Skip to main content

Single-Molecule Optical Tweezers Studies of Translation

  • Chapter
  • First Online:
Book cover Biophysics of RNA-Protein Interactions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 825 Accesses

Abstract

Translation, the process of ribosome-mediated protein synthesis, is a key step for gene expression regulation. Single-molecule optical tweezers technique has had great success in biophysical characterization of many important molecular interactions, but its application to the translation process remained challenging until recently. The past decade witnessed fast progress of the successful application of optical tweezers technique to various aspects of the translation process, including mRNA structure disruption during translation initiation, the peptide chain elongation kinetics, and the interactions between ribosome and nascent polypeptide. In this chapter, we will give a brief introduction of the single-molecule optical tweezers technique and a comprehensive overview of its application in translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

bp:

Base pair

CI:

Confidence interval

mRNA:

Messenger RNA

ms:

Millisecond

nm:

Nanometer

nt:

Nucleotide

pN:

picoNewton

SD:

Shine-Dalgarno sequence

s.d.:

Standard deviation

UTR:

Untranslated region

WLC:

Worm-like chain model

References

  1. Hershey, J. W. B., Sonenberg, N., & Mathews, M. (2012). Protein synthesis and translational control: A subject collection from Cold Spring Harbor perspectives in biology (vii, 352 pp.). Cold Spring Harbor perspectives in biology. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  2. Ashkin, A., et al. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288–290.

    Article  ADS  Google Scholar 

  3. Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505.

    Article  Google Scholar 

  4. Svoboda, K., & Block, S. M. (1994). Biological applications of optical forces. Annual Review of Biophysics and Biomolecular Structure, 23, 247–285.

    Article  Google Scholar 

  5. Moffitt, J. R., et al. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 77, 205–228.

    Article  Google Scholar 

  6. Liu, S. X., et al. (2014). A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell, 157(3), 702–713.

    Article  Google Scholar 

  7. Comstock, M. J., Ha, T., & Chemla, Y. R. (2011). Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nature Methods, 8(4), 335–U82.

    Article  Google Scholar 

  8. Deufel, C., et al. (2007). Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nature Methods, 4(3), 223–225.

    Article  Google Scholar 

  9. Li, P. T., et al. (2006). Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophysical Journal, 90(1), 250–260.

    Article  ADS  Google Scholar 

  10. Qu, X. H., et al. (2012). Ribosomal protein S1 unwinds double-stranded RNA in multiple steps. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14458–14463.

    Article  ADS  Google Scholar 

  11. Tinoco, I., & Bustamante, C. (2002). The effect of force on thermodynamics and kinetics of single molecule reactions. Biophysical Chemistry, 101, 513–533.

    Article  Google Scholar 

  12. Laursen, B. S., et al. (2005). Initiation of protein synthesis in bacteria. Microbiology and Molecular Biology Reviews, 69(1), 101–123.

    Article  Google Scholar 

  13. Hinnebusch, A. G. (2014). The scanning mechanism of eukaryotic translation initiation. Annual Review of Biochemistry, 83, 779–812.

    Article  Google Scholar 

  14. Marzi, S., et al. (2007). Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell, 130(6), 1019–1031.

    Article  Google Scholar 

  15. Studer, S. M., & Joseph, S. (2006). Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Molecular Cell, 22(1), 105–115.

    Article  Google Scholar 

  16. Kozak, M. (2005). Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene, 361, 13–37.

    Article  Google Scholar 

  17. Sorensen, M. A., Fricke, J., & Pedersen, S. (1998). Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. Journal of Molecular Biology, 280(4), 561–569.

    Article  Google Scholar 

  18. Farwell, M. A., Roberts, M. W., & Rabinowitz, J. C. (1992). The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Molecular Microbiology, 6(22), 3375–3383.

    Article  Google Scholar 

  19. Vandieijen, G., Vanknippenberg, P. H., & Vanduin, J. (1976). Specific role of ribosomal protein S1 in recognition of native phage RNA. European Journal of Biochemistry, 64(2), 511–518.

    Article  Google Scholar 

  20. Dumont, S., et al. (2006). RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature, 439(7072), 105–108.

    Article  ADS  Google Scholar 

  21. Spies, M. (2014). Two steps forward, one step back: Determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers. DNA Repair (Amst), 20, 58–70.

    Article  Google Scholar 

  22. Sengupta, J., Agrawal, R. K., & Frank, J. (2001). Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proceedings of the National Academy of Sciences of the United States of America, 98(21), 11991–11996.

    Article  ADS  Google Scholar 

  23. Subramanian, A. R. (1983). Structure and functions of ribosomal protein S1. Progress in Nucleic Acid Research and Molecular Biology, 28, 101–142.

    Article  Google Scholar 

  24. Aliprandi, P., et al. (2008). S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions. Journal of Biological Chemistry, 283(19), 13289–13301.

    Article  Google Scholar 

  25. Fairman-Williams, M. E., Guenther, U.-P., & Jankowsky, E. (2010). SF1 and SF2 helicases: Family matters. Current Opinion in Structural Biology, 20(3), 313–324.

    Article  Google Scholar 

  26. Parsyan, A., et al. (2011). mRNA helicases: The tacticians of translational control. Nature Reviews Molecular Cell Biology, 12(4), 235–245.

    Article  Google Scholar 

  27. Garcia-Garcia, C., et al. (2015). Factor-dependent processivity in human eIF4A DEAD-box helicase. Science, 348(6242), 1486–1488.

    Article  ADS  Google Scholar 

  28. Feoktistova, K., et al. (2013). Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13339–13344.

    Article  ADS  Google Scholar 

  29. De Gregorio, E., Preiss, T., & Hentze, M. W. (1999). Translation driven by an eIF4G core domain in vivo. EMBO Journal, 18(17), 4865–4874.

    Article  Google Scholar 

  30. Korneeva, N. L., et al. (2005). Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. Journal of Biological Chemistry, 280(3), 1872–1881.

    Article  Google Scholar 

  31. Pyle, A. M. (2008). Translocation and unwinding mechanisms of RNA and DNA helicases. Annual Review of Biophysics, 317–336.

    Article  Google Scholar 

  32. Noller, H. F. (1984). Structure of ribosomal RNA. Annual Review of Biochemistry, 53, 119–162.

    Article  Google Scholar 

  33. Wintermeyer, W., et al. (2004). Mechanisms of elongation on the ribosome: Dynamics of a macromolecular machine. Biochemical Society Transactions, 32, 733–737.

    Article  Google Scholar 

  34. Green, R., & Noller, H. F. (1997). Ribosomes and translation. Annual Review of Biochemistry, 66, 679–716.

    Article  Google Scholar 

  35. Uemura, S., et al. (2007). Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature, 446(7134), 454–457.

    Article  ADS  Google Scholar 

  36. Shine, J., & Dalgarno, L. (1974). The 3′-terminal sequence of Escherichia coli 16s ribosomal RNA complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America, 71(4), 1342–1346.

    Article  ADS  Google Scholar 

  37. Calogero, R. A., et al. (1988). Selection of the messenger-RNA translation initiation region by Escherichia coli ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 85(17), 6427–6431.

    Article  ADS  Google Scholar 

  38. Vanzi, F., et al. (2005). Mechanical studies of single ribosome/mRNA complexes. Biophysical Journal, 89(3), 1909–1919.

    Article  ADS  Google Scholar 

  39. Wen, J.-D., et al. (2008). Following translation by single ribosomes one codon at a time. Nature, 452(7187), 598–603.

    Article  ADS  Google Scholar 

  40. Yusupova, G. Z., et al. (2001). The path of messenger RNA through the ribosome. Cell, 106(2), 233–241.

    Article  MathSciNet  Google Scholar 

  41. Takyar, S., Hickerson, R. P., & Noller, H. F. (2005). MRNA helicase activity of the ribosome. Cell, 120(1), 49–58.

    Article  Google Scholar 

  42. Qu, X., et al. (2011). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature, 475(7354), 118–121.

    Article  Google Scholar 

  43. Tsuchihashi, Z. (1991). Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Research, 19(9), 2457–2462.

    Article  Google Scholar 

  44. Nackley, A. G., et al. (2006). Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science, 314(5807), 1930–1933.

    Article  ADS  Google Scholar 

  45. Watts, J. M., et al. (2009). Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460(7256), 711–U87.

    Article  ADS  Google Scholar 

  46. Betterton, M. D., & Julicher, F. (2005). Opening of nucleic-acid double strands by helicases: Active versus passive opening. Physical Review E, 71(1).

    Google Scholar 

  47. Johnson, D. S., et al. (2007). Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 129(7), 1299–1309.

    Article  Google Scholar 

  48. Lionnet, T., et al. (2007). Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19790–19795.

    Article  ADS  Google Scholar 

  49. Manosas, M., et al. (2010). Active and passive mechanisms of helicases. Nucleic Acids Research, 38(16), 5518–5526.

    Article  Google Scholar 

  50. Kim, S., Schroeder, C. M., & Xie, X. S. (2010). Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates. Journal of Molecular Biology, 395(5), 995–1006.

    Article  Google Scholar 

  51. Fischer, N., et al. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature, 466(7304), 329–333.

    Article  ADS  Google Scholar 

  52. Moazed, D., & Noller, H. F. (1989). Intermediate states in the movement of transfer RNA in the ribosome. Nature, 342(6246), 142–148.

    Article  ADS  Google Scholar 

  53. Frank, J., & Agrawal, R. K. (2000). A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature, 406(6793), 318–322.

    Article  ADS  Google Scholar 

  54. Schuwirth, B. S., et al. (2005). Structures of the bacterial ribosome at 3.5 Å resolution. Science, 310(5749), 827–834.

    Article  ADS  Google Scholar 

  55. Valle, M., et al. (2003). Locking and unlocking of ribosomal motions. Cell, 114(1), 123–134.

    Article  Google Scholar 

  56. Peske, F., et al. (2000). Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Molecular Cell, 6(2), 501–505.

    Article  Google Scholar 

  57. Drummond, D. A., & Wilke, C. O. (2009). The evolutionary consequences of erroneous protein synthesis. Nature Reviews Genetics, 10(10), 715–724.

    Article  Google Scholar 

  58. Farabaugh, P. J. (1996). Programmed translational frameshifting. Microbiological Reviews, 60(1), 103–&.

    Google Scholar 

  59. Yan, S. N., et al. (2015). Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell, 160(5), 870–881.

    Article  Google Scholar 

  60. Tsuchihashi, Z., & Brown, P. O. (1992). Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between transfer RNA(Lys) and an AAG lysine codon. Genes & Development, 6(3), 511–519.

    Article  Google Scholar 

  61. Guo, Z., & Noller, H. F. (2012). Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20391–20394.

    Article  ADS  Google Scholar 

  62. Bustamante, C., et al. (2004). Mechanical processes in biochemistry. Annual Review of Biochemistry, 73, 705–748.

    Article  Google Scholar 

  63. Liu, T. T., et al. (2014). Direct measurement of the mechanical work during translocation by the ribosome. Elife, 3.

    Google Scholar 

  64. Jenner, L. B., et al. (2010). Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nature Structural & Molecular Biology, 17(5), 555–U48.

    Article  Google Scholar 

  65. Kubelka, J., et al. (2006). Sub-microsecond protein folding. Journal of Molecular Biology, 359(3), 546–553.

    Article  Google Scholar 

  66. Liang, S. T., et al. (2000). mRNA composition and control of bacterial gene expression. Journal of Bacteriology, 182(11), 3037–3044.

    Article  Google Scholar 

  67. Kaiser, C. M., et al. (2011). The ribosome modulates nascent protein folding. Science, 334(6063), 1723–1727.

    Article  ADS  Google Scholar 

  68. Matsumura, M., & Matthews, B. W. (1989). Control of enzyme activity by an engineered disulfide bond. Science, 243(4892), 792–794.

    Article  ADS  Google Scholar 

  69. Voss, N. R., et al. (2006). The geometry of the ribosomal polypeptide exit tunnel. Journal of Molecular Biology, 360(4), 893–906.

    Article  Google Scholar 

  70. Ito, K., & Chiba, S. (2013). Arrest peptides: Cis-acting modulators of translation. Annual Review of Biochemistry, 82, 171–202.

    Google Scholar 

  71. Deutsch, C. (2014). Tunnel vision: Insights from biochemical and biophysical studies. In K. Ito (Ed.), Regulatory nascent polypeptides (pp. 61–86). Tokyo: Springer Japan.

    Google Scholar 

  72. Wilson, D. N., & Beckmann, R. (2011). The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Current Opinion in Structural Biology, 21(2), 274–282.

    Article  Google Scholar 

  73. Tsai, A., et al. (2014). The dynamics of SecM-induced translational stalling. Cell Reports, 7(5), 1521–1533.

    Article  Google Scholar 

  74. Nakatogawa, H., & Ito, K. (2002). The ribosomal exit tunnel functions as a discriminating gate. Cell, 108(5), 629–636.

    Article  Google Scholar 

  75. Gumbart, J., et al. (2012). Mechanisms of SecM-mediated stalling in the ribosome. Biophysical Journal, 103(2), 331–341.

    Article  ADS  Google Scholar 

  76. Yap, M.-N., & Bernstein, H. D. (2011). The translational regulatory function of SecM requires the precise timing of membrane targeting. Molecular Microbiology, 81(2), 540–553.

    Article  Google Scholar 

  77. Nakamori, K., Chiba, S., & Ito, K. (2014). Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS Letters, 588(17), 3098–3103.

    Article  Google Scholar 

  78. Butkus, M. E., Prundeanu, L. B., & Oliver, D. B. (2003). Translocon “Pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. Journal of Bacteriology, 185(22), 6719–6722.

    Article  Google Scholar 

  79. Goldman, D. H., et al. (2015). Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science, 348(6233), 457–460.

    Article  ADS  Google Scholar 

  80. Nathans, D. (1964). Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proceedings of the National Academy of Sciences of the United States of America, 51, 585–592.

    Article  ADS  Google Scholar 

  81. Muto, H., Nakatogawa, H., & Ito, K. (2006). Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Molecular Cell, 22(4), 545–552.

    Article  Google Scholar 

Download references

Acknowledgements

X. Qu was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM121847 and Memorial Sloan Kettering Cancer Center (MSKCC) Functional Genomics Initiative. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qu, X. (2019). Single-Molecule Optical Tweezers Studies of Translation. In: Joo, C., Rueda, D. (eds) Biophysics of RNA-Protein Interactions. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9726-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9726-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9724-4

  • Online ISBN: 978-1-4939-9726-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics