Advertisement

A Single-Molecule View on Cellular and Viral RNA Synthesis

  • Eugen Ostrofet
  • Flavia Stal Papini
  • Anssi M. Malinen
  • David DulinEmail author
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

RNA synthesis is at the heart of gene expression, the RNA products serving in cellular organisms as protein blueprints, structural/functional components of molecular machines or regulators of gene expression, and as the genetic material of nascent RNA viruses. Because of its importance, transcription—the process converting DNA to RNA—has been extensively studied at the single-molecule level; first in bacterial systems and quickly after in other domains of life. RNA replication in RNA viruses has recently become an important research topic in the single-molecule field, aiming not only to uncover its versatile mechanisms but also to develop new therapeutics against these devastating human pathogens. Here, we summarize the recent advances in cellular and viral RNA production using in vitro single-molecule techniques.

Keywords

Single-molecule biophysics Transcription RNA virus RNA replication  Cellular RNA polymerases  Viral RNA-dependent RNA polymerases Optical tweezers Magnetic tweezers Fluorescence resonance energy transfer 

Notes

Acknowledgements

DD was supported by the Interdisciplinary Center for Clinical Research (IZKF) at the University Hospital of the University of Erlangen-Nuremberg. A. M. M. was supported by the Academy of Finland (grant number: 307775).

References

  1. 1.
    Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438, 460–465.CrossRefADSGoogle Scholar
  2. 2.
    Adelman, K., La Porta, A., Santangelo, T. J., Lis, J. T., Roberts, J. W., & Wang, M. D. (2002). Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proceedings of the National Academy of Sciences of the United States of America, 99, 13538–13543.CrossRefADSGoogle Scholar
  3. 3.
    Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science (New York, N.Y.), 296, 1270–1273.CrossRefADSGoogle Scholar
  4. 4.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). New York: Garland Science.Google Scholar
  5. 5.
    Axelrod, D. (2001). Total internal reflection fluorescence microscopy in cell biology. Traffic, 2, 764–774.CrossRefGoogle Scholar
  6. 6.
    Beckers, M., Drechsler, F., Eilert, T., Nagy, J., & Michaelis, J. (2015). Quantitative structural information from single-molecule FRET. Faraday Discussions.Google Scholar
  7. 7.
    Belogurov, G. A., & Artsimovitch, I. (2015). Regulation of transcript elongation. Annual Review of Microbiology, 69, 49–69.CrossRefGoogle Scholar
  8. 8.
    Berghuis, B. A., Dulin, D., Xu, Z. Q., van Laar, T., Cross, B., Janissen, R., et al. (2015). Strand separation establishes a sustained lock at the Tus-Ter replication fork barrier. Nature Chemical Biology, 11, 579–585.CrossRefGoogle Scholar
  9. 9.
    Bintu, L., Kopaczynska, M., Hodges, C., Lubkowska, L., Kashlev, M., & Bustamante, C. (2011). The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes. Nature Structural & Molecular Biology, 18, 1394–1399.CrossRefGoogle Scholar
  10. 10.
    Bockelmann, U., Essevaz-Roulet, B., & Heslot, F. (1998). DNA strand separation studied by single molecule force measurements. Physical Review E, 58, 2386–2394.CrossRefADSGoogle Scholar
  11. 11.
    Browning, D. F., & Busby, S. J. (2004). The regulation of bacterial transcription initiation. Nature Reviews Microbiology, 2, 57–65.CrossRefGoogle Scholar
  12. 12.
    Browning, D. F., & Busby, S. J. (2016). Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 14, 638–650.CrossRefGoogle Scholar
  13. 13.
    Cameron, C. E., Moustafa, I. M., & Arnold, J. J. (2016). Fidelity of nucleotide incorporation by the RNA-dependent RNA polymerase from poliovirus. Enzymes, 39, 293–323.CrossRefGoogle Scholar
  14. 14.
    Chakraborty, A., Meng, C. A., & Block, S. M. (2017). Observing single RNA polymerase molecules down to base-pair resolution. Methods in Molecular Biology, 1486, 391–409.CrossRefGoogle Scholar
  15. 15.
    Chakraborty, A., Wang, D., Ebright, Y. W., Korlann, Y., Kortkhonjia, E., Kim, T., et al. (2012). Opening and closing of the bacterial RNA polymerase clamp. Science (New York, N.Y.), 337, 591–595.CrossRefADSGoogle Scholar
  16. 16.
    Chandradoss, S. D., Haagsma, A. C., Lee, Y. K., Hwang, J. H., Nam, J. M., & Joo, C. (2014). Surface passivation for single-molecule protein studies. Journal of Visualized Experiments: JoVE.Google Scholar
  17. 17.
    Charvin, G., Allemand, J. F., Strick, T. R., Bensimon, D., & Croquette, V. (2004). Twisting DNA: Single molecule studies. Contemporary Physics, 45, 383–403.CrossRefADSGoogle Scholar
  18. 18.
    Churchman, L. S., & Spudich, J. A. (2012). Colocalization of fluorescent probes: Accurate and precise registration with nanometer resolution. Cold Spring Harbor Protocols, 2012, 141–149.Google Scholar
  19. 19.
    Cnossen, J. P., Dulin, D., & Dekker, N. H. (2014). An optimized software framework for real-time, high-throughput tracking of spherical beads. The Review of Scientific Instruments, 85, 103712.CrossRefADSGoogle Scholar
  20. 20.
    Collins, B. E., Ye, L. F., Duzdevich, D., & Greene, E. C. (2014). DNA curtains: Novel tools for imaging protein-nucleic acid interactions at the single-molecule level. Methods in Cell Biology, 123, 217–234.CrossRefGoogle Scholar
  21. 21.
    Comstock, M. J., Ha, T., & Chemla, Y. R. (2011). Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nature Methods, 8, 335–340.CrossRefGoogle Scholar
  22. 22.
    Crickard, J. B., Lee, J., Lee, T. H., & Reese, J. C. (2017). The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Nucleic Acids Research, 45, 6362–6374.CrossRefGoogle Scholar
  23. 23.
    Dalal, R. V., Larson, M. H., Neuman, K. C., Gelles, J., Landick, R., & Block, S. M. (2006). Pulling on the nascent RNA during transcription does not alter kinetics of elongation or ubiquitous pausing. Molecular Cell, 23, 231–239.CrossRefGoogle Scholar
  24. 24.
    Dangkulwanich, M., Ishibashi, T., Liu, S., Kireeva, M. L., Lubkowska, L., Kashlev, M., & Bustamante, C. J. (2013). Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife, 2, e00971.Google Scholar
  25. 25.
    Davenport, R. J., Wuite, G. J., Landick, R., & Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science (New York, N.Y.), 287, 2497–2500.Google Scholar
  26. 26.
    de Farias, S. T., Dos Santos Junior, A. P., Rego, T. G., & Jose, M. V. (2017). Origin and evolution of RNA-dependent RNA polymerase. Frontiers in Genetics, 8, 125.CrossRefGoogle Scholar
  27. 27.
    De Vlaminck, I., & Dekker, C. (2012). Recent advances in magnetic tweezers. Annual Review of Biophysics, 41, 453–472.CrossRefGoogle Scholar
  28. 28.
    Depken, M., Galburt, E. A., & Grill, S. W. (2009). The origin of short transcriptional pauses. Biophysical Journal, 96, 2189–2193.CrossRefADSGoogle Scholar
  29. 29.
    Duchi, D., Bauer, D. L. V., Fernandez, L., Evans, G., Robb, N., Hwang, L. C., et al. (2016). RNA polymerase pausing during initial transcription. Molecular Cell, 63, 939–950.CrossRefGoogle Scholar
  30. 30.
    Duchi, D., Gryte, K., Robb, N. C., Morichaud, Z., Sheppard, C., Brodolin, K., et al. (2018). Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes. Nucleic Acids Research, 46, 677–688.CrossRefGoogle Scholar
  31. 31.
    Duchi, D., Mazumder, A., Malinen, A. M., Ebright, R. H., & Kapanidis, A. N. (2018). The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Nucleic Acids Research.Google Scholar
  32. 32.
    Duchi, D., Mazumdera, A., Malinen, A. M., Ebright, R. H., & Kapanidis, A. N. (2018). The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. BioRxiv.Google Scholar
  33. 33.
    Dulin, D., Arnold, J. J., van Laar, T., Oh, H. S., Lee, C., Perkins, A. L., et al. (2017). Signatures of nucleotide analog incorporation by an RNA-dependent RNA polymerase revealed using high-throughput magnetic tweezers. Cell Reports, 21, 1063–1076.CrossRefGoogle Scholar
  34. 34.
    Dulin, D., Bauer, D. L. V., Malinen, A. M., Bakermans, J. J. W., Kaller, M., Morichaud, Z., et al. (2017). Pausing controls branching between productive and non-productive pathways during initial transcription. BioRxiv.Google Scholar
  35. 35.
    Dulin, D., Bauer, D. L. V., Malinen, A. M., Bakermans, J. J. W., Kaller, M., Morichaud, Z., et al. (2018). Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria. Nature Communications, 9, 1478.CrossRefADSGoogle Scholar
  36. 36.
    Dulin, D., Berghuis, B. A., Depken, M., & Dekker, N. H. (2015). Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Current Opinion in Structural Biology, 34, 116–122.CrossRefGoogle Scholar
  37. 37.
    Dulin, D., Lipfert, J., Moolman, M. C., & Dekker, N. H. (2013). Studying genomic processes at the single-molecule level: Introducing the tools and applications. Nature Reviews Genetics, 14, 9–22.CrossRefGoogle Scholar
  38. 38.
    Dulin, D., Vilfan, I. D., Berghuis, B. A., Hage, S., Bamford, D. H., Poranen, M. M., et al. (2015). Elongation-competent pauses govern the fidelity of a viral RNA-dependent RNA polymerase. Cell Reports, 10, 983–992.CrossRefGoogle Scholar
  39. 39.
    Dulin, D., Vilfan, I. D., Berghuis, B. A., Poranen, M. M., Depken, M., & Dekker, N. H. (2015). Backtracking behavior in viral RNA-dependent RNA polymerase provides the basis for a second initiation site. Nucleic Acids Research.Google Scholar
  40. 40.
    Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science (New York, N.Y.), 297, 1183–1186.Google Scholar
  41. 41.
    English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., et al. (2006). Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nature Chemical Biology, 2, 87–94.CrossRefGoogle Scholar
  42. 42.
    Epshtein, V., & Nudler, E. (2003). Cooperation between RNA polymerase molecules in transcription elongation. Science (New York, N.Y.), 300, 801–805.Google Scholar
  43. 43.
    Fan, J., Leroux-Coyau, M., Savery, N. J., & Strick, T. R. (2016). Reconstruction of bacterial transcription-coupled repair at single-molecule resolution. Nature, 536, 234–237.CrossRefADSGoogle Scholar
  44. 44.
    Fazal, F. M., Meng, C. A., Murakami, K., Kornberg, R. D., & Block, S. M. (2015). Real-time observation of the initiation of RNA polymerase II transcription. Nature, 525, 274–277.CrossRefADSGoogle Scholar
  45. 45.
    Fields, B. N., Knipe, D. M., & Howley, P. M. (2013). Fields virology (6th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.Google Scholar
  46. 46.
    Forde, N. R., Izhaky, D., Woodcock, G. R., Wuite, G. J., & Bustamante, C. (2002). Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 99, 11682–11687.CrossRefADSGoogle Scholar
  47. 47.
    Frieda, K. L., & Block, S. M. (2012). Direct observation of cotranscriptional folding in an adenine riboswitch. Science (New York, N.Y.), 338, 397–400.Google Scholar
  48. 48.
    Friedman, L. J., Chung, J., & Gelles, J. (2006). Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophysical Journal, 91, 1023–1031.CrossRefADSGoogle Scholar
  49. 49.
    Friedman, L. J., Mumm, J. P., & Gelles, J. (2013). RNA polymerase approaches its promoter without long-range sliding along DNA. Proceedings of the National Academy of Sciences of the United States of America, 110, 9740–9745.CrossRefADSGoogle Scholar
  50. 50.
    Fujita, K., Iwaki, M., & Yanagida, T. (2016). Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA. Nature Communications, 7, 13788.CrossRefADSGoogle Scholar
  51. 51.
    Gago, S., Elena, S. F., Flores, R., & Sanjuan, R. (2009). Extremely high mutation rate of a hammerhead viroid. Science (New York, N.Y.), 323, 1308.Google Scholar
  52. 52.
    Galburt, E. A., Grill, S. W., Wiedmann, A., Lubkowska, L., Choy, J., Nogales, E., et al. (2007). Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature, 446, 820–823.CrossRefADSGoogle Scholar
  53. 53.
    Geertsema, H. J., Duderstadt, K. E., & van Oijen, A. M. (2015). Single-molecule observation of prokaryotic DNA replication. Methods in Molecular Biology, 1300, 219–238.CrossRefGoogle Scholar
  54. 54.
    Gietl, A., Holzmeister, P., Blombach, F., Schulz, S., von Voithenberg, L. V., Lamb, D. C., et al. (2014). Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways. Nucleic Acids Research, 42, 6219–6231.CrossRefGoogle Scholar
  55. 55.
    Gouge, J., Guthertz, N., Kramm, K., Dergai, O., Abascal-Palacios, G., Satia, K., et al. (2017). Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation. Nature Communications, 8, 130.CrossRefADSGoogle Scholar
  56. 56.
    Graves, E. T., Duboc, C., Fan, J., Stransky, F., Leroux-Coyau, M., & Strick, T. R. (2015). A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence. Nature Structural & Molecular Biology, 22, 452–457.CrossRefGoogle Scholar
  57. 57.
    Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A., & Block, S. M. (2005). Passive all-optical force clamp for high-resolution laser trapping. Physical Review Letters, 95, 208102.CrossRefADSGoogle Scholar
  58. 58.
    Guo, X., Myasnikov, A. G., Chen, J., Crucifix, C., Papai, G., Takacs, M., et al. (2018). Structural basis for NusA stabilized transcriptional pausing. Molecular Cell, 69(816–827), e814.Google Scholar
  59. 59.
    Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., & Weiss, S. (1996). Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proceedings of the National Academy of Sciences of the United States of America, 93, 6264–6268.CrossRefADSGoogle Scholar
  60. 60.
    Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N., & Kinosita, K., Jr. (2001). Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature, 409, 113–115.CrossRefADSGoogle Scholar
  61. 61.
    Harden, T. T., Wells, C. D., Friedman, L. J., Landick, R., Hochschild, A., Kondev, J., et al. (2016). Bacterial RNA polymerase can retain sigma70 throughout transcription. Proceedings of the National Academy of Sciences of the United States of America, 113, 602–607.CrossRefADSGoogle Scholar
  62. 62.
    Heller, I., Sitters, G., Broekmans, O. D., Farge, G., Menges, C., Wende, W., et al. (2013). STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nature Methods, 10, 910–916.CrossRefGoogle Scholar
  63. 63.
    Herbert, K. M., La Porta, A., Wong, B. J., Mooney, R. A., Neuman, K. C., Landick, R., et al. (2006). Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell, 125, 1083–1094.CrossRefGoogle Scholar
  64. 64.
    Herbert, K. M., Zhou, J., Mooney, R. A., Porta, A. L., Landick, R., & Block, S. M. (2010). E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. Journal of Molecular Biology, 399, 17–30.CrossRefGoogle Scholar
  65. 65.
    Hill, F. R., Monachino, E., & van Oijen, A. M. (2017). The more the merrier: High-throughput single-molecule techniques. Biochemical Society Transactions, 45, 759–769.CrossRefGoogle Scholar
  66. 66.
    Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M., & Bustamante, C. (2009). Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science (New York, N.Y.), 325, 626–628.Google Scholar
  67. 67.
    Hohlbein, J., Craggs, T. D., & Cordes, T. (2014). Alternating-laser excitation: Single-molecule FRET and beyond. Chemical Society Reviews, 43, 1156–1171.CrossRefGoogle Scholar
  68. 68.
    Holmes, E. C. (2010). Evolution in health and medicine Sackler colloquium: The comparative genomics of viral emergence. Proceedings of the National Academy of Sciences of the United States of America, 107(Suppl 1), 1742–1746.MathSciNetCrossRefADSGoogle Scholar
  69. 69.
    Howan, K., Smith, A. J., Westblade, L. F., Joly, N., Grange, W., Zorman, S., et al. (2012). Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature, 490, 431–434.CrossRefADSGoogle Scholar
  70. 70.
    Ishibashi, T., Dangkulwanich, M., Coello, Y., Lionberger, T. A., Lubkowska, L., Ponticelli, A. S., et al. (2014). Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics. Proceedings of the National Academy of Sciences of the United States of America, 111, 3419–3424.CrossRefADSGoogle Scholar
  71. 71.
    Iyer, L. M., Koonin, E. V., & Aravind, L. (2003). Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Structural Biology, 3, 1.CrossRefGoogle Scholar
  72. 72.
    Jacome, R., Becerra, A., Ponce de Leon, S., & Lazcano, A. (2015). Structural analysis of monomeric RNA-dependent polymerases: Evolutionary and therapeutic implications. PLoS ONE, 10, e0139001.CrossRefGoogle Scholar
  73. 73.
    Janissen, R., Berghuis, B. A., Dulin, D., Wink, M., van Laar, T., & Dekker, N. H. (2014). Invincible DNA tethers: Covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments. Nucleic Acids Research, 42, e137.CrossRefGoogle Scholar
  74. 74.
    Jonkers, I., & Lis, J. T. (2015). Getting up to speed with transcription elongation by RNA polymerase II. Nature Reviews. Molecular Cell Biology, 16, 167–177.CrossRefGoogle Scholar
  75. 75.
    Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., & Ha, T. (2008). Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry, 77, 51–76.CrossRefGoogle Scholar
  76. 76.
    Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: From theories to phenotypes. Nature Reviews Genetics, 6, 451–464.CrossRefGoogle Scholar
  77. 77.
    Kalinin, S., Peulen, T., Sindbert, S., Rothwell, P. J., Berger, S., Restle, T., et al. (2012). A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nature Methods, 9, 1218–1225.CrossRefGoogle Scholar
  78. 78.
    Kang, J. Y., Mishanina, T. V., Bellecourt, M. J., Mooney, R. A., Darst, S. A., & Landick, R. (2018). RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing. Molecular Cell, 69, 802–815, e801.Google Scholar
  79. 79.
    Kapanidis, A. N., Lee, N. K., Laurence, T. A., Doose, S., Margeat, E., & Weiss, S. (2004). Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proceedings of the National Academy of Sciences of the United States of America, 101, 8936–8941.CrossRefADSGoogle Scholar
  80. 80.
    Kapanidis, A. N., Margeat, E., Ho, S. O., Kortkhonjia, E., Weiss, S., & Ebright, R. H. (2006). Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science (New York, N.Y.), 314, 1144–1147.Google Scholar
  81. 81.
    Kapanidis, A. N., Margeat, E., Laurence, T. A., Doose, S., Ho, S. O., Mukhopadhyay, J., et al. (2005). Retention of transcription initiation factor sigma70 in transcription elongation: Single-molecule analysis. Molecular Cell, 20, 347–356.CrossRefGoogle Scholar
  82. 82.
    Kapanidis, A. N., & Strick, T. (2009). Biology, one molecule at a time. Trends in Biochemical Sciences, 34, 234–243.CrossRefGoogle Scholar
  83. 83.
    Korboukh, V. K., Lee, C. A., Acevedo, A., Vignuzzi, M., Xiao, Y., Arnold, J. J., et al. (2014). RNA virus population diversity, an optimum for maximal fitness and virulence. Journal of Biological Chemistry, 289, 29531–29544.CrossRefGoogle Scholar
  84. 84.
    Kriegel, F., Ermann, N., & Lipfert, J. (2017). Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. Journal of Structural Biology, 197, 26–36.CrossRefGoogle Scholar
  85. 85.
    La Porta, A., & Wang, M. D. (2004). Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Physical Review Letters, 92, 190801.CrossRefGoogle Scholar
  86. 86.
    Landick, R. (2006). The regulatory roles and mechanism of transcriptional pausing. Biochemical Society Transactions, 34, 1062–1066.CrossRefGoogle Scholar
  87. 87.
    Lang, M. J., Asbury, C. L., Shaevitz, J. W., & Block, S. M. (2002). An automated two-dimensional optical force clamp for single molecule studies. Biophysical Journal, 83, 491–501.CrossRefADSGoogle Scholar
  88. 88.
    Larson, M. H., Greenleaf, W. J., Landick, R., & Block, S. M. (2008). Applied force reveals mechanistic and energetic details of transcription termination. Cell, 132, 971–982.CrossRefGoogle Scholar
  89. 89.
    Larson, M. H., Mooney, R. A., Peters, J. M., Windgassen, T., Nayak, D., Gross, C. A., et al. (2014). A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science (New York, N.Y.), 344, 1042–1047.CrossRefADSGoogle Scholar
  90. 90.
    Larson, M. H., Zhou, J., Kaplan, C. D., Palangat, M., Kornberg, R. D., Landick, R., et al. (2012). Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 109, 6555–6560.CrossRefADSGoogle Scholar
  91. 91.
    Laszlo, A. H., Derrrington, I. M., & Gundlach, J. H. (2017). Subangstrom measurements of enzyme function using a biological nanopore, SPRNT. Methods in Enzymology, 582, 387–414.CrossRefGoogle Scholar
  92. 92.
    Lauring, A. S., Frydman, J., & Andino, R. (2013). The role of mutational robustness in RNA virus evolution. Nature Reviews Microbiology, 11, 327–336.CrossRefGoogle Scholar
  93. 93.
    Le, T. T., Yang, Y., Tan, C., Suhanovsky, M. M., Fulbright, R. M., Jr., Inman, J. T., et al. (2018). Mfd dynamically regulates transcription via a release and catch-up mechanism. Cell, 172(344–357), e315.Google Scholar
  94. 94.
    Lerner, E., Chung, S., Allen, B. L., Wang, S., Lee, J., Lu, S. W., et al. (2016). Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 113, E6562–E6571.CrossRefGoogle Scholar
  95. 95.
    Lerner, E., Ingargiola, A., & Weiss, S. (2018). Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. The Journal of Chemical Physics, 148, 10.Google Scholar
  96. 96.
    Lin, W., Das, K., Degen, D., Mazumder, A., Duchi, D., Wang, D., et al. (2018). Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Molecular Cell, 70(60–71), e15.Google Scholar
  97. 97.
    Lisica, A., Engel, C., Jahnel, M., Roldan, E., Galburt, E. A., Cramer, P., et al. (2016). Mechanisms of backtrack recovery by RNA polymerases I and II. Proceedings of the National Academy of Sciences of the United States of America, 113, 2946–2951.CrossRefADSGoogle Scholar
  98. 98.
    Lisica, A., & Grill, S. W. (2017). Optical tweezers studies of transcription by eukaryotic RNA polymerases. Biomolecular Concepts, 8, 1–11.CrossRefGoogle Scholar
  99. 99.
    Liu, S., Chistol, G., Hetherington, C. L., Tafoya, S., Aathavan, K., Schnitzbauer, J., et al. (2014). A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell, 157, 702–713.CrossRefGoogle Scholar
  100. 100.
    Ma, J., Bai, L., & Wang, M. D. (2013). Transcription under torsion. Science (New York, N.Y.), 340, 1580–1583.Google Scholar
  101. 101.
    Madariaga-Marcos, J., Hormeno, S., Pastrana, C. L., Fisher, G. L. M., Dillingham, M. S., & Moreno-Herrero, F. (2018). Force determination in lateral magnetic tweezers combined with TIRF microscopy. Nanoscale, 10, 4579–4590.CrossRefGoogle Scholar
  102. 102.
    Margeat, E., Kapanidis, A. N., Tinnefeld, P., Wang, Y., Mukhopadhyay, J., Ebright, R. H., et al. (2006). Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophysical Journal, 90, 1419–1431.CrossRefADSGoogle Scholar
  103. 103.
    Meng, C. A., Fazal, F. M., & Block, S. M. (2017). Real-time observation of polymerase-promoter contact remodeling during transcription initiation. Nature Communications, 8, 1178.CrossRefADSGoogle Scholar
  104. 104.
    Miller, H., Zhou, Z., Shepherd, J., Wollman, A. J. M., & Leake, M. C. (2018). Single-molecule techniques in biophysics: A review of the progress in methods and applications. Reports on Progress in Physics, 81, 024601.MathSciNetCrossRefADSGoogle Scholar
  105. 105.
    Moffitt, J. R., Chemla, Y. R., Smith, S. B., & Bustamante, C. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 77, 205–228.CrossRefGoogle Scholar
  106. 106.
    Muschielok, A., Andrecka, J., Jawhari, A., Bruckner, F., Cramer, P., & Michaelis, J. (2008). A nano-positioning system for macromolecular structural analysis. Nature Methods, 5, 965–971.CrossRefGoogle Scholar
  107. 107.
    Nagy, J., Grohmann, D., Cheung, A. C., Schulz, S., Smollett, K., Werner, F., et al. (2015). Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nature Communications, 6, 6161.CrossRefADSGoogle Scholar
  108. 108.
    Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J., & Block, S. M. (2003). Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 115, 437–447.CrossRefGoogle Scholar
  109. 109.
    Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75, 2787–2809.CrossRefADSGoogle Scholar
  110. 110.
    Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5, 491–505.CrossRefGoogle Scholar
  111. 111.
    Ng, K. K., Arnold, J. J., & Cameron, C. E. (2008). Structure-function relationships among RNA-dependent RNA polymerases. Current Topics in Microbiology and Immunology, 320, 137–156.Google Scholar
  112. 112.
    Raser, J. M., & O’Shea, E. K. (2004). Control of stochasticity in eukaryotic gene expression. Science (New York, NY), 304, 1811–1814.Google Scholar
  113. 113.
    Ray-Soni, A., Bellecourt, M. J., & Landick, R. (2016). Mechanisms of bacterial transcription termination: All good things must end. Annual Review of Biochemistry, 85, 319–347.CrossRefGoogle Scholar
  114. 114.
    Revyakin, A., Ebright, R. H., & Strick, T. R. (2004). Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proceedings of the National Academy of Sciences of the United States of America, 101, 4776–4780.CrossRefADSGoogle Scholar
  115. 115.
    Revyakin, A., Ebright, R. H., & Strick, T. R. (2005). Single-molecule DNA nanomanipulation: Improved resolution through use of shorter DNA fragments. Nature Methods, 2, 127–138.CrossRefGoogle Scholar
  116. 116.
    Revyakin, A., Liu, C., Ebright, R. H., & Strick, T. R. (2006). Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science (New York, N.Y.), 314, 1139–1143.Google Scholar
  117. 117.
    Righini, M., Lee, A., Canari-Chumpitaz, C., Lionberger, T., Gabizon, R., Coello, Y., Tinoco, I., Jr., & Bustamante, C. (2018). Full molecular trajectories of RNA polymerase at single base-pair resolution. In Proceedings of the National Academy of Sciences of the United States of America.Google Scholar
  118. 118.
    Robb, N. C., Cordes, T., Hwang, L. C., Gryte, K., Duchi, D., Craggs, T. D., et al. (2013). The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: Implications for transcription start-site selection. Journal of Molecular Biology, 425, 875–885.CrossRefGoogle Scholar
  119. 119.
    Robb, N. C., Te Velthuis, A. J., Wieneke, R., Tampe, R., Cordes, T., Fodor, E., & Kapanidis, A. N. (2016). Single-molecule FRET reveals the pre-initiation and initiation conformations of influenza virus promoter RNA. Nucleic Acids Research.Google Scholar
  120. 120.
    Roberts, J. W., Shankar, S., & Filter, J. J. (2008). RNA polymerase elongation factors. Annual Review of Microbiology, 62, 211–233.CrossRefGoogle Scholar
  121. 121.
    Robinson, A., & van Oijen, A. M. (2013). Bacterial replication, transcription and translation: Mechanistic insights from single-molecule biochemical studies. Nature Reviews Microbiology, 11, 303–315.CrossRefGoogle Scholar
  122. 122.
    Ruff, E. F., Record, M. T., Jr., & Artsimovitch, I. (2015). Initial events in bacterial transcription initiation. Biomolecules, 5, 1035–1062.CrossRefGoogle Scholar
  123. 123.
    Rutkauskas, M., Krivoy, A., Szczelkun, M. D., Rouillon, C., & Seidel, R. (2017). Single-molecule insight into target recognition by CRISPR-Cas complexes. Methods in Enzymology, 582, 239–273.CrossRefGoogle Scholar
  124. 124.
    Saecker, R. M., Record, M. T., Jr., & Dehaseth, P. L. (2011). Mechanism of bacterial transcription initiation: RNA polymerase—Promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. Journal of Molecular Biology, 412, 754–771.CrossRefGoogle Scholar
  125. 125.
    Santybayeva, Z., & Pedaci, F. (2017). Optical torque wrench design and calibration. Methods in Molecular Biology, 1486, 157–181.CrossRefGoogle Scholar
  126. 126.
    Saunders, A., Core, L. J., & Lis, J. T. (2006). Breaking barriers to transcription elongation. Nature Reviews. Molecular Cell Biology, 7, 557–567.CrossRefGoogle Scholar
  127. 127.
    Schafer, D. A., Gelles, J., Sheetz, M. P., & Landick, R. (1991). Transcription by single molecules of RNA polymerase observed by light microscopy. Nature, 352, 444–448.CrossRefADSGoogle Scholar
  128. 128.
    Schulz, S., Gietl, A., Smollett, K., Tinnefeld, P., Werner, F., & Grohmann, D. (2016). TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Proceedings of the National Academy of Sciences of the United States of America, 113, E1816–E1825.CrossRefADSGoogle Scholar
  129. 129.
    Schulz, S., Kramm, K., Werner, F., & Grohmann, D. (2015). Fluorescently labeled recombinant RNAP system to probe archaeal transcription initiation. Methods, 86, 10–18.CrossRefGoogle Scholar
  130. 130.
    Selvin, P. R., Lougheed, T., Tonks Hoffman, M., Park, H., Balci, H., Blehm, B. H., & Toprak, E. (2007). Fluorescence imaging with one-nanometer accuracy (FIONA). CSH Protocols 2007, pdb top27.Google Scholar
  131. 131.
    Shaevitz, J. W., Abbondanzieri, E. A., Landick, R., & Block, S. M. (2003). Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426, 684–687.CrossRefADSGoogle Scholar
  132. 132.
    Smith, E. C. (2017). The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathogens, 13, e1006254.CrossRefGoogle Scholar
  133. 133.
    Stubbs, T. M., & Te Velthuis, A. J. (2014). The RNA-dependent RNA polymerase of the influenza A virus. Future Virology, 9, 863–876.CrossRefGoogle Scholar
  134. 134.
    te Velthuis, A. J. (2014). Common and unique features of viral RNA-dependent polymerases. Cellular and Molecular Life Sciences: CMLS, 71, 4403–4420.CrossRefGoogle Scholar
  135. 135.
    Te Velthuis, A. J., & Fodor, E. (2016). Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA synthesis. Nature Reviews Microbiology, 14, 479–493.CrossRefGoogle Scholar
  136. 136.
    Te Velthuis, A. J., Robb, N. C., Kapanidis, A. N., & Fodor, E. (2016). The role of the priming loop in influenza A virus RNA synthesis. Nature Microbiology, 1, 16029.CrossRefGoogle Scholar
  137. 137.
    Tinoco, I., Jr., & Gonzalez, R. L., Jr. (2011). Biological mechanisms, one molecule at a time. Genes & Development, 25, 1205–1231.CrossRefGoogle Scholar
  138. 138.
    Tomescu, A. I., Robb, N. C., Hengrung, N., Fodor, E., & Kapanidis, A. N. (2014). Single-molecule FRET reveals a corkscrew RNA structure for the polymerase-bound influenza virus promoter. Proceedings of the National Academy of Sciences of the United States of America, 111, E3335–E3342.CrossRefADSGoogle Scholar
  139. 139.
    Tomko, E. J., Fishburn, J., Hahn, S., & Galburt, E. A. (2017). TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nature Structural & Molecular Biology, 24, 1139–1145.CrossRefGoogle Scholar
  140. 140.
    van de Meent, J. W., Bronson, J. E., Wiggins, C. H., & Gonzalez, R. L., Jr. (2014). Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophysical Journal, 106, 1327–1337.CrossRefADSGoogle Scholar
  141. 141.
    van Loenhout, M. T., de Grunt, M. V., & Dekker, C. (2012). Dynamics of DNA supercoils. Science (New York, N.Y.), 338, 94–97.Google Scholar
  142. 142.
    Vilfan, I. D., Lipfert, J., Koster, D. A., Lemay, S. G., & Dekker, N. H. (2009). Magnetic tweezers for single-molecule experiments. In Handbook of single-molecule biophysics (pp. 371–395).Google Scholar
  143. 143.
    Visscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a molecular force clamp. Nature, 400, 184–189.CrossRefADSGoogle Scholar
  144. 144.
    Wang, F., Redding, S., Finkelstein, I. J., Gorman, J., Reichman, D. R., & Greene, E. C. (2013). The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nature Structural & Molecular Biology, 20, 174–181.CrossRefGoogle Scholar
  145. 145.
    Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1998). Force and velocity measured for single molecules of RNA polymerase. Science (New York, N.Y.), 282, 902–907.Google Scholar
  146. 146.
    Washburn, R. S., & Gottesman, M. E. (2015). Regulation of transcription elongation and termination. Biomolecules, 5, 1063–1078.CrossRefGoogle Scholar
  147. 147.
    Werner, F., & Grohmann, D. (2011). Evolution of multisubunit RNA polymerases in the three domains of life. Nature Reviews Microbiology, 9, 85–98.CrossRefGoogle Scholar
  148. 148.
    Werner, F., & Weinzierl, R. O. (2002). A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Molecular Cell, 10, 635–646.CrossRefGoogle Scholar
  149. 149.
    Woodside, M. T., & Block, S. M. (2014). Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annual Review of Biophysics, 43, 19–39.CrossRefGoogle Scholar
  150. 150.
    Wuite, G. J., Davenport, R. J., Rappaport, A., & Bustamante, C. (2000). An integrated laser trap/flow control video microscope for the study of single biomolecules. Biophysical Journal, 79, 1155–1167.CrossRefADSGoogle Scholar
  151. 151.
    Xie, S. N. (2001). Single-molecule approach to enzymology. Single Molecules, 2, 229–236.CrossRefADSGoogle Scholar
  152. 152.
    Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., & Gelles, J. (1995). Transcription against an applied force. Science (New York, N.Y.), 270, 1653–1657.Google Scholar
  153. 153.
    Yu, L., Winkelman, J. T., Pukhrambam, C., Strick, T. R., Nickels, B. E., & Ebright, R. H. (2017). The mechanism of variability in transcription start site selection. eLife, 6.Google Scholar
  154. 154.
    Zamft, B., Bintu, L., Ishibashi, T., & Bustamante, C. (2012). Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 109, 8948–8953.CrossRefADSGoogle Scholar
  155. 155.
    Zhou, J., Ha, K. S., La Porta, A., Landick, R., & Block, S. M. (2011). Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA. Molecular Cell, 44, 635–646.CrossRefGoogle Scholar
  156. 156.
    Zong, J., Yao, X., Yin, J., Zhang, D., & Ma, H. (2009). Evolution of the RNA-dependent RNA polymerase (RdRP) genes: Duplications and possible losses before and after the divergence of major eukaryotic groups. Gene, 447, 29–39.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Eugen Ostrofet
    • 1
  • Flavia Stal Papini
    • 1
  • Anssi M. Malinen
    • 2
  • David Dulin
    • 1
    Email author
  1. 1.Junior Research Group 2, Interdisciplinary Center for Clinical ResearchFriedrich Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Department of BiochemistryUniversity of TurkuTurkuFinland

Personalised recommendations