Biophysical and Biochemical Approaches in the Analysis of Argonaute–MicroRNA Complexes

  • Sujin Kim
  • Yoosik KimEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


MicroRNAs (miRNAs) are a class of small, noncoding, and single-stranded RNAs that play a key role in regulating gene expressions in most eukaryotes. Human genome encodes over 1,600 different miRNA loci, and miRNAs directly regulate expression of over 60% of protein-coding genes. The canonical miRNA biogenesis pathway has been well documented with key players identified by the efforts of many biochemical research groups. However, we still lack a mechanistic understanding of the target recognition and gene silencing processes. Over the recent years, structural, biochemical, and single-molecule biophysical studies have revealed the complexity in the interactions between miRNA and the effector protein Argonaute (Ago) as well as between Ago and the target mRNA. In this chapter, we present these findings that significantly enhanced our knowledge of the assembly and regulation by Ago–miRNA complexes.


MicroRNA Argonaute RISC Protein structure Single-molecule experiment Speed–stability paradox 



This work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-MA1702-08.


  1. 1.
    Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.CrossRefGoogle Scholar
  2. 2.
    Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15, 509–524.CrossRefGoogle Scholar
  3. 3.
    Cai, X., Hagedorn, C. H., & Cullen, B. R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10, 1957–1966.CrossRefGoogle Scholar
  4. 4.
    Lee, Y., Jeon, K., Lee, J. T., Kim, S., & Kim, V. N. (2002). MicroRNA maturation: Stepwise processing and subcellular localization. The EMBO Journal, 21, 4663–4670.CrossRefGoogle Scholar
  5. 5.
    Lee, Y., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal, 23, 4051–4060.CrossRefGoogle Scholar
  6. 6.
    Ozsolak, F., et al. (2008). Chromatin structure analyses identify miRNA promoters. Genes & Development, 22, 3172–3183.CrossRefGoogle Scholar
  7. 7.
    Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432, 231–235.ADSCrossRefGoogle Scholar
  8. 8.
    Gregory, R. I., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432, 235–240.ADSCrossRefGoogle Scholar
  9. 9.
    Han, J., et al. (2004). The Drosha-DGCR9 complex in primary microRNA processing. Genes & Development, 18, 3016–3027.CrossRefGoogle Scholar
  10. 10.
    Landthaler, M., Yalcin, A., & Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Current Biology, 14, 2162–2167.CrossRefGoogle Scholar
  11. 11.
    Lee, Y., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.ADSCrossRefGoogle Scholar
  12. 12.
    Kim, B., Jeong, K., & Kim, V. N. (2017). Genome-wide mapping of DROSHA cleavage sites on primary microRNAs and noncanonical substrates. Molecular Cell, 66, 258–269. e255.CrossRefGoogle Scholar
  13. 13.
    Nguyen, T. A., et al. (2015). Functional anatomy of the human microprocessor. Cell, 161, 1374–1387.CrossRefGoogle Scholar
  14. 14.
    Kwon, S. C., et al. (2016). Structure of human DROSHA. Cell, 164, 81–90.CrossRefGoogle Scholar
  15. 15.
    Auyeung, V. C., Ulitsky, I., McGeary, S. E., & Bartel, D. P. (2013). Beyond secondary structure: Primary-sequence determinants license pri-miRNA hairpins for processing. Cell, 152, 844–858.CrossRefGoogle Scholar
  16. 16.
    Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development, 17, 3011–3016.CrossRefGoogle Scholar
  17. 17.
    MacRae, I. J., Zhou, K., & Doudna, J. A. (2007). Structural determinants of RNA recognition and cleavage by Dicer. Nature Structural & Molecular Biology, 14, 934–940.CrossRefGoogle Scholar
  18. 18.
    Park, J. E., et al. (2011). Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature, 475, 201–205.CrossRefGoogle Scholar
  19. 19.
    Macrae, I. J., et al. (2006). Structural basis for double-stranded RNA processing by Dicer. Science, 311, 195–198.ADSCrossRefGoogle Scholar
  20. 20.
    Hutvagner, G., & Simard, M. J. (2008). Argonaute proteins: Key players in RNA silencing. Nature Reviews Molecular Cell Biology, 9, 22–32.CrossRefGoogle Scholar
  21. 21.
    Liu, J., et al. (2004). Arogonaute2 Is the catalytic engine of mammalian RNAi. Science, 305, 1437–1441.ADSCrossRefGoogle Scholar
  22. 22.
    Schirle, N. T., & MacRae, I. J. (2012). The crystal structure of human Argonaute2. Science, 336, 1037–1040.ADSCrossRefGoogle Scholar
  23. 23.
    Song, J. J., Smith, S. K., Hannon, G. J., & Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 305, 1434–1437.ADSCrossRefGoogle Scholar
  24. 24.
    Gan, H. H., & Gunsalus, K. C. (2015). Assembly and analysis of eukaryotic Argonaute-RNA complexes in microRNA-target recognition. Nucleic Acids Research, 43, 9613–9625.Google Scholar
  25. 25.
    Lingel, A., Simon, B., Izaurralde, E., & Sattler, M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature, 426, 465–469.ADSCrossRefGoogle Scholar
  26. 26.
    Lingel, A., Simon, B., Izaurralde, E., & Sattler, M. (2004). Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Structural & Molecular Biology, 11, 576–577.CrossRefGoogle Scholar
  27. 27.
    Ma, J. B., Ye, K., & Patel, D. J. (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature, 429, 318–322.ADSCrossRefGoogle Scholar
  28. 28.
    Ma, J. B., et al. (2005). Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature, 434, 666–670.ADSCrossRefGoogle Scholar
  29. 29.
    Parker, J. S., Roe, S. M., & Barford, D. (2004). Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. The EMBO Journal, 23, 4727–4737.CrossRefGoogle Scholar
  30. 30.
    Yuan, Y. R., et al. (2005). Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Molecular Cell, 19, 405–419.CrossRefGoogle Scholar
  31. 31.
    Jung, S. R., et al. (2013). Dynamic anchoring of the 3′-end of the guide strand controls the target dissociation of Argonaute-guide complex. The Journal of the American Chemical Society, 135, 16865–16871.CrossRefGoogle Scholar
  32. 32.
    Haley, B., & Zamore, P. D. (2004). Kinetic analysis of the RNAi enzyme complex. Nature Structural & Molecular Biology, 11, 599–606.CrossRefGoogle Scholar
  33. 33.
    Zamore, P. D. (2001). Thirty-three years later, a glimpse at the ribonuclease III active site. Molecular Cell, 8, 1158–1160.CrossRefGoogle Scholar
  34. 34.
    Elbashir, S. M. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200.CrossRefGoogle Scholar
  35. 35.
    Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., & Tuschl, T. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBO Journal, 20, 6877–6888.CrossRefGoogle Scholar
  36. 36.
    Nykanen, A., Haley, B., & Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321.CrossRefGoogle Scholar
  37. 37.
    Meister, G., et al. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular Cell, 15, 185–197.CrossRefGoogle Scholar
  38. 38.
    Nowotny, M., Gaidamakov, S. A., Crouch, R. J., & Yang, W. (2005). Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell, 121, 1005–1016.CrossRefGoogle Scholar
  39. 39.
    Rivas, F. V., et al. (2005). Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Structural & Molecular Biology, 12, 340–349.CrossRefGoogle Scholar
  40. 40.
    Schwarz, D. S., Tomari, Y., & Zamore, P. D. (2004). The RNA-induced silencing complex is a Mg2+ -dependent endonuclease. Current Biology, 14, 787–791.CrossRefGoogle Scholar
  41. 41.
    Martinez, J., & Tuschl, T. (2004). RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes & Development, 18, 975–980.CrossRefGoogle Scholar
  42. 42.
    Jinek, M., & Doudna, J. A. (2009). A three-dimensional view of the molecular machinery of RNA interference. Nature, 457, 405–412.ADSCrossRefGoogle Scholar
  43. 43.
    Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y., & Zamore, P. D. (2007). Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell, 130, 287–297.CrossRefGoogle Scholar
  44. 44.
    Park, M. S., et al. (2017). Human Argonaute3 has slicer activity. Nucleic Acids Research, 45, 11867–11877.CrossRefGoogle Scholar
  45. 45.
    Wang, Y., Sheng, G., Juranek, S., Tuschl, T., & Patel, D. J. (2008). Structure of the guide-strand-containing argonaute silencing complex. Nature, 456, 209–213.ADSCrossRefGoogle Scholar
  46. 46.
    Kim, V. N. (2008). Sorting out small RNAs. Cell, 133, 25–26.CrossRefGoogle Scholar
  47. 47.
    Kiriakidou, M., et al. (2007). An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell, 129, 1141–1151.CrossRefGoogle Scholar
  48. 48.
    Frank, F., et al. (2011). Structural analysis of 5′-mRNA-cap interactions with the human AGO2 MID domain. EMBO Reports, 12, 415–420.CrossRefGoogle Scholar
  49. 49.
    Behm-Ansmant, I., et al. (2006). mRNA degradation by miRNAs and GW182 requires both CCR49:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes & Development, 20, 1885–1898.CrossRefGoogle Scholar
  50. 50.
    Braun, J. E., Huntzinger, E., Fauser, M., & Izaurralde, E. (2011). GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Molecular Cell, 44, 120–133.CrossRefGoogle Scholar
  51. 51.
    Fabian, M. R., et al. (2011). miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR51-NOT. Nature Structural & Molecular Biology, 18, 1211–1217.CrossRefGoogle Scholar
  52. 52.
    Lim, J., et al. (2014). Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell, 159, 1365–1376.CrossRefGoogle Scholar
  53. 53.
    Doench, J. G., & Sharp, P. A. (2004). Specificity of microRNA target selection in translational repression. Genes & Development, 18, 504–511.CrossRefGoogle Scholar
  54. 54.
    Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115, 787–798.CrossRefGoogle Scholar
  55. 55.
    Stark, A., Brennecke, J., Russell, R. B., & Cohen, S. M. (2003). Identification of Drosophila microRNA targets. PLOS Biology, 1, E60.CrossRefGoogle Scholar
  56. 56.
    Gregory, R. I., Chendrimada, T. P., Cooch, N., & Shiekhattar, R. (2005). Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123, 631–640.CrossRefGoogle Scholar
  57. 57.
    MacRae, I. J., Ma, E., Zhou, M., Robinson, C. V., & Doudna, J. A. (2008). In vitro reconstitution of the human RISC-loading complex. Proceedings of the National Academy of Sciences of the United States of America, 105, 512–517.ADSCrossRefGoogle Scholar
  58. 58.
    Maniataki, E., & Mourelatos, Z. (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes & Development, 19, 2979–2990.CrossRefGoogle Scholar
  59. 59.
    Wang, H. W., et al. (2009). Structural insights into RNA processing by the human RISC-loading complex. Nature Structural & Molecular Biology, 16, 1148–1153.CrossRefGoogle Scholar
  60. 60.
    Kanellopoulou, C., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Development, 19, 489–501.CrossRefGoogle Scholar
  61. 61.
    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., & Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 110, 563–574.CrossRefGoogle Scholar
  62. 62.
    Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., & Hannon, G. J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 12135–12140.ADSCrossRefGoogle Scholar
  63. 63.
    Ye, X., et al. (2011). Structure of C3PO and mechanism of human RISC activation. Nature Structural & Molecular Biology, 18, 650–657.CrossRefGoogle Scholar
  64. 64.
    Betancur, J. G., & Tomari, Y. (2012). Dicer is dispensable for asymmetric RISC loading in mammals. RNA, 18, 24–30.CrossRefGoogle Scholar
  65. 65.
    Cheloufi, S., Dos Santos, C. O., Chong, M. M., & Hannon, G. J. (2010). A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature, 465, 584–589.ADSCrossRefGoogle Scholar
  66. 66.
    Kim, Y., & Kim, V. N. (2012). MicroRNA factory: RISC assembly from precursor microRNAs. Molecular Cell, 46, 384–386.ADSCrossRefGoogle Scholar
  67. 67.
    Kawamata, T., & Tomari, Y. (2010). Making RISC. Trends in Biochemical Sciences, 35, 368–376.CrossRefGoogle Scholar
  68. 68.
    Tomari, Y., Matranga, C., Haley, B., Martinez, N., & Zamore, P. D. (2004). A protein sensor for siRNA asymmetry. Science, 306, 1377–1380.ADSCrossRefGoogle Scholar
  69. 69.
    Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132, 9–14.CrossRefGoogle Scholar
  70. 70.
    Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9, 102–114.CrossRefGoogle Scholar
  71. 71.
    Baek, D., et al. (2008). The impact of microRNAs on protein output. Nature, 455, 64–71.ADSCrossRefGoogle Scholar
  72. 72.
    Brennecke, J., Stark, A., Russell, R. B., & Cohen, S. M. (2005). Principles of microRNA-target recognition. PLOS Biology, 3, e85.CrossRefGoogle Scholar
  73. 73.
    Selbach, M., et al. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455, 58–63.ADSCrossRefGoogle Scholar
  74. 74.
    Kim, D., et al. (2016). General rules for functional microRNA targeting. Nature Genetics, 48, 1517–1526.CrossRefGoogle Scholar
  75. 75.
    Schirle, N. T., Sheu-Gruttadauria, J., & MacRae, I. J. (2014). Structural basis for microRNA targeting. Science, 346, 608–613.ADSCrossRefGoogle Scholar
  76. 76.
    Song, J. J., et al. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Structural Biology, 10, 1026–1032.CrossRefGoogle Scholar
  77. 77.
    Klein, M., Chandradoss, S. D., Depken, M., & Joo, C. (2017). Why Argonaute is needed to make microRNA target search fast and reliable. Seminars in Cell and Developmental Biology, 65, 20–28.CrossRefGoogle Scholar
  78. 78.
    Salomon, W. E., Jolly, S. M., Moore, M. J., Zamore, P. D., & Serebrov, V. (2015). Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell, 162, 84–95.CrossRefGoogle Scholar
  79. 79.
    Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J., & Joo, C. (2015). A dynamic search process underlies microRNA targeting. Cell, 162, 96–107.CrossRefGoogle Scholar
  80. 80.
    Elkayam, E., et al. (2012). The structure of human argonaute-2 in complex with miR-20a. Cell, 150, 100–110.CrossRefGoogle Scholar
  81. 81.
    Nakanishi, K., Weinberg, D. E., Bartel, D. P., & Patel, D. J. (2012). Structure of yeast Argonaute with guide RNA. Nature, 486, 368–374.ADSCrossRefGoogle Scholar
  82. 82.
    Lai, E. C. (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 30, 363–364.CrossRefGoogle Scholar
  83. 83.
    Berg, O. G., Winter, R. B., & von Hippel, P. H. (1981). Diffusion-driven mechanisms of protein translocation on nucleic acids. Biochemistry, 20, 6929–6948.CrossRefGoogle Scholar
  84. 84.
    Riggs, A. D., Bourgeois, S., & Cohn, M. (1970). The lac represspr-operator interaction III. Kinetic studies. The Journal of Molecular Biology, 53, 401–417.CrossRefGoogle Scholar
  85. 85.
    von Hippel, P. H., & Berg, O. G. (1989). Facilitated target location in biological systems. The Journal of Biological Chemistry, 264, 675–678.Google Scholar
  86. 86.
    Mirny, L., et al. (2009). How a protein searches for its site on DNA: The mechanism of facilitated diffusion. Journal of Physics A: Mathematical and Theoretical, 42ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Slutsky, M., & Mirny, L. A. (2004). Kinetics of protein-DNA interaction: Facilitated target location in sequence-dependent potential. The Biophysical Journal, 87, 4021–4035.ADSCrossRefGoogle Scholar
  88. 88.
    Gerland, U., Moroz, J. D., & Hwa, T. (2002). Physical constraints and functional characterists of transcription factor-DNA interaction. Proceedings of the National Academy of Sciences of the United States of America, 99, 12015–12020.ADSCrossRefGoogle Scholar
  89. 89.
    Kong, M., & Van Houten, B. (2017). Rad4 recognition-at-a-distance: Physical basis of conformation-specific anomalous diffusion of DNA repair proteins. Progress in Biophysics & Molecular Biology, 127, 93–104.CrossRefGoogle Scholar
  90. 90.
    Chiu, Y.-L., & Rana, T. M. (2002). RNAi in human cells. Molecular Cell, 10, 549–561.CrossRefGoogle Scholar
  91. 91.
    Doench, J. G., Petersen, C. P., & Sharp, P. A. (2003). siRNAs can function as miRNAs. Genes & Development, 17, 438–442.CrossRefGoogle Scholar
  92. 92.
    Hutvagner, G., & Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056–2060.ADSCrossRefGoogle Scholar
  93. 93.
    Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233.CrossRefGoogle Scholar
  94. 94.
    Krek, A., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37, 495–500.CrossRefGoogle Scholar
  95. 95.
    Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.CrossRefGoogle Scholar
  96. 96.
    Lim, L. P., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773.ADSCrossRefGoogle Scholar
  97. 97.
    Faehnle, C. R., Elkayam, E., Haase, A. D., Hannon, G. J., & Joshua-Tor, L. (2013). The making of a slicer: Activation of human Argonaute-1. Cell Reports, 3, 1901–1909.CrossRefGoogle Scholar
  98. 98.
    Nakanishi, K., et al. (2013). Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Reports, 3, 1893–1900.CrossRefGoogle Scholar
  99. 99.
    Jo, M. H., et al. (2015). Human Argonaute 2 has diverse reaction pathways on target RNAs. Molecular Cell, 59, 117–124.CrossRefGoogle Scholar
  100. 100.
    Wee, L. M., Flores-Jasso, C. F., Salomon, W. E., & Zamore, P. D. (2012). Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell, 151, 1055–1067.CrossRefGoogle Scholar
  101. 101.
    Sasaki, H. M., & Tomari, Y. (2012). The true core of RNA silencing revealed. Nature Structural & Molecular Biology, 19, 657–660.CrossRefGoogle Scholar
  102. 102.
    Zander, A., Holzmeister, P., Klose, D., Tinnefeld, P., & Grohmann, D. (2014). Single-molecule FRET supports the two-state model of Argonaute action. RNA Biology, 11, 45–56.CrossRefGoogle Scholar
  103. 103.
    Herschlag, D. (1991). Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: More isn’t always better. Proceedings of the National Academy of Sciences of the United States of America, 88, 6921–6925.ADSCrossRefGoogle Scholar
  104. 104.
    Deerberg, A., Willkomm, S., & Restle, T. (2013). Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Proceedings of the National Academy of Sciences of the United States of America, 110, 17850–17855.ADSCrossRefGoogle Scholar
  105. 105.
    Bofill-De Ros, X., & Gu, S. (2016). Guidelines for the optimal design of miRNA-based shRNAs. Methods, 103, 157–166.CrossRefGoogle Scholar
  106. 106.
    Seitz, H., Tushir, J. S., & Zamore, P. D. (2011). A 5′-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Silence, 2, 4.CrossRefGoogle Scholar
  107. 107.
    Mi, S., et al. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell, 133, 116–127.CrossRefGoogle Scholar
  108. 108.
    Schirle, N. T., Sheu-Gruttadauria, J., Chandradoss, S. D., Joo, C., & MacRae, I. J. (2015). Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. Elife, 4Google Scholar
  109. 109.
    Casey, M. C., Kerin, M. J., Brown, J. A., & Sweeney, K. J. (2015). Evolution of a research field-a micro (RNA) example. PeerJ, 3, e829.CrossRefGoogle Scholar
  110. 110.
    Ragunathan, K., Liu, C., & Ha, T. (2012). RecA filament sliding on DNA facilitates homology search. Elife, 1, e00067.CrossRefGoogle Scholar
  111. 111.
    Qi, Z., et al. (2015). DNA sequence alignment by microhomology sampling during homologous recombination. Cell, 160, 856–869.CrossRefGoogle Scholar
  112. 112.
    Shvets, A. A., & Kolomeisky, A. B. (2017). Mechanism of genome interrogation: How CRISPR RNA-guided Cas9 proteins locate specific targets on DNA. The Biophysical Journal, 113, 1416–1424.ADSCrossRefGoogle Scholar
  113. 113.
    Sternberg, S. H., LaFrance, B., Kaplan, M., & Doudna, J. A. (2015). Conformational control of DNA target cleavage by CRISPR-Cas9. Nature, 527, 110–113.ADSCrossRefGoogle Scholar
  114. 114.
    Westra, E. R., et al. (2013). Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLOS Genetics, 9, e1003742.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringKAIST Institute for Health Science and Technology, KAISTDaejeonSouth Korea

Personalised recommendations