Biophysics of RNA-Protein Interactions pp 109-141 | Cite as
A Single-Molecule View on Cellular and Viral RNA Synthesis
- 1 Citations
- 2 Mentions
- 458 Downloads
Abstract
RNA synthesis is at the heart of gene expression, the RNA products serving in cellular organisms as protein blueprints, structural/functional components of molecular machines or regulators of gene expression, and as the genetic material of nascent RNA viruses. Because of its importance, transcription—the process converting DNA to RNA—has been extensively studied at the single-molecule level; first in bacterial systems and quickly after in other domains of life. RNA replication in RNA viruses has recently become an important research topic in the single-molecule field, aiming not only to uncover its versatile mechanisms but also to develop new therapeutics against these devastating human pathogens. Here, we summarize the recent advances in cellular and viral RNA production using in vitro single-molecule techniques.
Keywords
Single-molecule biophysics Transcription RNA virus RNA replication Cellular RNA polymerases Viral RNA-dependent RNA polymerases Optical tweezers Magnetic tweezers Fluorescence resonance energy transferNotes
Acknowledgements
DD was supported by the Interdisciplinary Center for Clinical Research (IZKF) at the University Hospital of the University of Erlangen-Nuremberg. A. M. M. was supported by the Academy of Finland (grant number: 307775).
References
- 1.Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438, 460–465.CrossRefADSGoogle Scholar
- 2.Adelman, K., La Porta, A., Santangelo, T. J., Lis, J. T., Roberts, J. W., & Wang, M. D. (2002). Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proceedings of the National Academy of Sciences of the United States of America, 99, 13538–13543.CrossRefADSGoogle Scholar
- 3.Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science (New York, N.Y.), 296, 1270–1273.CrossRefADSGoogle Scholar
- 4.Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). New York: Garland Science.Google Scholar
- 5.Axelrod, D. (2001). Total internal reflection fluorescence microscopy in cell biology. Traffic, 2, 764–774.CrossRefGoogle Scholar
- 6.Beckers, M., Drechsler, F., Eilert, T., Nagy, J., & Michaelis, J. (2015). Quantitative structural information from single-molecule FRET. Faraday Discussions.Google Scholar
- 7.Belogurov, G. A., & Artsimovitch, I. (2015). Regulation of transcript elongation. Annual Review of Microbiology, 69, 49–69.CrossRefGoogle Scholar
- 8.Berghuis, B. A., Dulin, D., Xu, Z. Q., van Laar, T., Cross, B., Janissen, R., et al. (2015). Strand separation establishes a sustained lock at the Tus-Ter replication fork barrier. Nature Chemical Biology, 11, 579–585.CrossRefGoogle Scholar
- 9.Bintu, L., Kopaczynska, M., Hodges, C., Lubkowska, L., Kashlev, M., & Bustamante, C. (2011). The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes. Nature Structural & Molecular Biology, 18, 1394–1399.CrossRefGoogle Scholar
- 10.Bockelmann, U., Essevaz-Roulet, B., & Heslot, F. (1998). DNA strand separation studied by single molecule force measurements. Physical Review E, 58, 2386–2394.CrossRefADSGoogle Scholar
- 11.Browning, D. F., & Busby, S. J. (2004). The regulation of bacterial transcription initiation. Nature Reviews Microbiology, 2, 57–65.CrossRefGoogle Scholar
- 12.Browning, D. F., & Busby, S. J. (2016). Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 14, 638–650.CrossRefGoogle Scholar
- 13.Cameron, C. E., Moustafa, I. M., & Arnold, J. J. (2016). Fidelity of nucleotide incorporation by the RNA-dependent RNA polymerase from poliovirus. Enzymes, 39, 293–323.CrossRefGoogle Scholar
- 14.Chakraborty, A., Meng, C. A., & Block, S. M. (2017). Observing single RNA polymerase molecules down to base-pair resolution. Methods in Molecular Biology, 1486, 391–409.CrossRefGoogle Scholar
- 15.Chakraborty, A., Wang, D., Ebright, Y. W., Korlann, Y., Kortkhonjia, E., Kim, T., et al. (2012). Opening and closing of the bacterial RNA polymerase clamp. Science (New York, N.Y.), 337, 591–595.CrossRefADSGoogle Scholar
- 16.Chandradoss, S. D., Haagsma, A. C., Lee, Y. K., Hwang, J. H., Nam, J. M., & Joo, C. (2014). Surface passivation for single-molecule protein studies. Journal of Visualized Experiments: JoVE.Google Scholar
- 17.Charvin, G., Allemand, J. F., Strick, T. R., Bensimon, D., & Croquette, V. (2004). Twisting DNA: Single molecule studies. Contemporary Physics, 45, 383–403.CrossRefADSGoogle Scholar
- 18.Churchman, L. S., & Spudich, J. A. (2012). Colocalization of fluorescent probes: Accurate and precise registration with nanometer resolution. Cold Spring Harbor Protocols, 2012, 141–149.Google Scholar
- 19.Cnossen, J. P., Dulin, D., & Dekker, N. H. (2014). An optimized software framework for real-time, high-throughput tracking of spherical beads. The Review of Scientific Instruments, 85, 103712.CrossRefADSGoogle Scholar
- 20.Collins, B. E., Ye, L. F., Duzdevich, D., & Greene, E. C. (2014). DNA curtains: Novel tools for imaging protein-nucleic acid interactions at the single-molecule level. Methods in Cell Biology, 123, 217–234.CrossRefGoogle Scholar
- 21.Comstock, M. J., Ha, T., & Chemla, Y. R. (2011). Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nature Methods, 8, 335–340.CrossRefGoogle Scholar
- 22.Crickard, J. B., Lee, J., Lee, T. H., & Reese, J. C. (2017). The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Nucleic Acids Research, 45, 6362–6374.CrossRefGoogle Scholar
- 23.Dalal, R. V., Larson, M. H., Neuman, K. C., Gelles, J., Landick, R., & Block, S. M. (2006). Pulling on the nascent RNA during transcription does not alter kinetics of elongation or ubiquitous pausing. Molecular Cell, 23, 231–239.CrossRefGoogle Scholar
- 24.Dangkulwanich, M., Ishibashi, T., Liu, S., Kireeva, M. L., Lubkowska, L., Kashlev, M., & Bustamante, C. J. (2013). Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife, 2, e00971.Google Scholar
- 25.Davenport, R. J., Wuite, G. J., Landick, R., & Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science (New York, N.Y.), 287, 2497–2500.Google Scholar
- 26.de Farias, S. T., Dos Santos Junior, A. P., Rego, T. G., & Jose, M. V. (2017). Origin and evolution of RNA-dependent RNA polymerase. Frontiers in Genetics, 8, 125.CrossRefGoogle Scholar
- 27.De Vlaminck, I., & Dekker, C. (2012). Recent advances in magnetic tweezers. Annual Review of Biophysics, 41, 453–472.CrossRefGoogle Scholar
- 28.Depken, M., Galburt, E. A., & Grill, S. W. (2009). The origin of short transcriptional pauses. Biophysical Journal, 96, 2189–2193.CrossRefADSGoogle Scholar
- 29.Duchi, D., Bauer, D. L. V., Fernandez, L., Evans, G., Robb, N., Hwang, L. C., et al. (2016). RNA polymerase pausing during initial transcription. Molecular Cell, 63, 939–950.CrossRefGoogle Scholar
- 30.Duchi, D., Gryte, K., Robb, N. C., Morichaud, Z., Sheppard, C., Brodolin, K., et al. (2018). Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes. Nucleic Acids Research, 46, 677–688.CrossRefGoogle Scholar
- 31.Duchi, D., Mazumder, A., Malinen, A. M., Ebright, R. H., & Kapanidis, A. N. (2018). The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Nucleic Acids Research.Google Scholar
- 32.Duchi, D., Mazumdera, A., Malinen, A. M., Ebright, R. H., & Kapanidis, A. N. (2018). The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. BioRxiv.Google Scholar
- 33.Dulin, D., Arnold, J. J., van Laar, T., Oh, H. S., Lee, C., Perkins, A. L., et al. (2017). Signatures of nucleotide analog incorporation by an RNA-dependent RNA polymerase revealed using high-throughput magnetic tweezers. Cell Reports, 21, 1063–1076.CrossRefGoogle Scholar
- 34.Dulin, D., Bauer, D. L. V., Malinen, A. M., Bakermans, J. J. W., Kaller, M., Morichaud, Z., et al. (2017). Pausing controls branching between productive and non-productive pathways during initial transcription. BioRxiv.Google Scholar
- 35.Dulin, D., Bauer, D. L. V., Malinen, A. M., Bakermans, J. J. W., Kaller, M., Morichaud, Z., et al. (2018). Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria. Nature Communications, 9, 1478.CrossRefADSGoogle Scholar
- 36.Dulin, D., Berghuis, B. A., Depken, M., & Dekker, N. H. (2015). Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Current Opinion in Structural Biology, 34, 116–122.CrossRefGoogle Scholar
- 37.Dulin, D., Lipfert, J., Moolman, M. C., & Dekker, N. H. (2013). Studying genomic processes at the single-molecule level: Introducing the tools and applications. Nature Reviews Genetics, 14, 9–22.CrossRefGoogle Scholar
- 38.Dulin, D., Vilfan, I. D., Berghuis, B. A., Hage, S., Bamford, D. H., Poranen, M. M., et al. (2015). Elongation-competent pauses govern the fidelity of a viral RNA-dependent RNA polymerase. Cell Reports, 10, 983–992.CrossRefGoogle Scholar
- 39.Dulin, D., Vilfan, I. D., Berghuis, B. A., Poranen, M. M., Depken, M., & Dekker, N. H. (2015). Backtracking behavior in viral RNA-dependent RNA polymerase provides the basis for a second initiation site. Nucleic Acids Research.Google Scholar
- 40.Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science (New York, N.Y.), 297, 1183–1186.Google Scholar
- 41.English, B. P., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., et al. (2006). Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nature Chemical Biology, 2, 87–94.CrossRefGoogle Scholar
- 42.Epshtein, V., & Nudler, E. (2003). Cooperation between RNA polymerase molecules in transcription elongation. Science (New York, N.Y.), 300, 801–805.Google Scholar
- 43.Fan, J., Leroux-Coyau, M., Savery, N. J., & Strick, T. R. (2016). Reconstruction of bacterial transcription-coupled repair at single-molecule resolution. Nature, 536, 234–237.CrossRefADSGoogle Scholar
- 44.Fazal, F. M., Meng, C. A., Murakami, K., Kornberg, R. D., & Block, S. M. (2015). Real-time observation of the initiation of RNA polymerase II transcription. Nature, 525, 274–277.CrossRefADSGoogle Scholar
- 45.Fields, B. N., Knipe, D. M., & Howley, P. M. (2013). Fields virology (6th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.Google Scholar
- 46.Forde, N. R., Izhaky, D., Woodcock, G. R., Wuite, G. J., & Bustamante, C. (2002). Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 99, 11682–11687.CrossRefADSGoogle Scholar
- 47.Frieda, K. L., & Block, S. M. (2012). Direct observation of cotranscriptional folding in an adenine riboswitch. Science (New York, N.Y.), 338, 397–400.Google Scholar
- 48.Friedman, L. J., Chung, J., & Gelles, J. (2006). Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophysical Journal, 91, 1023–1031.CrossRefADSGoogle Scholar
- 49.Friedman, L. J., Mumm, J. P., & Gelles, J. (2013). RNA polymerase approaches its promoter without long-range sliding along DNA. Proceedings of the National Academy of Sciences of the United States of America, 110, 9740–9745.CrossRefADSGoogle Scholar
- 50.Fujita, K., Iwaki, M., & Yanagida, T. (2016). Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA. Nature Communications, 7, 13788.CrossRefADSGoogle Scholar
- 51.Gago, S., Elena, S. F., Flores, R., & Sanjuan, R. (2009). Extremely high mutation rate of a hammerhead viroid. Science (New York, N.Y.), 323, 1308.Google Scholar
- 52.Galburt, E. A., Grill, S. W., Wiedmann, A., Lubkowska, L., Choy, J., Nogales, E., et al. (2007). Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature, 446, 820–823.CrossRefADSGoogle Scholar
- 53.Geertsema, H. J., Duderstadt, K. E., & van Oijen, A. M. (2015). Single-molecule observation of prokaryotic DNA replication. Methods in Molecular Biology, 1300, 219–238.CrossRefGoogle Scholar
- 54.Gietl, A., Holzmeister, P., Blombach, F., Schulz, S., von Voithenberg, L. V., Lamb, D. C., et al. (2014). Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways. Nucleic Acids Research, 42, 6219–6231.CrossRefGoogle Scholar
- 55.Gouge, J., Guthertz, N., Kramm, K., Dergai, O., Abascal-Palacios, G., Satia, K., et al. (2017). Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation. Nature Communications, 8, 130.CrossRefADSGoogle Scholar
- 56.Graves, E. T., Duboc, C., Fan, J., Stransky, F., Leroux-Coyau, M., & Strick, T. R. (2015). A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence. Nature Structural & Molecular Biology, 22, 452–457.CrossRefGoogle Scholar
- 57.Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A., & Block, S. M. (2005). Passive all-optical force clamp for high-resolution laser trapping. Physical Review Letters, 95, 208102.CrossRefADSGoogle Scholar
- 58.Guo, X., Myasnikov, A. G., Chen, J., Crucifix, C., Papai, G., Takacs, M., et al. (2018). Structural basis for NusA stabilized transcriptional pausing. Molecular Cell, 69(816–827), e814.Google Scholar
- 59.Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., & Weiss, S. (1996). Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proceedings of the National Academy of Sciences of the United States of America, 93, 6264–6268.CrossRefADSGoogle Scholar
- 60.Harada, Y., Ohara, O., Takatsuki, A., Itoh, H., Shimamoto, N., & Kinosita, K., Jr. (2001). Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature, 409, 113–115.CrossRefADSGoogle Scholar
- 61.Harden, T. T., Wells, C. D., Friedman, L. J., Landick, R., Hochschild, A., Kondev, J., et al. (2016). Bacterial RNA polymerase can retain sigma70 throughout transcription. Proceedings of the National Academy of Sciences of the United States of America, 113, 602–607.CrossRefADSGoogle Scholar
- 62.Heller, I., Sitters, G., Broekmans, O. D., Farge, G., Menges, C., Wende, W., et al. (2013). STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nature Methods, 10, 910–916.CrossRefGoogle Scholar
- 63.Herbert, K. M., La Porta, A., Wong, B. J., Mooney, R. A., Neuman, K. C., Landick, R., et al. (2006). Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell, 125, 1083–1094.CrossRefGoogle Scholar
- 64.Herbert, K. M., Zhou, J., Mooney, R. A., Porta, A. L., Landick, R., & Block, S. M. (2010). E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. Journal of Molecular Biology, 399, 17–30.CrossRefGoogle Scholar
- 65.Hill, F. R., Monachino, E., & van Oijen, A. M. (2017). The more the merrier: High-throughput single-molecule techniques. Biochemical Society Transactions, 45, 759–769.CrossRefGoogle Scholar
- 66.Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M., & Bustamante, C. (2009). Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science (New York, N.Y.), 325, 626–628.Google Scholar
- 67.Hohlbein, J., Craggs, T. D., & Cordes, T. (2014). Alternating-laser excitation: Single-molecule FRET and beyond. Chemical Society Reviews, 43, 1156–1171.CrossRefGoogle Scholar
- 68.Holmes, E. C. (2010). Evolution in health and medicine Sackler colloquium: The comparative genomics of viral emergence. Proceedings of the National Academy of Sciences of the United States of America, 107(Suppl 1), 1742–1746.MathSciNetCrossRefADSGoogle Scholar
- 69.Howan, K., Smith, A. J., Westblade, L. F., Joly, N., Grange, W., Zorman, S., et al. (2012). Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature, 490, 431–434.CrossRefADSGoogle Scholar
- 70.Ishibashi, T., Dangkulwanich, M., Coello, Y., Lionberger, T. A., Lubkowska, L., Ponticelli, A. S., et al. (2014). Transcription factors IIS and IIF enhance transcription efficiency by differentially modifying RNA polymerase pausing dynamics. Proceedings of the National Academy of Sciences of the United States of America, 111, 3419–3424.CrossRefADSGoogle Scholar
- 71.Iyer, L. M., Koonin, E. V., & Aravind, L. (2003). Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Structural Biology, 3, 1.CrossRefGoogle Scholar
- 72.Jacome, R., Becerra, A., Ponce de Leon, S., & Lazcano, A. (2015). Structural analysis of monomeric RNA-dependent polymerases: Evolutionary and therapeutic implications. PLoS ONE, 10, e0139001.CrossRefGoogle Scholar
- 73.Janissen, R., Berghuis, B. A., Dulin, D., Wink, M., van Laar, T., & Dekker, N. H. (2014). Invincible DNA tethers: Covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments. Nucleic Acids Research, 42, e137.CrossRefGoogle Scholar
- 74.Jonkers, I., & Lis, J. T. (2015). Getting up to speed with transcription elongation by RNA polymerase II. Nature Reviews. Molecular Cell Biology, 16, 167–177.CrossRefGoogle Scholar
- 75.Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., & Ha, T. (2008). Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry, 77, 51–76.CrossRefGoogle Scholar
- 76.Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: From theories to phenotypes. Nature Reviews Genetics, 6, 451–464.CrossRefGoogle Scholar
- 77.Kalinin, S., Peulen, T., Sindbert, S., Rothwell, P. J., Berger, S., Restle, T., et al. (2012). A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nature Methods, 9, 1218–1225.CrossRefGoogle Scholar
- 78.Kang, J. Y., Mishanina, T. V., Bellecourt, M. J., Mooney, R. A., Darst, S. A., & Landick, R. (2018). RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing. Molecular Cell, 69, 802–815, e801.Google Scholar
- 79.Kapanidis, A. N., Lee, N. K., Laurence, T. A., Doose, S., Margeat, E., & Weiss, S. (2004). Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. Proceedings of the National Academy of Sciences of the United States of America, 101, 8936–8941.CrossRefADSGoogle Scholar
- 80.Kapanidis, A. N., Margeat, E., Ho, S. O., Kortkhonjia, E., Weiss, S., & Ebright, R. H. (2006). Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science (New York, N.Y.), 314, 1144–1147.Google Scholar
- 81.Kapanidis, A. N., Margeat, E., Laurence, T. A., Doose, S., Ho, S. O., Mukhopadhyay, J., et al. (2005). Retention of transcription initiation factor sigma70 in transcription elongation: Single-molecule analysis. Molecular Cell, 20, 347–356.CrossRefGoogle Scholar
- 82.Kapanidis, A. N., & Strick, T. (2009). Biology, one molecule at a time. Trends in Biochemical Sciences, 34, 234–243.CrossRefGoogle Scholar
- 83.Korboukh, V. K., Lee, C. A., Acevedo, A., Vignuzzi, M., Xiao, Y., Arnold, J. J., et al. (2014). RNA virus population diversity, an optimum for maximal fitness and virulence. Journal of Biological Chemistry, 289, 29531–29544.CrossRefGoogle Scholar
- 84.Kriegel, F., Ermann, N., & Lipfert, J. (2017). Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. Journal of Structural Biology, 197, 26–36.CrossRefGoogle Scholar
- 85.La Porta, A., & Wang, M. D. (2004). Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles. Physical Review Letters, 92, 190801.CrossRefGoogle Scholar
- 86.Landick, R. (2006). The regulatory roles and mechanism of transcriptional pausing. Biochemical Society Transactions, 34, 1062–1066.CrossRefGoogle Scholar
- 87.Lang, M. J., Asbury, C. L., Shaevitz, J. W., & Block, S. M. (2002). An automated two-dimensional optical force clamp for single molecule studies. Biophysical Journal, 83, 491–501.CrossRefADSGoogle Scholar
- 88.Larson, M. H., Greenleaf, W. J., Landick, R., & Block, S. M. (2008). Applied force reveals mechanistic and energetic details of transcription termination. Cell, 132, 971–982.CrossRefGoogle Scholar
- 89.Larson, M. H., Mooney, R. A., Peters, J. M., Windgassen, T., Nayak, D., Gross, C. A., et al. (2014). A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science (New York, N.Y.), 344, 1042–1047.CrossRefADSGoogle Scholar
- 90.Larson, M. H., Zhou, J., Kaplan, C. D., Palangat, M., Kornberg, R. D., Landick, R., et al. (2012). Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 109, 6555–6560.CrossRefADSGoogle Scholar
- 91.Laszlo, A. H., Derrrington, I. M., & Gundlach, J. H. (2017). Subangstrom measurements of enzyme function using a biological nanopore, SPRNT. Methods in Enzymology, 582, 387–414.CrossRefGoogle Scholar
- 92.Lauring, A. S., Frydman, J., & Andino, R. (2013). The role of mutational robustness in RNA virus evolution. Nature Reviews Microbiology, 11, 327–336.CrossRefGoogle Scholar
- 93.Le, T. T., Yang, Y., Tan, C., Suhanovsky, M. M., Fulbright, R. M., Jr., Inman, J. T., et al. (2018). Mfd dynamically regulates transcription via a release and catch-up mechanism. Cell, 172(344–357), e315.Google Scholar
- 94.Lerner, E., Chung, S., Allen, B. L., Wang, S., Lee, J., Lu, S. W., et al. (2016). Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 113, E6562–E6571.CrossRefGoogle Scholar
- 95.Lerner, E., Ingargiola, A., & Weiss, S. (2018). Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. The Journal of Chemical Physics, 148, 10.Google Scholar
- 96.Lin, W., Das, K., Degen, D., Mazumder, A., Duchi, D., Wang, D., et al. (2018). Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Molecular Cell, 70(60–71), e15.Google Scholar
- 97.Lisica, A., Engel, C., Jahnel, M., Roldan, E., Galburt, E. A., Cramer, P., et al. (2016). Mechanisms of backtrack recovery by RNA polymerases I and II. Proceedings of the National Academy of Sciences of the United States of America, 113, 2946–2951.CrossRefADSGoogle Scholar
- 98.Lisica, A., & Grill, S. W. (2017). Optical tweezers studies of transcription by eukaryotic RNA polymerases. Biomolecular Concepts, 8, 1–11.CrossRefGoogle Scholar
- 99.Liu, S., Chistol, G., Hetherington, C. L., Tafoya, S., Aathavan, K., Schnitzbauer, J., et al. (2014). A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills. Cell, 157, 702–713.CrossRefGoogle Scholar
- 100.Ma, J., Bai, L., & Wang, M. D. (2013). Transcription under torsion. Science (New York, N.Y.), 340, 1580–1583.Google Scholar
- 101.Madariaga-Marcos, J., Hormeno, S., Pastrana, C. L., Fisher, G. L. M., Dillingham, M. S., & Moreno-Herrero, F. (2018). Force determination in lateral magnetic tweezers combined with TIRF microscopy. Nanoscale, 10, 4579–4590.CrossRefGoogle Scholar
- 102.Margeat, E., Kapanidis, A. N., Tinnefeld, P., Wang, Y., Mukhopadhyay, J., Ebright, R. H., et al. (2006). Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophysical Journal, 90, 1419–1431.CrossRefADSGoogle Scholar
- 103.Meng, C. A., Fazal, F. M., & Block, S. M. (2017). Real-time observation of polymerase-promoter contact remodeling during transcription initiation. Nature Communications, 8, 1178.CrossRefADSGoogle Scholar
- 104.Miller, H., Zhou, Z., Shepherd, J., Wollman, A. J. M., & Leake, M. C. (2018). Single-molecule techniques in biophysics: A review of the progress in methods and applications. Reports on Progress in Physics, 81, 024601.MathSciNetCrossRefADSGoogle Scholar
- 105.Moffitt, J. R., Chemla, Y. R., Smith, S. B., & Bustamante, C. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 77, 205–228.CrossRefGoogle Scholar
- 106.Muschielok, A., Andrecka, J., Jawhari, A., Bruckner, F., Cramer, P., & Michaelis, J. (2008). A nano-positioning system for macromolecular structural analysis. Nature Methods, 5, 965–971.CrossRefGoogle Scholar
- 107.Nagy, J., Grohmann, D., Cheung, A. C., Schulz, S., Smollett, K., Werner, F., et al. (2015). Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nature Communications, 6, 6161.CrossRefADSGoogle Scholar
- 108.Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J., & Block, S. M. (2003). Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 115, 437–447.CrossRefGoogle Scholar
- 109.Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific Instruments, 75, 2787–2809.CrossRefADSGoogle Scholar
- 110.Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5, 491–505.CrossRefGoogle Scholar
- 111.Ng, K. K., Arnold, J. J., & Cameron, C. E. (2008). Structure-function relationships among RNA-dependent RNA polymerases. Current Topics in Microbiology and Immunology, 320, 137–156.Google Scholar
- 112.Raser, J. M., & O’Shea, E. K. (2004). Control of stochasticity in eukaryotic gene expression. Science (New York, NY), 304, 1811–1814.Google Scholar
- 113.Ray-Soni, A., Bellecourt, M. J., & Landick, R. (2016). Mechanisms of bacterial transcription termination: All good things must end. Annual Review of Biochemistry, 85, 319–347.CrossRefGoogle Scholar
- 114.Revyakin, A., Ebright, R. H., & Strick, T. R. (2004). Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proceedings of the National Academy of Sciences of the United States of America, 101, 4776–4780.CrossRefADSGoogle Scholar
- 115.Revyakin, A., Ebright, R. H., & Strick, T. R. (2005). Single-molecule DNA nanomanipulation: Improved resolution through use of shorter DNA fragments. Nature Methods, 2, 127–138.CrossRefGoogle Scholar
- 116.Revyakin, A., Liu, C., Ebright, R. H., & Strick, T. R. (2006). Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science (New York, N.Y.), 314, 1139–1143.Google Scholar
- 117.Righini, M., Lee, A., Canari-Chumpitaz, C., Lionberger, T., Gabizon, R., Coello, Y., Tinoco, I., Jr., & Bustamante, C. (2018). Full molecular trajectories of RNA polymerase at single base-pair resolution. In Proceedings of the National Academy of Sciences of the United States of America.Google Scholar
- 118.Robb, N. C., Cordes, T., Hwang, L. C., Gryte, K., Duchi, D., Craggs, T. D., et al. (2013). The transcription bubble of the RNA polymerase-promoter open complex exhibits conformational heterogeneity and millisecond-scale dynamics: Implications for transcription start-site selection. Journal of Molecular Biology, 425, 875–885.CrossRefGoogle Scholar
- 119.Robb, N. C., Te Velthuis, A. J., Wieneke, R., Tampe, R., Cordes, T., Fodor, E., & Kapanidis, A. N. (2016). Single-molecule FRET reveals the pre-initiation and initiation conformations of influenza virus promoter RNA. Nucleic Acids Research.Google Scholar
- 120.Roberts, J. W., Shankar, S., & Filter, J. J. (2008). RNA polymerase elongation factors. Annual Review of Microbiology, 62, 211–233.CrossRefGoogle Scholar
- 121.Robinson, A., & van Oijen, A. M. (2013). Bacterial replication, transcription and translation: Mechanistic insights from single-molecule biochemical studies. Nature Reviews Microbiology, 11, 303–315.CrossRefGoogle Scholar
- 122.Ruff, E. F., Record, M. T., Jr., & Artsimovitch, I. (2015). Initial events in bacterial transcription initiation. Biomolecules, 5, 1035–1062.CrossRefGoogle Scholar
- 123.Rutkauskas, M., Krivoy, A., Szczelkun, M. D., Rouillon, C., & Seidel, R. (2017). Single-molecule insight into target recognition by CRISPR-Cas complexes. Methods in Enzymology, 582, 239–273.CrossRefGoogle Scholar
- 124.Saecker, R. M., Record, M. T., Jr., & Dehaseth, P. L. (2011). Mechanism of bacterial transcription initiation: RNA polymerase—Promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. Journal of Molecular Biology, 412, 754–771.CrossRefGoogle Scholar
- 125.Santybayeva, Z., & Pedaci, F. (2017). Optical torque wrench design and calibration. Methods in Molecular Biology, 1486, 157–181.CrossRefGoogle Scholar
- 126.Saunders, A., Core, L. J., & Lis, J. T. (2006). Breaking barriers to transcription elongation. Nature Reviews. Molecular Cell Biology, 7, 557–567.CrossRefGoogle Scholar
- 127.Schafer, D. A., Gelles, J., Sheetz, M. P., & Landick, R. (1991). Transcription by single molecules of RNA polymerase observed by light microscopy. Nature, 352, 444–448.CrossRefADSGoogle Scholar
- 128.Schulz, S., Gietl, A., Smollett, K., Tinnefeld, P., Werner, F., & Grohmann, D. (2016). TFE and Spt4/5 open and close the RNA polymerase clamp during the transcription cycle. Proceedings of the National Academy of Sciences of the United States of America, 113, E1816–E1825.CrossRefADSGoogle Scholar
- 129.Schulz, S., Kramm, K., Werner, F., & Grohmann, D. (2015). Fluorescently labeled recombinant RNAP system to probe archaeal transcription initiation. Methods, 86, 10–18.CrossRefGoogle Scholar
- 130.Selvin, P. R., Lougheed, T., Tonks Hoffman, M., Park, H., Balci, H., Blehm, B. H., & Toprak, E. (2007). Fluorescence imaging with one-nanometer accuracy (FIONA). CSH Protocols 2007, pdb top27.Google Scholar
- 131.Shaevitz, J. W., Abbondanzieri, E. A., Landick, R., & Block, S. M. (2003). Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426, 684–687.CrossRefADSGoogle Scholar
- 132.Smith, E. C. (2017). The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathogens, 13, e1006254.CrossRefGoogle Scholar
- 133.Stubbs, T. M., & Te Velthuis, A. J. (2014). The RNA-dependent RNA polymerase of the influenza A virus. Future Virology, 9, 863–876.CrossRefGoogle Scholar
- 134.te Velthuis, A. J. (2014). Common and unique features of viral RNA-dependent polymerases. Cellular and Molecular Life Sciences: CMLS, 71, 4403–4420.CrossRefGoogle Scholar
- 135.Te Velthuis, A. J., & Fodor, E. (2016). Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA synthesis. Nature Reviews Microbiology, 14, 479–493.CrossRefGoogle Scholar
- 136.Te Velthuis, A. J., Robb, N. C., Kapanidis, A. N., & Fodor, E. (2016). The role of the priming loop in influenza A virus RNA synthesis. Nature Microbiology, 1, 16029.CrossRefGoogle Scholar
- 137.Tinoco, I., Jr., & Gonzalez, R. L., Jr. (2011). Biological mechanisms, one molecule at a time. Genes & Development, 25, 1205–1231.CrossRefGoogle Scholar
- 138.Tomescu, A. I., Robb, N. C., Hengrung, N., Fodor, E., & Kapanidis, A. N. (2014). Single-molecule FRET reveals a corkscrew RNA structure for the polymerase-bound influenza virus promoter. Proceedings of the National Academy of Sciences of the United States of America, 111, E3335–E3342.CrossRefADSGoogle Scholar
- 139.Tomko, E. J., Fishburn, J., Hahn, S., & Galburt, E. A. (2017). TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nature Structural & Molecular Biology, 24, 1139–1145.CrossRefGoogle Scholar
- 140.van de Meent, J. W., Bronson, J. E., Wiggins, C. H., & Gonzalez, R. L., Jr. (2014). Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophysical Journal, 106, 1327–1337.CrossRefADSGoogle Scholar
- 141.van Loenhout, M. T., de Grunt, M. V., & Dekker, C. (2012). Dynamics of DNA supercoils. Science (New York, N.Y.), 338, 94–97.Google Scholar
- 142.Vilfan, I. D., Lipfert, J., Koster, D. A., Lemay, S. G., & Dekker, N. H. (2009). Magnetic tweezers for single-molecule experiments. In Handbook of single-molecule biophysics (pp. 371–395).Google Scholar
- 143.Visscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a molecular force clamp. Nature, 400, 184–189.CrossRefADSGoogle Scholar
- 144.Wang, F., Redding, S., Finkelstein, I. J., Gorman, J., Reichman, D. R., & Greene, E. C. (2013). The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nature Structural & Molecular Biology, 20, 174–181.CrossRefGoogle Scholar
- 145.Wang, M. D., Schnitzer, M. J., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1998). Force and velocity measured for single molecules of RNA polymerase. Science (New York, N.Y.), 282, 902–907.Google Scholar
- 146.Washburn, R. S., & Gottesman, M. E. (2015). Regulation of transcription elongation and termination. Biomolecules, 5, 1063–1078.CrossRefGoogle Scholar
- 147.Werner, F., & Grohmann, D. (2011). Evolution of multisubunit RNA polymerases in the three domains of life. Nature Reviews Microbiology, 9, 85–98.CrossRefGoogle Scholar
- 148.Werner, F., & Weinzierl, R. O. (2002). A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Molecular Cell, 10, 635–646.CrossRefGoogle Scholar
- 149.Woodside, M. T., & Block, S. M. (2014). Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annual Review of Biophysics, 43, 19–39.CrossRefGoogle Scholar
- 150.Wuite, G. J., Davenport, R. J., Rappaport, A., & Bustamante, C. (2000). An integrated laser trap/flow control video microscope for the study of single biomolecules. Biophysical Journal, 79, 1155–1167.CrossRefADSGoogle Scholar
- 151.Xie, S. N. (2001). Single-molecule approach to enzymology. Single Molecules, 2, 229–236.CrossRefADSGoogle Scholar
- 152.Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., & Gelles, J. (1995). Transcription against an applied force. Science (New York, N.Y.), 270, 1653–1657.Google Scholar
- 153.Yu, L., Winkelman, J. T., Pukhrambam, C., Strick, T. R., Nickels, B. E., & Ebright, R. H. (2017). The mechanism of variability in transcription start site selection. eLife, 6.Google Scholar
- 154.Zamft, B., Bintu, L., Ishibashi, T., & Bustamante, C. (2012). Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 109, 8948–8953.CrossRefADSGoogle Scholar
- 155.Zhou, J., Ha, K. S., La Porta, A., Landick, R., & Block, S. M. (2011). Applied force provides insight into transcriptional pausing and its modulation by transcription factor NusA. Molecular Cell, 44, 635–646.CrossRefGoogle Scholar
- 156.Zong, J., Yao, X., Yin, J., Zhang, D., & Ma, H. (2009). Evolution of the RNA-dependent RNA polymerase (RdRP) genes: Duplications and possible losses before and after the divergence of major eukaryotic groups. Gene, 447, 29–39.CrossRefGoogle Scholar