Advertisement

Single-Molecule Studies of Exonucleases: Following Cleavage Actions One Step at a Time

  • Gwangrog LeeEmail author
Chapter
  • 453 Downloads
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

Nucleases catalyze numerous biological processes ranging from DNA replication, recombination, and repair, to RNA processing and degradation. These enzymes cleave the bonds between two adjacent polymer residues via hydrolysis, involving several catalytic steps. However, multi-step reactions are inherently difficult to examine using bulk assays due to ensemble averaging. One way to unravel the enzymatic steps involved in a process is to follow the path of catalytic reaction and enzymatic motion one molecule or one step at a time. Recent progress in single-molecule techniques has enabled very accurate measurements of inter and intramolecular motion on a nanometer scale. Single-molecule methods for studying nucleases include fluorescence imaging, optical tweezers, and flow-stretching techniques. Single-molecule dynamic tools have revolutionized the approach of studying biochemical reactions and have provided many new insights into enzyme kinetics and thermodynamics, reshaping the view of the underlying biochemical reactions. In this review, I emphasize the strength of single-molecule techniques, which are capable of dissecting the whole process into fine catalytic steps of the reaction. I further review novel mechanistic insights into how nucleases function.

Keywords

RNA DNA Exonuclease Nuclease Degradation Polymerization 

Notes

Acknowledgements

This work was supported by the GIST Research Institute (GRI) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2016R1A2B4014556) and by the grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HA17C0031: #1720050).

References

  1. 1.
    Fried, V. A., Smith, H. T., Hildebrandt, E., & Weiner, K. (1987). Ubiquitin has intrinsic proteolytic activity: Implications for cellular regulation. Proceedings of the National Academy of Sciences of the United States of America, 84(11), 3685–3689.CrossRefADSGoogle Scholar
  2. 2.
    Barthelme, D., & Sauer, R. T. (2012). Identification of the Cdc48-20S proteasome as an ancient AAA+ proteolytic machine. Science, 337(6096), 843–846.CrossRefADSGoogle Scholar
  3. 3.
    Levchenko, I., Seidel, M., Sauer, R. T., & Baker, T. A. (2000). A specificity-enhancing factor for the clpXP degradation machine. Science, 289(5488), 2354–2356.CrossRefADSGoogle Scholar
  4. 4.
    Saffarian, S., Collier, I. E., Marmer, B. L., Elson, E. L., & Goldberg, G. (2004). Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science, 306(5693), 108–111.CrossRefADSGoogle Scholar
  5. 5.
    Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E., & Conti, E. (2009). The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell, 139(3), 547–559.CrossRefGoogle Scholar
  6. 6.
    Makino, D. L., Baumgartner, M., & Conti, E. (2013). Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature, 494(7439), 70–75.CrossRefADSGoogle Scholar
  7. 7.
    Kovall, R., & Matthews, B. W. (1997). Toroidal structure of lambda-exonuclease. Science, 277(5333), 1824–1827.CrossRefGoogle Scholar
  8. 8.
    Frazao, C., McVey, C. E., Amblar, M., Barbas, A., Vonrhein, C., Arraiano, C. M., et al. (2006). Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature, 443(7107), 110–114.CrossRefADSGoogle Scholar
  9. 9.
    Xiang, S., Cooper-Morgan, A., Jiao, X., Kiledjian, M., Manley, J. L., & Tong, L. (2009). Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature, 458(7239), 784–788.CrossRefADSGoogle Scholar
  10. 10.
    Doshi, U., McGowan, L. C., Ladani, S. T., & Hamelberg, D. (2012). Resolving the complex role of enzyme conformational dynamics in catalytic function. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5699–5704.CrossRefADSGoogle Scholar
  11. 11.
    Klinman, J. P. (2013). Importance of protein dynamics during enzymatic C-H bond cleavage catalysis. Biochemistry, 52(12), 2068–2077.CrossRefGoogle Scholar
  12. 12.
    Cornish, P. V., Ermolenko, D. N., Noller, H. F., & Ha, T. (2008). Spontaneous intersubunit rotation in single ribosomes. Molecular Cell, 30(5), 578–588.CrossRefGoogle Scholar
  13. 13.
    Yin, Y. W., & Steitz, T. A. (2002). Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science, 298(5597), 1387–1395.CrossRefADSGoogle Scholar
  14. 14.
    Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M., & Bustamante, C. (2009). Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science, 325(5940), 626–628.CrossRefADSGoogle Scholar
  15. 15.
    Marszalek, P. E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Schulten, K., et al. (1999). Mechanical unfolding intermediates in titin modules. Nature, 402(6757), 100–103.CrossRefADSGoogle Scholar
  16. 16.
    Nahas, M. K., Wilson, T. J., Hohng, S., Jarvie, K., Lilley, D. M. J., & Ha, T. (2004). Observation of internal cleavage and ligation reactions of a ribozyme. Nature Structural and Molecular Biology, 11(11), 1107–1113.CrossRefGoogle Scholar
  17. 17.
    Laurence, T. A., Kong, X., Jager, M., & Weiss, S. (2005). Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17348–17353.CrossRefADSGoogle Scholar
  18. 18.
    Rothwell, P. J., Berger, S., Kensch, O., Felekyan, S., Antonik, M., Wöhrl, B. M., et al. (2003). Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase: Primer/template complexes. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1655–1660.CrossRefADSGoogle Scholar
  19. 19.
    Zhuang, X., Kim, H., Pereira, M. J. B., Babcock, H. P., Walter, N. G., & Chu, S. (2002). Correlating structural dynamics and function in single ribozyme molecules. Science, 296(5572), 1473–1476.CrossRefADSGoogle Scholar
  20. 20.
    Onoa, B., Dumont, S., Liphardt, J., Smith, S. B., Tinoco, I., Jr., & Bustamante, C. (2003). Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science, 299(5614), 1892–1895.Google Scholar
  21. 21.
    Myong, S., Rasnik, I., Joo, C., Lohman, T. M., & Ha, T. (2005). Repetitive shuttling of a motor protein on DNA. Nature, 437(7063), 1321–1325.CrossRefADSGoogle Scholar
  22. 22.
    Zhuang, X., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T., Herschlag, D., et al. (2000). A single-molecule study of RNA catalysis and folding. Science, 288(5473), 2048–2051.CrossRefADSGoogle Scholar
  23. 23.
    Ha, T., Rasnik, I., Cheng, W., Babcock, H. P., Gauss, G. H., Lohman, T. M., et al. (2002). Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature, 419(6907), 638–641.CrossRefADSGoogle Scholar
  24. 24.
    Tinoco, I., Jr., Li, P. T. X., & Bustamante, C. (2006). Determination of thermodynamics and kinetics of RNA reactions by force. Quarterly Reviews of Biophysics, 39(4), 325–360.Google Scholar
  25. 25.
    Keller, D., Swigon, D., & Bustamante, C. (2003). Relating single-molecule measurements to thermodynamics. Biophysical Journal, 84(2 I), 733–738.Google Scholar
  26. 26.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., & Gaub, H. E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 276(5315), 1109–1112.CrossRefGoogle Scholar
  27. 27.
    Zhao, Y., Terry, D. S., Shi, L., Quick, M., Weinstein, H., Blanchard, S. C., et al. (2011). Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature, 474(7349), 109–113.CrossRefGoogle Scholar
  28. 28.
    Zhao, Y., Terry, D., Shi, L., Weinstein, H., Blanchard, S. C., & Javitch, J. A. (2010). Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature, 465(7295), 188–193.CrossRefADSGoogle Scholar
  29. 29.
    Lee, H. K., Yang, Y., Su, Z., Hyeon, C., Lee, T. S., Lee, H. W., et al. (2010). Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science, 328(5979), 760–763.CrossRefADSGoogle Scholar
  30. 30.
    Yoon, T. Y., Okumus, B., Zhang, F., Shin, Y. K., & Ha, T. (2006). Multiple intermediates in SNARE-induced membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 103(52), 19731–19736.CrossRefADSGoogle Scholar
  31. 31.
    Yoon, T. Y., Lu, X., Diao, J., Lee, S. M., Ha, T., & Shin, Y. K. (2008). Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nature Structural and Molecular Biology, 15(7), 707–713.CrossRefGoogle Scholar
  32. 32.
    Pandey, M., Syed, S., Donmez, I., Patel, G., Ha, T., & Patel, S. S. (2009). Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature, 462(7275), 940–943.CrossRefADSGoogle Scholar
  33. 33.
    Yardimci, H., Wang, X., Loveland, A. B., Tappin, I., Rudner, D. Z., Hurwitz, J., et al. (2012). Bypass of a protein barrier by a replicative DNA helicase. Nature, 492(7428), 205–209.CrossRefADSGoogle Scholar
  34. 34.
    Finkelstein, I. J., Visnapuu, M. L., & Greene, E. C. (2010). Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature, 468(7326), 983–987.CrossRefADSGoogle Scholar
  35. 35.
    Lee, J. B., Hite, R. K., Hamdan, S. M., Xie, X. S., Richardson, C. C., & Van Oijen, A. M. (2006). DNA primase acts as a molecular brake in DNA replication. Nature, 439(7076), 621–624.CrossRefADSGoogle Scholar
  36. 36.
    Hamdan, S. M., Loparo, J. J., Takahashi, M., Richardson, C. C., & Van Oijen, A. M. (2009). Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature, 457(7227), 336–339.CrossRefADSGoogle Scholar
  37. 37.
    Visnapuu, M. L., & Greene, E. C. (2009). Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nature Structural and Molecular Biology, 16(10), 1056–1062.CrossRefGoogle Scholar
  38. 38.
    Joo, C., McKinney, S. A., Nakamura, M., Rasnik, I., Myong, S., & Ha, T. (2006). Real-time observation of RecA filament dynamics with single monomer resolution. Cell, 126(3), 515–527.CrossRefGoogle Scholar
  39. 39.
    Rothenberg, E., Grimme, J. M., Spies, M., & Ha, T. (2008). Human Rad52-mediated homology search and annealing occurs by continuous interactions between overlapping nucleoprotein complexes. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20274–20279.CrossRefADSGoogle Scholar
  40. 40.
    Graneli, A., Yeykal, C. C., Robertson, R. B., & Greene, E. C. (2006). Long-distance lateral diffusion of human Rad51 on double-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1221–1226.CrossRefADSGoogle Scholar
  41. 41.
    Galletto, R., Amitani, I., Baskin, R. J., & Kowalczykowski, S. C. (2006). Direct observation of individual RecA filaments assembling on single DNA molecules. Nature, 443(7113), 875–878.CrossRefADSGoogle Scholar
  42. 42.
    Bianco, P. R., Brewer, L. R., Corzett, M., Balhorn, R., Yeh, Y., Kowalczykowski, S. C., et al. (2001). Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature, 409(6818), 374–378.CrossRefADSGoogle Scholar
  43. 43.
    Robertson, R. B., Moses, D. N., Kwon, Y., Chan, P., Chi, P., Klein, H., et al. (2009). Structural transitions within human Rad51 nucleoprotein filaments. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12688–12693.CrossRefADSGoogle Scholar
  44. 44.
    Blainey, P. C., Van Oijen, A. M., Banerjee, A., Verdine, G. L., & Xie, X. S. (2006). A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5752–5757.CrossRefADSGoogle Scholar
  45. 45.
    Gorman, J., Chowdhury, A., Surtees, J. A., Shimada, J., Reichman, D. R., Alani, E., et al. (2007). Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Molecular Cell, 28(3), 359–370.CrossRefGoogle Scholar
  46. 46.
    Gorman, J., Wang, F., Redding, S., Plys, A. J., Fazio, T., Wind, S., et al. (2012). Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proceedings of the National Academy of Sciences of the United States of America, 109(45), E3074–E3083.CrossRefADSGoogle Scholar
  47. 47.
    Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438(7067), 460–465.CrossRefADSGoogle Scholar
  48. 48.
    Davenport, R. J., Wuite, G. J. L., Landick, R., & Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science, 287(5462), 2497–2500.Google Scholar
  49. 49.
    Bintu, L., Ishibashi, T., Dangkulwanich, M., Wu, Y. Y., Lubkowska, L., Kashlev, M., et al. (2013). Nucleosomal elements that control the topography of the barrier to transcription. Cell, 151(4), 738–749.CrossRefGoogle Scholar
  50. 50.
    Larson, M. H., Greenleaf, W. J., Landick, R., & Block, S. M. (2008). Applied force reveals mechanistic and energetic details of transcription termination. Cell, 132(6), 971–982.CrossRefGoogle Scholar
  51. 51.
    Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J., & Block, S. M. (2003). Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 115(4), 437–447.CrossRefGoogle Scholar
  52. 52.
    Jeong, C., Cho, W. K., Song, K. M., Cook, C., Yoon, T. Y., Ban, C., et al. (2011). MutS switches between two fundamentally distinct clamps during mismatch repair. Nature Structural and Molecular Biology, 18(3), 379–385.CrossRefGoogle Scholar
  53. 53.
    Cornish, P. V., Ermolenko, D. N., Staple, D. W., Hoang, L., Hickerson, R. P., Noller, H. F., et al. (2009). Following movement of the L1 stalk between three functional states in single ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2571–2576.CrossRefADSGoogle Scholar
  54. 54.
    Wen, J. D., Lancaster, L., Hodges, C., Zeri, A. C., Yoshimura, S. H., Noller, H. F., et al. (2008). Following translation by single ribosomes one codon at a time. Nature, 452(7187), 598–603.CrossRefADSGoogle Scholar
  55. 55.
    Lee, G., Hartung, S., Hopfner, K. P., & Ha, T. (2010). Reversible and controllable nanolocomotion of an RNA-processing machinery. Nano Letters, 10(12), 5123–5130.CrossRefADSGoogle Scholar
  56. 56.
    Lee, G., Bratkowski, M. A., Ding, F., Ke, A., & Ha, T. (2012). Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science, 336(6089), 1726–1729.CrossRefADSGoogle Scholar
  57. 57.
    Maillard, R. A., Chistol, G., Sen, M., Righini, M., Tan, J., Kaiser, C. M., et al. (2011). ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell, 145(3), 459–469.CrossRefGoogle Scholar
  58. 58.
    Aubin-Tam, M. E., Olivares, A. O., Sauer, R. T., Baker, T. A., & Lang, M. J. (2011). Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell, 145(2), 257–267.CrossRefGoogle Scholar
  59. 59.
    Shin, Y., Davis, J. H., Brau, R. R., Martin, A., Kenniston, J. A., Baker, T. A., et al. (2009). Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19340–19345.CrossRefADSGoogle Scholar
  60. 60.
    Sarkar, S. K., Marmer, B., Goldberg, G., & Neuman, K. C. (2012). Single-molecule tracking of collagenase on native type I collagen fibrils reveals degradation mechanism. Current Biology, 22(12), 1047–1056.CrossRefGoogle Scholar
  61. 61.
    Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., & Yanagida, T. (1995). Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, 374(6522), 555–559.CrossRefADSGoogle Scholar
  62. 62.
    Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., & Selvin, P. R. (2003). Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science, 300(5628), 2061–2065.Google Scholar
  63. 63.
    Veigel, C., Coluccio, L. M., Jontes, J. D., Sparrow, J. C., Milligan, R. A., & Molloy, J. E. (1999). The motor protein myosin-I produces its working stroke in two steps. Nature, 398(6727), 530–533.CrossRefADSGoogle Scholar
  64. 64.
    Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr., & Itoh, H. (2001). Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature, 410(6831), 898–904.CrossRefADSGoogle Scholar
  65. 65.
    Noji, H., Yasuda, R., Yoshida, M., & Kinosita, K., Jr. (1997). Direct observation of the rotation of F1-ATPase. Nature, 386(6622), 299–302.CrossRefADSGoogle Scholar
  66. 66.
    van Oijen, A. M., Blainey, P. C., Crampton, D. J., Richardson, C. C., Ellenberger, T., & Xie, X. S. (2003). Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science, 301(5637), 1235–1238.CrossRefADSGoogle Scholar
  67. 67.
    Hohng, S., Zhou, R., Nahas, M. K., Yu, J., Schulten, K., Lilley, D. M. J., et al. (2007). Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science, 318(5848), 279–283.CrossRefADSGoogle Scholar
  68. 68.
    Cecconi, G., Shank, E. A., Bustamante, C., & Marqusee, S. (2005). Biochemistry: Direct observation of the three-state folding of a single protein molecule. Science, 309(5743), 2057–2060.CrossRefADSGoogle Scholar
  69. 69.
    Woodside, M. T., Anthony, P. C., Behnke-Parks, W. M., Larizadeh, K., Herschlag, D., & Block, S. M. (2006). Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science, 314(5801), 1001–1004.CrossRefADSGoogle Scholar
  70. 70.
    Shi, J., Dertouzos, J., Gafni, A., Steel, D., & Palfey, B. A. (2006). Single-molecule kinetics reveals signatures of half-sites reactivity in dihydroorotate dehydrogenase A catalysis. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5775–5780.CrossRefADSGoogle Scholar
  71. 71.
    Myong, S., Bruno, M. M., Pyle, A. M., & Ha, T. (2007). Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science, 317(5837), 513–516.CrossRefADSGoogle Scholar
  72. 72.
    Kim, S., Grant, R. A., & Sauer, R. T. (2011). Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. Cell, 145(1), 67–78.CrossRefGoogle Scholar
  73. 73.
    Jiao, X., Xiang, S., Oh, C., Martin, C. E., Tong, L., & Kiledjian, M. (2010). Identification of a quality-control mechanism for mRNA 5′-end capping. Nature, 467(7315), 608–611.CrossRefADSGoogle Scholar
  74. 74.
    Livak, K. J. (1999). Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genetic Analysis: Biomolecular Engineering, 14(5–6), 143–149.CrossRefGoogle Scholar
  75. 75.
    Li, J. J., Geyer, R., & Tan, W. (2000). Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 28(11).Google Scholar
  76. 76.
    Chemla, Y. R., Aathavan, K., Michaelis, J., Grimes, S., Jardine, P. J., Anderson, D. L., et al. (2005). Mechanism of force generation of a viral DNA packaging motor. Cell, 122(5), 683–692.CrossRefGoogle Scholar
  77. 77.
    Moffitt, J. R., Chemla, Y. R., Aathavan, K., Grimes, S., Jardine, P. J., Anderson, D. L., et al. (2009). Intersubunit coordination in a homomeric ring ATPase. Nature, 457(7228), 446–450.CrossRefADSGoogle Scholar
  78. 78.
    Aathavan, K., Politzer, A. T., Kaplan, A., Moffitt, J. R., Chemla, Y. R., Grimes, S., et al. (2009). Substrate interactions and promiscuity in a viral DNA packaging motor. Nature, 461(7264), 669–673.CrossRefADSGoogle Scholar
  79. 79.
    Cheng, W., Arunajadai, S. G., Moffitt, J. R., Tinoco, I., Jr., & Bustamante, C. (2011). Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science, 333(6050), 1746–1749.CrossRefADSGoogle Scholar
  80. 80.
    Dumont, S., Cheng, W., Serebrov, V., Beran, R. K., Tinoco, I., Jr., Pyle, A. M., et al. (2006). RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature, 439(7072), 105–108.CrossRefADSGoogle Scholar
  81. 81.
    Sun, B., Johnson, D. S., Patel, G., Smith, B. Y., Pandey, M., Patel, S. S., et al. (2011). ATP-induced helicase slippage reveals highly coordinated subunits. Nature, 478(7367), 132–135.CrossRefADSGoogle Scholar
  82. 82.
    Qu, X., Wen, J. D., Lancaster, L., Noller, H. F., Bustamante, C., & Tinoco, I. (2011). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature, 475(7354), 118–121.CrossRefGoogle Scholar
  83. 83.
    Kaiser, C. M., Goldman, D. H., Chodera, J. D., Tinoco, I., Jr., & Bustamante, C. (2011). The ribosome modulates nascent protein folding. Science, 334(6063), 1723–1727.CrossRefADSGoogle Scholar
  84. 84.
    Moffitt, J. R., Chemla, Y. R., Smith, S. B., & Bustamante, C. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 205–228.Google Scholar
  85. 85.
    Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505.CrossRefGoogle Scholar
  86. 86.
    Kim, S., Blainey, P. C., Schroeder, C. M., & Xie, X. S. (2007). Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA. Nature Methods, 4(5), 397–399.CrossRefGoogle Scholar
  87. 87.
    Deniz, A. A., Dahan, M., Grunwell, J. R., Ha, T., Faulhaber, A. E., Chemla, D. S., et al. (1999). Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Förster distance dependence and subpopulations. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3670–3675.CrossRefADSGoogle Scholar
  88. 88.
    Talaga, D. S., Lau, W. L., Roder, H., Tang, J., Jia, Y., DeGrado, W. F., et al. (2000). Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13021–13026.CrossRefADSGoogle Scholar
  89. 89.
    Ha, T. (2001). Single-molecule fluorescence resonance energy transfer. Methods, 25(1), 78–86.CrossRefGoogle Scholar
  90. 90.
    Roy, R., Hohng, S., & Ha, T. (2008). A practical guide to single-molecule FRET. Nature Methods, 5(6), 507–516.CrossRefGoogle Scholar
  91. 91.
    Hohng, S., Joo, C., & Ha, T. (2004). Single-molecule three-color FRET. Biophysical Journal, 87(2), 1328–1337.CrossRefADSGoogle Scholar
  92. 92.
    Lee, J., Lee, S., Ragunathan, K., Joo, C., Ha, T., & Hohng, S. (2010). Single-molecule four-color FRET. Angewandte Chemie - International Edition, 49(51), 9922–9925.CrossRefGoogle Scholar
  93. 93.
    Hohng, S., Lee, S., Lee, J., & Jo, M. H. (2014). Maximizing information content of single-molecule FRET experiments: Multi-color FRET and FRET combined with force or torque. Chemical Society Reviews, 43(4), 1007–1013.CrossRefGoogle Scholar
  94. 94.
    Vaughan, J. C., Jia, S., & Zhuang, X. (2012). Ultrabright photoactivatable fluorophores created by reductive caging. Nature Methods, 9(12), 1181–1184.CrossRefGoogle Scholar
  95. 95.
    Fazio, T., Visnapuu, M. L., Wind, S., & Greene, E. C. (2008). DNA curtains and nanoscale curtain rods: High-throughput tools for single molecule imaging. Langmuir, 24(18), 10524–10531.CrossRefGoogle Scholar
  96. 96.
    Courtemanche, N., Lee, J. Y., Pollard, T. D., & Greene, E. C. (2013). Tension modulates actin filament polymerization mediated by formin and profilin. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9752–9757.CrossRefADSGoogle Scholar
  97. 97.
    Fedor, M. J., & Williamson, J. R. (2005). The catalytic diversity of RNAs. Nature Reviews Molecular Cell Biology, 6(5), 399–412.CrossRefGoogle Scholar
  98. 98.
    Nowotny, M., Gaidamakov, S. A., Crouch, R. J., & Yang, W. (2005). Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell, 121(7), 1005–1016.CrossRefGoogle Scholar
  99. 99.
    Shevelev, I. V., & Hubscher, U. (2002). The 3′-5′ exonucleases. Nature Reviews Molecular Cell Biology, 3(5), 364–375.CrossRefGoogle Scholar
  100. 100.
    Baumeister, W., Walz, J., Zühl, F., & Seemüller, E. (1998). The proteasome: Paradigm of a self-compartmentalizing protease. Cell, 92(3), 367–380.Google Scholar
  101. 101.
    Lee, G., Yoo, J., Leslie, B. J., & Ha, T. (2011). Single-molecule analysis reveals three phases of DNA degradation by an exonuclease. Nature Chemical Biology, 7(6), 367–374.CrossRefADSGoogle Scholar
  102. 102.
    Radding, C. M. (1966). Regulation of lambda exonuclease. I. Properties of lambda exonuclease purified from lysogens of lambda T11 and wild type. Journal of Molecular Biology, 18(2), 235–250.CrossRefGoogle Scholar
  103. 103.
    Little, J. W. (1967). An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. Journal of Biological Chemistry, 242(4), 679–686.Google Scholar
  104. 104.
    Perkins, T. T., Dalal, R. V., Mitsis, P. G., & Block, S. M. (2003). Sequence-dependent pausing of single lambda exonuclease molecules. Science, 301(5641), 1914–1918.CrossRefADSGoogle Scholar
  105. 105.
    Kuo, T. L., Garcia-Manyes, S., Li, J., Barel, I., Lu, H., Berne, B. J., et al. (2010). Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11336–11340.CrossRefADSGoogle Scholar
  106. 106.
    Zhang, J., McCabe, K. A., & Bella, C. E. (2011). Crystal structures of lambda exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 11872–11877.CrossRefADSGoogle Scholar
  107. 107.
    Young, B. A., Gruber, T. M., & Gross, C. A. (2002). Views of transcription initiation. Cell, 109(4), 417–420.CrossRefGoogle Scholar
  108. 108.
    Marshall, R. A., Aitken, C. E., Dorywalska, M., & Puglisi, J. D. (2008). Translation at the single-molecule level. Annual Review of Biochemistry, 177–203.Google Scholar
  109. 109.
    Makino, D. L., Baumgärtner, M., & Conti, E. (2013). Crystal structure of an rna-bound 11-subunit eukaryotic exosome complex. Nature, 495(7439), 70–75.CrossRefADSGoogle Scholar
  110. 110.
    Büttner, K., Wenig, K., & Hopfner, K. P. (2005). Structural framework for the mechanism of archaeal exosomes in RNA processing. Molecular Cell, 20(3), 461–471.CrossRefGoogle Scholar
  111. 111.
    Lorentzen, E., & Conti, E. (2006). The exosome and the proteasome: Nano-compartments for degradation. Cell, 125(4), 651–654.CrossRefGoogle Scholar
  112. 112.
    Wahle, E. (2007). Wrong PH for RNA degradation. Nature Structural and Molecular Biology, 14(1), 5–7.CrossRefGoogle Scholar
  113. 113.
    Xie, X. S. (1998). Single-molecule enzymatic dynamics. Science, 282(5395), 1877–1882.CrossRefADSGoogle Scholar
  114. 114.
    Lin-Chao, S., Chiou, N. T., & Schuster, G. (2007). The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. Journal of Biomedical Science, 14(4), 523–532.CrossRefGoogle Scholar
  115. 115.
    Shi, Z., Yang, W. Z., Lin-Chao, S., Chak, K. F., & Yuan, H. S. (2008). Crystal structure of Escherichia coli PNPase: Central channel residues are involved in processive RNA degradation. RNA, 14(11), 2361–2371.CrossRefGoogle Scholar
  116. 116.
    Fazal, F. M., Koslover, D. J., Luisi, B. F., & Block, S. M. (2015). Direct observation of processive exoribonuclease motion using optical tweezers. Proceedings of the National Academy of Sciences of the United States of America, 112(49), 15101–15106.CrossRefADSGoogle Scholar
  117. 117.
    Houseley, J., LaCava, J., & Tollervey, D. (2006). RNA-quality control by the exosome. Nature Reviews Molecular Cell Biology, 7(7), 529–539.CrossRefGoogle Scholar
  118. 118.
    Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A., & Conti, E. (2008). Structure of the active subunit of the yeast exosome core, Rrp44: Diverse modes of substrate recruitment in the RNase II nuclease family. Molecular Cell, 29(6), 717–728.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Life Sciences, Gwangju Institute of Science and TechnologyGwangjuKorea

Personalised recommendations