Biophysics of RNA-Protein Interactions pp 143-164 | Cite as
Single-Molecule Optical Tweezers Studies of Translation
- 441 Downloads
Abstract
Translation, the process of ribosome-mediated protein synthesis, is a key step for gene expression regulation. Single-molecule optical tweezers technique has had great success in biophysical characterization of many important molecular interactions, but its application to the translation process remained challenging until recently. The past decade witnessed fast progress of the successful application of optical tweezers technique to various aspects of the translation process, including mRNA structure disruption during translation initiation, the peptide chain elongation kinetics, and the interactions between ribosome and nascent polypeptide. In this chapter, we will give a brief introduction of the single-molecule optical tweezers technique and a comprehensive overview of its application in translation.
Keywords
Translation Ribosome Protein synthesis RNA helicase RNA-binding protein Single-molecule Optical tweezersAbbreviations
- AFM
Atomic force microscopy
- bp
Base pair
- CI
Confidence interval
- mRNA
Messenger RNA
- ms
Millisecond
- nm
Nanometer
- nt
Nucleotide
- pN
picoNewton
- SD
Shine-Dalgarno sequence
- s.d.
Standard deviation
- UTR
Untranslated region
- WLC
Worm-like chain model
Notes
Acknowledgements
X. Qu was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM121847 and Memorial Sloan Kettering Cancer Center (MSKCC) Functional Genomics Initiative. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.
References
- 1.Hershey, J. W. B., Sonenberg, N., & Mathews, M. (2012). Protein synthesis and translational control: A subject collection from Cold Spring Harbor perspectives in biology (vii, 352 pp.). Cold Spring Harbor perspectives in biology. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.Google Scholar
- 2.Ashkin, A., et al. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288–290.ADSCrossRefGoogle Scholar
- 3.Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505.CrossRefGoogle Scholar
- 4.Svoboda, K., & Block, S. M. (1994). Biological applications of optical forces. Annual Review of Biophysics and Biomolecular Structure, 23, 247–285.CrossRefGoogle Scholar
- 5.Moffitt, J. R., et al. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 77, 205–228.CrossRefGoogle Scholar
- 6.Liu, S. X., et al. (2014). A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell, 157(3), 702–713.CrossRefGoogle Scholar
- 7.Comstock, M. J., Ha, T., & Chemla, Y. R. (2011). Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nature Methods, 8(4), 335–U82.CrossRefGoogle Scholar
- 8.Deufel, C., et al. (2007). Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nature Methods, 4(3), 223–225.CrossRefGoogle Scholar
- 9.Li, P. T., et al. (2006). Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods. Biophysical Journal, 90(1), 250–260.ADSCrossRefGoogle Scholar
- 10.Qu, X. H., et al. (2012). Ribosomal protein S1 unwinds double-stranded RNA in multiple steps. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14458–14463.ADSCrossRefGoogle Scholar
- 11.Tinoco, I., & Bustamante, C. (2002). The effect of force on thermodynamics and kinetics of single molecule reactions. Biophysical Chemistry, 101, 513–533.CrossRefGoogle Scholar
- 12.Laursen, B. S., et al. (2005). Initiation of protein synthesis in bacteria. Microbiology and Molecular Biology Reviews, 69(1), 101–123.CrossRefGoogle Scholar
- 13.Hinnebusch, A. G. (2014). The scanning mechanism of eukaryotic translation initiation. Annual Review of Biochemistry, 83, 779–812.CrossRefGoogle Scholar
- 14.Marzi, S., et al. (2007). Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell, 130(6), 1019–1031.CrossRefGoogle Scholar
- 15.Studer, S. M., & Joseph, S. (2006). Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Molecular Cell, 22(1), 105–115.CrossRefGoogle Scholar
- 16.Kozak, M. (2005). Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene, 361, 13–37.CrossRefGoogle Scholar
- 17.Sorensen, M. A., Fricke, J., & Pedersen, S. (1998). Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. Journal of Molecular Biology, 280(4), 561–569.CrossRefGoogle Scholar
- 18.Farwell, M. A., Roberts, M. W., & Rabinowitz, J. C. (1992). The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Molecular Microbiology, 6(22), 3375–3383.CrossRefGoogle Scholar
- 19.Vandieijen, G., Vanknippenberg, P. H., & Vanduin, J. (1976). Specific role of ribosomal protein S1 in recognition of native phage RNA. European Journal of Biochemistry, 64(2), 511–518.CrossRefGoogle Scholar
- 20.Dumont, S., et al. (2006). RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature, 439(7072), 105–108.ADSCrossRefGoogle Scholar
- 21.Spies, M. (2014). Two steps forward, one step back: Determining XPD helicase mechanism by single-molecule fluorescence and high-resolution optical tweezers. DNA Repair (Amst), 20, 58–70.CrossRefGoogle Scholar
- 22.Sengupta, J., Agrawal, R. K., & Frank, J. (2001). Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proceedings of the National Academy of Sciences of the United States of America, 98(21), 11991–11996.ADSCrossRefGoogle Scholar
- 23.Subramanian, A. R. (1983). Structure and functions of ribosomal protein S1. Progress in Nucleic Acid Research and Molecular Biology, 28, 101–142.CrossRefGoogle Scholar
- 24.Aliprandi, P., et al. (2008). S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions. Journal of Biological Chemistry, 283(19), 13289–13301.CrossRefGoogle Scholar
- 25.Fairman-Williams, M. E., Guenther, U.-P., & Jankowsky, E. (2010). SF1 and SF2 helicases: Family matters. Current Opinion in Structural Biology, 20(3), 313–324.CrossRefGoogle Scholar
- 26.Parsyan, A., et al. (2011). mRNA helicases: The tacticians of translational control. Nature Reviews Molecular Cell Biology, 12(4), 235–245.CrossRefGoogle Scholar
- 27.Garcia-Garcia, C., et al. (2015). Factor-dependent processivity in human eIF4A DEAD-box helicase. Science, 348(6242), 1486–1488.ADSCrossRefGoogle Scholar
- 28.Feoktistova, K., et al. (2013). Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13339–13344.ADSCrossRefGoogle Scholar
- 29.De Gregorio, E., Preiss, T., & Hentze, M. W. (1999). Translation driven by an eIF4G core domain in vivo. EMBO Journal, 18(17), 4865–4874.CrossRefGoogle Scholar
- 30.Korneeva, N. L., et al. (2005). Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. Journal of Biological Chemistry, 280(3), 1872–1881.CrossRefGoogle Scholar
- 31.Pyle, A. M. (2008). Translocation and unwinding mechanisms of RNA and DNA helicases. Annual Review of Biophysics, 317–336.CrossRefGoogle Scholar
- 32.Noller, H. F. (1984). Structure of ribosomal RNA. Annual Review of Biochemistry, 53, 119–162.CrossRefGoogle Scholar
- 33.Wintermeyer, W., et al. (2004). Mechanisms of elongation on the ribosome: Dynamics of a macromolecular machine. Biochemical Society Transactions, 32, 733–737.CrossRefGoogle Scholar
- 34.Green, R., & Noller, H. F. (1997). Ribosomes and translation. Annual Review of Biochemistry, 66, 679–716.CrossRefGoogle Scholar
- 35.Uemura, S., et al. (2007). Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature, 446(7134), 454–457.ADSCrossRefGoogle Scholar
- 36.Shine, J., & Dalgarno, L. (1974). The 3′-terminal sequence of Escherichia coli 16s ribosomal RNA complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America, 71(4), 1342–1346.ADSCrossRefGoogle Scholar
- 37.Calogero, R. A., et al. (1988). Selection of the messenger-RNA translation initiation region by Escherichia coli ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 85(17), 6427–6431.ADSCrossRefGoogle Scholar
- 38.Vanzi, F., et al. (2005). Mechanical studies of single ribosome/mRNA complexes. Biophysical Journal, 89(3), 1909–1919.ADSCrossRefGoogle Scholar
- 39.Wen, J.-D., et al. (2008). Following translation by single ribosomes one codon at a time. Nature, 452(7187), 598–603.ADSCrossRefGoogle Scholar
- 40.Yusupova, G. Z., et al. (2001). The path of messenger RNA through the ribosome. Cell, 106(2), 233–241.MathSciNetCrossRefGoogle Scholar
- 41.Takyar, S., Hickerson, R. P., & Noller, H. F. (2005). MRNA helicase activity of the ribosome. Cell, 120(1), 49–58.CrossRefGoogle Scholar
- 42.Qu, X., et al. (2011). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature, 475(7354), 118–121.CrossRefGoogle Scholar
- 43.Tsuchihashi, Z. (1991). Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Research, 19(9), 2457–2462.CrossRefGoogle Scholar
- 44.Nackley, A. G., et al. (2006). Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science, 314(5807), 1930–1933.ADSCrossRefGoogle Scholar
- 45.Watts, J. M., et al. (2009). Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460(7256), 711–U87.ADSCrossRefGoogle Scholar
- 46.Betterton, M. D., & Julicher, F. (2005). Opening of nucleic-acid double strands by helicases: Active versus passive opening. Physical Review E, 71(1).Google Scholar
- 47.Johnson, D. S., et al. (2007). Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell, 129(7), 1299–1309.CrossRefGoogle Scholar
- 48.Lionnet, T., et al. (2007). Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19790–19795.ADSCrossRefGoogle Scholar
- 49.Manosas, M., et al. (2010). Active and passive mechanisms of helicases. Nucleic Acids Research, 38(16), 5518–5526.CrossRefGoogle Scholar
- 50.Kim, S., Schroeder, C. M., & Xie, X. S. (2010). Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates. Journal of Molecular Biology, 395(5), 995–1006.CrossRefGoogle Scholar
- 51.Fischer, N., et al. (2010). Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature, 466(7304), 329–333.ADSCrossRefGoogle Scholar
- 52.Moazed, D., & Noller, H. F. (1989). Intermediate states in the movement of transfer RNA in the ribosome. Nature, 342(6246), 142–148.ADSCrossRefGoogle Scholar
- 53.Frank, J., & Agrawal, R. K. (2000). A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature, 406(6793), 318–322.ADSCrossRefGoogle Scholar
- 54.Schuwirth, B. S., et al. (2005). Structures of the bacterial ribosome at 3.5 Å resolution. Science, 310(5749), 827–834.ADSCrossRefGoogle Scholar
- 55.Valle, M., et al. (2003). Locking and unlocking of ribosomal motions. Cell, 114(1), 123–134.CrossRefGoogle Scholar
- 56.Peske, F., et al. (2000). Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. Molecular Cell, 6(2), 501–505.CrossRefGoogle Scholar
- 57.Drummond, D. A., & Wilke, C. O. (2009). The evolutionary consequences of erroneous protein synthesis. Nature Reviews Genetics, 10(10), 715–724.CrossRefGoogle Scholar
- 58.Farabaugh, P. J. (1996). Programmed translational frameshifting. Microbiological Reviews, 60(1), 103–&.Google Scholar
- 59.Yan, S. N., et al. (2015). Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell, 160(5), 870–881.CrossRefGoogle Scholar
- 60.Tsuchihashi, Z., & Brown, P. O. (1992). Sequence requirements for efficient translational frameshifting in the Escherichia coli dnaX gene and the role of an unstable interaction between transfer RNA(Lys) and an AAG lysine codon. Genes & Development, 6(3), 511–519.CrossRefGoogle Scholar
- 61.Guo, Z., & Noller, H. F. (2012). Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20391–20394.ADSCrossRefGoogle Scholar
- 62.Bustamante, C., et al. (2004). Mechanical processes in biochemistry. Annual Review of Biochemistry, 73, 705–748.CrossRefGoogle Scholar
- 63.Liu, T. T., et al. (2014). Direct measurement of the mechanical work during translocation by the ribosome. Elife, 3.Google Scholar
- 64.Jenner, L. B., et al. (2010). Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nature Structural & Molecular Biology, 17(5), 555–U48.CrossRefGoogle Scholar
- 65.Kubelka, J., et al. (2006). Sub-microsecond protein folding. Journal of Molecular Biology, 359(3), 546–553.CrossRefGoogle Scholar
- 66.Liang, S. T., et al. (2000). mRNA composition and control of bacterial gene expression. Journal of Bacteriology, 182(11), 3037–3044.CrossRefGoogle Scholar
- 67.Kaiser, C. M., et al. (2011). The ribosome modulates nascent protein folding. Science, 334(6063), 1723–1727.ADSCrossRefGoogle Scholar
- 68.Matsumura, M., & Matthews, B. W. (1989). Control of enzyme activity by an engineered disulfide bond. Science, 243(4892), 792–794.ADSCrossRefGoogle Scholar
- 69.Voss, N. R., et al. (2006). The geometry of the ribosomal polypeptide exit tunnel. Journal of Molecular Biology, 360(4), 893–906.CrossRefGoogle Scholar
- 70.Ito, K., & Chiba, S. (2013). Arrest peptides: Cis-acting modulators of translation. Annual Review of Biochemistry, 82, 171–202.Google Scholar
- 71.Deutsch, C. (2014). Tunnel vision: Insights from biochemical and biophysical studies. In K. Ito (Ed.), Regulatory nascent polypeptides (pp. 61–86). Tokyo: Springer Japan.Google Scholar
- 72.Wilson, D. N., & Beckmann, R. (2011). The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Current Opinion in Structural Biology, 21(2), 274–282.CrossRefGoogle Scholar
- 73.Tsai, A., et al. (2014). The dynamics of SecM-induced translational stalling. Cell Reports, 7(5), 1521–1533.CrossRefGoogle Scholar
- 74.Nakatogawa, H., & Ito, K. (2002). The ribosomal exit tunnel functions as a discriminating gate. Cell, 108(5), 629–636.CrossRefGoogle Scholar
- 75.Gumbart, J., et al. (2012). Mechanisms of SecM-mediated stalling in the ribosome. Biophysical Journal, 103(2), 331–341.ADSCrossRefGoogle Scholar
- 76.Yap, M.-N., & Bernstein, H. D. (2011). The translational regulatory function of SecM requires the precise timing of membrane targeting. Molecular Microbiology, 81(2), 540–553.CrossRefGoogle Scholar
- 77.Nakamori, K., Chiba, S., & Ito, K. (2014). Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS Letters, 588(17), 3098–3103.CrossRefGoogle Scholar
- 78.Butkus, M. E., Prundeanu, L. B., & Oliver, D. B. (2003). Translocon “Pulling” of nascent SecM controls the duration of its translational pause and secretion-responsive secA regulation. Journal of Bacteriology, 185(22), 6719–6722.CrossRefGoogle Scholar
- 79.Goldman, D. H., et al. (2015). Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science, 348(6233), 457–460.ADSCrossRefGoogle Scholar
- 80.Nathans, D. (1964). Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proceedings of the National Academy of Sciences of the United States of America, 51, 585–592.ADSCrossRefGoogle Scholar
- 81.Muto, H., Nakatogawa, H., & Ito, K. (2006). Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Molecular Cell, 22(4), 545–552.CrossRefGoogle Scholar