar 

  • Blackwell, D. (1947). Conditional expectation and unbiased sequential estimation. The Annals of Mathematical Statistics, 18, 105–110.

    Article  MathSciNet  Google Scholar 

  • Chapman, D. G. and Robbins, H. (1951). Minimum variance estimation without regularity assumptions. The Annals of Mathematical Statistics, 22, 581–586.

    Article  MathSciNet  Google Scholar 

  • Darmois, G. (1935). Surles lois de probabilites a estimation exhaustive. C. R. Acad. Sci Paris (in French) 200, 1265–1266.

    Google Scholar 

  • Fend, A. V. (1959). On the attainment of Cramer-Rao and Bhattacharyya bounds for the variance of an estimate. The Annals of Mathematical Statistics, 30, 381–388.

    Article  MathSciNet  Google Scholar 

  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society A, 222, 594–604.

    Article  Google Scholar 

  • Halmos, P. R. and Savage, L. J. (1949). Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics. The Annals of Mathematical Statistics, 20, 225–241.

    Article  MathSciNet  Google Scholar 

  • Hammersley, J. M. (1950). On estimating restricted parameters. Journal of the Royal Statistical Society, Series B, 12, 192–240.

    MathSciNet  MATH  Google Scholar 

  • Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press.

    Google Scholar 

  • Koopman, B. O. (1936). On distributions admitting a sufficient statistic. Transactions of the American Mathematical Society, 39, 399–409.

    Article  MathSciNet  Google Scholar 

  • Lehmann, E. L. and Romano, J. P. (2005). Testing Statistical Hypotheses. Third edition. Springer.

    Google Scholar 

  • Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. Second edition. Springer, New York.

    Google Scholar 

  • Lehmann, E. L. and Scheffe, H. (1950). Completeness, similar regions, and unbiased estimation, I. Sankya, 10, 305–340.

    Google Scholar 

  • Lehmann, E. L. and Scheffe, H. (1955). Completeness, similar regions, and unbiased estimation, II. Sankya, 15, 219–236.

    Google Scholar 

  • Lin’kov, Y. N. (2005). Lectures in Mathematical Statistics, Parts 1 and 2. In Transactions of Mathematical Monographs, 229. American Mathematical Society.

    Google Scholar 

  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, Second Edition, Chapman & Hall.

    Google Scholar 

  • Pearson, K. (1902). On the systematic fitting of curves to observations and measurements. Biometrika, 1, 265–303.

    Article  Google Scholar 

  • Pitman, E. J. G. (1936). Sufficient statistics and intrinsic accuracy. Proceedings of the Cambridge Philosophical Society, 32, 567–579.

    Article  Google Scholar 

  • Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society. 37, 81–89.

    Google Scholar 

  • Rudin, W. (1987). Real and Complex Analysis. Third Edition. McGraw-Hill, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, B., Babu, G.J. (2019). Classical Theory of Estimation. In: A Graduate Course on Statistical Inference. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9761-9_2

Download citation

Publish with us

Policies and ethics