Fitting in the Age of Single-Molecule Experiments: A Guide to Maximum-Likelihood Estimation and Its Advantages

  • Behrouz Eslami-Mosallam
  • Iason Katechis
  • Martin DepkenEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Biological function often springs from the intricate synchronization of individual proteins, rather than from bulk interactions. High-throughput single-molecule techniques now allow us to move beyond bulk rates to record distributions of reaction times. Such distributions can greatly help mechanistic modeling efforts, as they often contain signatures of the underlying reaction path. With a tentative model at hand, correctly judging its predictive power is predicated on correctly estimating its parameters from the available data. For complex models, such parameter estimation can be far from trivial, and the choice of method can significantly influence the result. We here provide a self-contained introduction to maximum-likelihood estimation aimed at single-molecule experimenters. By considering relevant examples, we explain how to use maximum-likelihood estimation and we compare its performance to that of popular least-squares methods. Considering single-molecule data, we argue that maximum-likelihood estimation is generally the superior choice and conclude with a discussion of how to estimate the spread in parameter estimates through bootstrapping.


Maximum likelihood Least squares Fitting FRET Single molecule High throughput Exponential distribution Bootstrapping 



We thank Tao Ju (Thijs) Cui, Misha Klein, and Olivera Rakic for careful reading of the manuscript and thoughtful feedback. B. Eslami-Mosallam acknowledges financial support through the research program Crowd management: the physics of genome processing in complex environments, which is financed by the Netherlands Organisation for Scientific Research. I. Katechis acknowledges financial support from the Netherlands Organisation for Scientific Research, as part of the Frontiers in Nanoscience program.


  1. 1.
    Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., et al. (2015). A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with icecube. Astrophysical Journal, 809(1), 1–15.CrossRefGoogle Scholar
  2. 2.
    Avdis, E., & Wachter, J. A. (2017). Maximum likelihood estimation of the equity premium. Journal of Financial Economics, 125(3), 589–609.CrossRefGoogle Scholar
  3. 3.
    Bahl, L. R., Jelinek, F., & Mercer, R. L. (1983). A maximum likelihood approach to continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(2), 179–190.CrossRefGoogle Scholar
  4. 4.
    Dulin, D., Berghuis, B. A., Depken, M., & Dekker, N. H. (2015). Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Current Opinion in Structural Biology.Google Scholar
  5. 5.
    Efron, B., & Tibshirani, R. (1994). An introduction to the bootstrap. Chapman & Hall.Google Scholar
  6. 6.
    Fareh, M., van Lopik, J., Katechis, I., Bronkhorst, A. W., Haagsma, A. C., van Rij, R. P., & Joo, C. (2018). Viral suppressors of RNAi employ a rapid screening mode to discriminate viral RNA from cellular small RNA. Nucleic Acids Research (March), 1–11.Google Scholar
  7. 7.
    Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376.ADSCrossRefGoogle Scholar
  8. 8.
    Forney, G. D. (1972). Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Transactions on Information Theory, 18(3), 363–378.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hastie, T., Tibsharani, R., & Friedman, J. (2009). The elements of statistical learning. The mathematical intelligencer (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  10. 10.
    Hauschild, T., & Jentschel, M. (2001). Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments. Nuclear Instruments and Methods in Physics Research A, 457(1–2), 384–401.ADSCrossRefGoogle Scholar
  11. 11.
    Humphrey, P. J., Liu, W., & Buote, D. A. (2009). χ2 and Poissonian data: BIASES even in the high-count regime and how to avoid them. The Astrophysical Journal, 693(1), 822–829.ADSCrossRefGoogle Scholar
  12. 12.
    Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. 13.
    Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—With applications to the demand for money. Oxford Bulletin of Economics and Statistics, 52(2), 169–210.CrossRefGoogle Scholar
  14. 14.
    Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., & Ha, T. (2008). Advances in single-molecule fluorescence methods for molecular biology. Annual Review of Biochemistry, 77, 51–76.CrossRefGoogle Scholar
  15. 15.
    Joo, C., & Ha, T. (2012). Single-molecule FRET with total internal reflection microscopy. Cold Spring Harbor Protocols, 7(12), 1223–1237.Google Scholar
  16. 16.
    Leggetter, C. J., & Woodland, P. C. (1995). Maximum likelihood linear regression for speaker adaptation of continuous density hidden markov models. Computer Speech & Language, 9(2), 171–185.CrossRefGoogle Scholar
  17. 17.
    Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica. Section D, Biological Crystallography, 53(3), 240–255.CrossRefGoogle Scholar
  18. 18.
    Nelson, P. (2015). Physical models of living systems. New York: W. H. Freeman.Google Scholar
  19. 19.
    Nishimura, G., & Tamura, M. (2005). Artefacts in the analysis of temporal response functions measured by photon counting. Physics in Medicine & Biology, 50(6), 1327–1342.ADSCrossRefGoogle Scholar
  20. 20.
    Nørrelykke, S. F., & Flyvbjerg, H. (2010). Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers. Review of Scientific Instruments, 81(7).Google Scholar
  21. 21.
    Nousek, J. A., & Shue, D. R. (1989). Chi-squared and C statistic minimization for low count per bin data. Astrophysical Journal, 342, 1207–1211.ADSCrossRefGoogle Scholar
  22. 22.
    Press, W., Teukolsky, S., Vetterling, W., Flannery, B., Ziegel, E., Press, W., et al. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  23. 23.
    Santra, K., Zhan, J., Song, X., Smith, E. A., Vaswani, N., & Petrich, J. W. (2016). What is the best method to fit time-resolved data? A comparison of the residual minimization and the maximum likelihood techniques as applied to experimental time-correlated, single-photon counting data. Journal of Physical Chemistry B, 120(9), 2484–2490.CrossRefGoogle Scholar
  24. 24.
    Scholten, T. L., & Blume-Kohout, R. (2018). Behavior of the maximum likelihood in quantum state tomography. New Journal of Physics, 20, 023050.ADSCrossRefGoogle Scholar
  25. 25.
    Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690.CrossRefGoogle Scholar
  26. 26.
    Trifinopoulos, J., Nguyen, L. T., von Haeseler, A., & Minh, B. Q. (2016). W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44(W1), W232–W235.CrossRefGoogle Scholar
  27. 27.
    Turton, D. A., Reid, G. D., & Beddard, G. S. (2003). Accurate analysis of fluorescence decays from single molecules in photon counting experiments. Analytical Chemistry, 75(16), 4182–4187.CrossRefGoogle Scholar
  28. 28.
    Whelan, S., & Goldman, N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution, 18(5), 691–699.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Behrouz Eslami-Mosallam
    • 1
  • Iason Katechis
    • 1
  • Martin Depken
    • 1
    Email author
  1. 1.Department of BioNanoScience, Kavli Institute of NanoScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations