Advertisement

Single-Molecule Optical Tweezers Studies of Translation

  • Xiaohui QuEmail author
Chapter
  • 441 Downloads
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Translation, the process of ribosome-mediated protein synthesis, is a key step for gene expression regulation. Single-molecule optical tweezers technique has had great success in biophysical characterization of many important molecular interactions, but its application to the translation process remained challenging until recently. The past decade witnessed fast progress of the successful application of optical tweezers technique to various aspects of the translation process, including mRNA structure disruption during translation initiation, the peptide chain elongation kinetics, and the interactions between ribosome and nascent polypeptide. In this chapter, we will give a brief introduction of the single-molecule optical tweezers technique and a comprehensive overview of its application in translation.

Keywords

Translation Ribosome Protein synthesis RNA helicase RNA-binding protein Single-molecule Optical tweezers 

Abbreviations

AFM

Atomic force microscopy

bp

Base pair

CI

Confidence interval

mRNA

Messenger RNA

ms

Millisecond

nm

Nanometer

nt

Nucleotide

pN

picoNewton

SD

Shine-Dalgarno sequence

s.d.

Standard deviation

UTR

Untranslated region

WLC

Worm-like chain model

Notes

Acknowledgements

X. Qu was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM121847 and Memorial Sloan Kettering Cancer Center (MSKCC) Functional Genomics Initiative. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Hershey, J. W. B., Sonenberg, N., & Mathews, M. (2012). Protein synthesis and translational control: A subject collection from Cold Spring Harbor perspectives in biology (vii, 352 pp.). Cold Spring Harbor perspectives in biology. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.Google Scholar
  2. 2.
    Ashkin, A., et al. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288–290.ADSCrossRefGoogle Scholar
  3. 3.
    Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505.CrossRefGoogle Scholar
  4. 4.
    Svoboda, K., & Block, S. M. (1994). Biological applications of optical forces. Annual Review of Biophysics and Biomolecular Structure, 23, 247–285.CrossRefGoogle Scholar
  5. 5.
    Moffitt, J. R., et al. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 77, 205–228.CrossRefGoogle Scholar
  6. 6.
    Liu, S. X., et al. (2014). A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell, 157(3), 702–713.CrossRefGoogle Scholar
  7. 7.
    Comstock, M. J., Ha, T., & Chemla, Y. R. (2011). Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nature Methods, 8(4), 335–U82.CrossRefGoogle Scholar
  8. 8.
    Deufel, C., et al. (2007). Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nature Methods, 4(3), 223–225.CrossRefGoogle Scholar
  9. 9.
    Li, P. T., et al. (2006). Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophysical Journal, 90(1), 250–260.ADSCrossRefGoogle Scholar
  10. 10.
    Qu, X. H., et al. (2012). Ribosomal protein S1 unwinds double-stranded RNA in multiple steps. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14458–14463.ADSCrossRefGoogle Scholar
  11. 11.
    Tinoco, I., & Bustamante, C. (2002). The effect of force on thermodynamics and kinetics of single molecule reactions. Biophysical Chemistry, 101, 513–533.CrossRefGoogle Scholar
  12. 12.
    Laursen, B. S., et al. (2005). Initiation of protein synthesis in bacteria. Microbiology and Molecular Biology Reviews, 69(1), 101–123.CrossRefGoogle Scholar
  13. 13.
    Hinnebusch, A. G. (2014). The scanning mechanism of eukaryotic translation initiation. Annual Review of Biochemistry, 83, 779–812.CrossRefGoogle Scholar
  14. 14.
    Marzi, S., et al. (2007). Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell, 130(6), 1019–1031.CrossRefGoogle Scholar
  15. 15.
    Studer, S. M., & Joseph, S. (2006). Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Molecular Cell, 22(1), 105–115.CrossRefGoogle Scholar
  16. 16.
    Kozak, M. (2005). Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene, 361, 13–37.CrossRefGoogle Scholar
  17. 17.
    Sorensen, M. A., Fricke, J., & Pedersen, S. (1998). Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. Journal of Molecular Biology, 280(4), 561–569.CrossRefGoogle Scholar
  18. 18.
    Farwell, M. A., Roberts, M. W., & Rabinowitz, J. C. (1992). The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Molecular Microbiology, 6(22), 3375–3383.CrossRefGoogle Scholar
  19. 19.
    Vandieijen, G., Vanknippenberg, P. H., & Vanduin, J. (1976). Specific role of ribosomal protein S1 in recognition of native phage RNA. European Journal of Biochemistry, 64(2), 511–518.CrossRefGoogle Scholar
  20. 20.
    Dumont, S., et al. (2006). RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature, 439(7072), 105–108.ADSCrossRefGoogle Scholar
  21. 21.
    Spies, M. (2014). Two steps forward, one step back: Determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers. DNA Repair (Amst), 20, 58–70.CrossRefGoogle Scholar
  22. 22.
    Sengupta, J., Agrawal, R. K., & Frank, J. (2001). Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proceedings of the National Academy of Sciences of the United States of America, 98(21), 11991–11996.ADSCrossRefGoogle Scholar
  23. 23.
    Subramanian, A. R. (1983). Structure and functions of ribosomal protein S1. Progress in Nucleic Acid Research and Molecular Biology, 28, 101–142.CrossRefGoogle Scholar
  24. 24.
    Aliprandi, P., et al. (2008). S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions. Journal of Biological Chemistry, 283(19), 13289–13301.CrossRefGoogle Scholar
  25. 25.
    Fairman-Williams, M. E., Guenther, U.-P., & Jankowsky, E. (2010). SF1 and SF2 helicases: Family matters. Current Opinion in Structural Biology, 20(3), 313–324.CrossRefGoogle Scholar
  26. 26.
    Parsyan, A., et al. (2011). mRNA helicases: The tacticians of translational control. Nature Reviews Molecular Cell Biology, 12(4), 235–245.CrossRefGoogle Scholar
  27. 27.
    Garcia-Garcia, C., et al. (2015). Factor-dependent processivity in human eIF4A DEAD-box helicase. Science, 348(6242), 1486–1488.ADSCrossRefGoogle Scholar
  28. 28.
    Feoktistova, K., et al. (2013). Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13339–13344.ADSCrossRefGoogle Scholar
  29. 29.
    De Gregorio, E., Preiss, T., & Hentze, M. W. (1999). Translation driven by an eIF4G core domain in vivo. EMBO Journal, 18(17), 4865–4874.CrossRefGoogle Scholar
  30. 30.
    Korneeva, N. L., et al. (2005). Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. Journal of Biological Chemistry, 280(3), 1872–1881.CrossRefGoogle Scholar
  31. 31.
    Pyle, A. M. (2008). Translocation and unwinding mechanisms of RNA and DNA helicases. Annual Review of Biophysics, 317–336.CrossRefGoogle Scholar
  32. 32.
    Noller, H. F. (1984). Structure of ribosomal RNA. Annual Review of Biochemistry, 53, 119–162.CrossRefGoogle Scholar
  33. 33.
    Wintermeyer, W., et al. (2004). Mechanisms of elongation on the ribosome: Dynamics of a macromolecular machine. Biochemical Society Transactions, 32, 733–737.CrossRefGoogle Scholar
  34. 34.
    Green, R., & Noller, H. F. (1997). Ribosomes and translation. Annual Review of Biochemistry, 66, 679–716.CrossRefGoogle Scholar
  35. 35.
    Uemura, S., et al. (2007). Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature, 446(7134), 454–457.ADSCrossRefGoogle Scholar
  36. 36.
    Shine, J., & Dalgarno, L. (1974). The 3′-terminal sequence of Escherichia coli 16s ribosomal RNA complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America, 71(4), 1342–1346.ADSCrossRefGoogle Scholar
  37. 37.
    Calogero, R. A., et al. (1988). Selection of the messenger-RNA translation initiation region by Escherichia coli ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 85(17), 6427–6431.ADSCrossRefGoogle Scholar
  38. 38.
    Vanzi, F., et al. (2005). Mechanical studies of single ribosome/mRNA complexes. Biophysical Journal, 89(3), 1909–1919.ADSCrossRefGoogle Scholar
  39. 39.
    Wen, J.-D., et al. (2008). Following translation by single ribosomes one codon at a time. Nature, 452(7187), 598–603.ADSCrossRefGoogle Scholar
  40. 40.
    Yusupova, G. Z., et al. (2001). The path of messenger RNA through the ribosome. Cell, 106(2), 233–241.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Takyar, S., Hickerson, R. P., & Noller, H. F. (2005). MRNA helicase activity of the ribosome. Cell, 120(1), 49–58.CrossRefGoogle Scholar
  42. 42.
    Qu, X., et al. (2011). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature, 475(7354), 118–121.CrossRefGoogle Scholar
  43. 43.
    Tsuchihashi, Z. (1991). Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Research, 19(9), 2457–2462.CrossRefGoogle Scholar
  44. 44.
    Nackley, A. G., et al. (2006). Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science, 314(5807), 1930–1933.ADSCrossRefGoogle Scholar
  45. 45.
    Watts, J. M., et al. (2009). Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460(7256), 711–U87.ADSCrossRefGoogle Scholar
  46. 46.
    Betterton, M. D., & Julicher, F. (2005). Opening of nucleic-acid double strands by helicases: Active versus passive opening. Physical Review E, 71(1).Google Scholar
  47. 47.
    Johnson, D. S., et al. (2007). Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 129(7), 1299–1309.CrossRefGoogle Scholar
  48. 48.
    Lionnet, T., et al. (2007). Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19790–19795.ADSCrossRefGoogle Scholar
  49. 49.
    Manosas, M., et al. (2010). Active and passive mechanisms of helicases. Nucleic Acids Research, 38(16), 5518–5526.CrossRefGoogle Scholar
  50. 50.
    Kim, S., Schroeder, C. M., & Xie, X. S. (2010). Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates. Journal of Molecular Biology, 395(5), 995–1006.CrossRefGoogle Scholar
  51. 51.
    Fischer, N., et al. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature, 466(7304), 329–333.ADSCrossRefGoogle Scholar
  52. 52.
    Moazed, D., & Noller, H. F. (1989). Intermediate states in the movement of transfer RNA in the ribosome. Nature, 342(6246), 142–148.ADSCrossRefGoogle Scholar
  53. 53.
    Frank, J., & Agrawal, R. K. (2000). A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature, 406(6793), 318–322.ADSCrossRefGoogle Scholar
  54. 54.
    Schuwirth, B. S., et al. (2005). Structures of the bacterial ribosome at 3.5 Å resolution. Science, 310(5749), 827–834.ADSCrossRefGoogle Scholar
  55. 55.
    Valle, M., et al. (2003). Locking and unlocking of ribosomal motions. Cell, 114(1), 123–134.CrossRefGoogle Scholar
  56. 56.
    Peske, F., et al. (2000). Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Molecular Cell, 6(2), 501–505.CrossRefGoogle Scholar
  57. 57.
    Drummond, D. A., & Wilke, C. O. (2009). The evolutionary consequences of erroneous protein synthesis. Nature Reviews Genetics, 10(10), 715–724.CrossRefGoogle Scholar
  58. 58.
    Farabaugh, P. J. (1996). Programmed translational frameshifting. Microbiological Reviews, 60(1), 103–&.Google Scholar
  59. 59.
    Yan, S. N., et al. (2015). Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell, 160(5), 870–881.CrossRefGoogle Scholar
  60. 60.
    Tsuchihashi, Z., & Brown, P. O. (1992). Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between transfer RNA(Lys) and an AAG lysine codon. Genes & Development, 6(3), 511–519.CrossRefGoogle Scholar
  61. 61.
    Guo, Z., & Noller, H. F. (2012). Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20391–20394.ADSCrossRefGoogle Scholar
  62. 62.
    Bustamante, C., et al. (2004). Mechanical processes in biochemistry. Annual Review of Biochemistry, 73, 705–748.CrossRefGoogle Scholar
  63. 63.
    Liu, T. T., et al. (2014). Direct measurement of the mechanical work during translocation by the ribosome. Elife, 3.Google Scholar
  64. 64.
    Jenner, L. B., et al. (2010). Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nature Structural & Molecular Biology, 17(5), 555–U48.CrossRefGoogle Scholar
  65. 65.
    Kubelka, J., et al. (2006). Sub-microsecond protein folding. Journal of Molecular Biology, 359(3), 546–553.CrossRefGoogle Scholar
  66. 66.
    Liang, S. T., et al. (2000). mRNA composition and control of bacterial gene expression. Journal of Bacteriology, 182(11), 3037–3044.CrossRefGoogle Scholar
  67. 67.
    Kaiser, C. M., et al. (2011). The ribosome modulates nascent protein folding. Science, 334(6063), 1723–1727.ADSCrossRefGoogle Scholar
  68. 68.
    Matsumura, M., & Matthews, B. W. (1989). Control of enzyme activity by an engineered disulfide bond. Science, 243(4892), 792–794.ADSCrossRefGoogle Scholar
  69. 69.
    Voss, N. R., et al. (2006). The geometry of the ribosomal polypeptide exit tunnel. Journal of Molecular Biology, 360(4), 893–906.CrossRefGoogle Scholar
  70. 70.
    Ito, K., & Chiba, S. (2013). Arrest peptides: Cis-acting modulators of translation. Annual Review of Biochemistry, 82, 171–202.Google Scholar
  71. 71.
    Deutsch, C. (2014). Tunnel vision: Insights from biochemical and biophysical studies. In K. Ito (Ed.), Regulatory nascent polypeptides (pp. 61–86). Tokyo: Springer Japan.Google Scholar
  72. 72.
    Wilson, D. N., & Beckmann, R. (2011). The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Current Opinion in Structural Biology, 21(2), 274–282.CrossRefGoogle Scholar
  73. 73.
    Tsai, A., et al. (2014). The dynamics of SecM-induced translational stalling. Cell Reports, 7(5), 1521–1533.CrossRefGoogle Scholar
  74. 74.
    Nakatogawa, H., & Ito, K. (2002). The ribosomal exit tunnel functions as a discriminating gate. Cell, 108(5), 629–636.CrossRefGoogle Scholar
  75. 75.
    Gumbart, J., et al. (2012). Mechanisms of SecM-mediated stalling in the ribosome. Biophysical Journal, 103(2), 331–341.ADSCrossRefGoogle Scholar
  76. 76.
    Yap, M.-N., & Bernstein, H. D. (2011). The translational regulatory function of SecM requires the precise timing of membrane targeting. Molecular Microbiology, 81(2), 540–553.CrossRefGoogle Scholar
  77. 77.
    Nakamori, K., Chiba, S., & Ito, K. (2014). Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS Letters, 588(17), 3098–3103.CrossRefGoogle Scholar
  78. 78.
    Butkus, M. E., Prundeanu, L. B., & Oliver, D. B. (2003). Translocon “Pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. Journal of Bacteriology, 185(22), 6719–6722.CrossRefGoogle Scholar
  79. 79.
    Goldman, D. H., et al. (2015). Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science, 348(6233), 457–460.ADSCrossRefGoogle Scholar
  80. 80.
    Nathans, D. (1964). Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proceedings of the National Academy of Sciences of the United States of America, 51, 585–592.ADSCrossRefGoogle Scholar
  81. 81.
    Muto, H., Nakatogawa, H., & Ito, K. (2006). Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Molecular Cell, 22(4), 545–552.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations