Biophysics of RNA-Protein Interactions pp 57-84 | Cite as
Single-Molecule Studies of Exonucleases: Following Cleavage Actions One Step at a Time
- 453 Downloads
Abstract
Nucleases catalyze numerous biological processes ranging from DNA replication, recombination, and repair, to RNA processing and degradation. These enzymes cleave the bonds between two adjacent polymer residues via hydrolysis, involving several catalytic steps. However, multi-step reactions are inherently difficult to examine using bulk assays due to ensemble averaging. One way to unravel the enzymatic steps involved in a process is to follow the path of catalytic reaction and enzymatic motion one molecule or one step at a time. Recent progress in single-molecule techniques has enabled very accurate measurements of inter and intramolecular motion on a nanometer scale. Single-molecule methods for studying nucleases include fluorescence imaging, optical tweezers, and flow-stretching techniques. Single-molecule dynamic tools have revolutionized the approach of studying biochemical reactions and have provided many new insights into enzyme kinetics and thermodynamics, reshaping the view of the underlying biochemical reactions. In this review, I emphasize the strength of single-molecule techniques, which are capable of dissecting the whole process into fine catalytic steps of the reaction. I further review novel mechanistic insights into how nucleases function.
Keywords
RNA DNA Exonuclease Nuclease Degradation PolymerizationNotes
Acknowledgements
This work was supported by the GIST Research Institute (GRI) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2016R1A2B4014556) and by the grant from the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HA17C0031: #1720050).
References
- 1.Fried, V. A., Smith, H. T., Hildebrandt, E., & Weiner, K. (1987). Ubiquitin has intrinsic proteolytic activity: Implications for cellular regulation. Proceedings of the National Academy of Sciences of the United States of America, 84(11), 3685–3689.CrossRefADSGoogle Scholar
- 2.Barthelme, D., & Sauer, R. T. (2012). Identification of the Cdc48-20S proteasome as an ancient AAA+ proteolytic machine. Science, 337(6096), 843–846.CrossRefADSGoogle Scholar
- 3.Levchenko, I., Seidel, M., Sauer, R. T., & Baker, T. A. (2000). A specificity-enhancing factor for the clpXP degradation machine. Science, 289(5488), 2354–2356.CrossRefADSGoogle Scholar
- 4.Saffarian, S., Collier, I. E., Marmer, B. L., Elson, E. L., & Goldberg, G. (2004). Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science, 306(5693), 108–111.CrossRefADSGoogle Scholar
- 5.Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E., & Conti, E. (2009). The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell, 139(3), 547–559.CrossRefGoogle Scholar
- 6.Makino, D. L., Baumgartner, M., & Conti, E. (2013). Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature, 494(7439), 70–75.CrossRefADSGoogle Scholar
- 7.Kovall, R., & Matthews, B. W. (1997). Toroidal structure of lambda-exonuclease. Science, 277(5333), 1824–1827.CrossRefGoogle Scholar
- 8.Frazao, C., McVey, C. E., Amblar, M., Barbas, A., Vonrhein, C., Arraiano, C. M., et al. (2006). Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature, 443(7107), 110–114.CrossRefADSGoogle Scholar
- 9.Xiang, S., Cooper-Morgan, A., Jiao, X., Kiledjian, M., Manley, J. L., & Tong, L. (2009). Structure and function of the 5′→3′ exoribonuclease Rat1 and its activating partner Rai1. Nature, 458(7239), 784–788.CrossRefADSGoogle Scholar
- 10.Doshi, U., McGowan, L. C., Ladani, S. T., & Hamelberg, D. (2012). Resolving the complex role of enzyme conformational dynamics in catalytic function. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5699–5704.CrossRefADSGoogle Scholar
- 11.Klinman, J. P. (2013). Importance of protein dynamics during enzymatic C-H bond cleavage catalysis. Biochemistry, 52(12), 2068–2077.CrossRefGoogle Scholar
- 12.Cornish, P. V., Ermolenko, D. N., Noller, H. F., & Ha, T. (2008). Spontaneous intersubunit rotation in single ribosomes. Molecular Cell, 30(5), 578–588.CrossRefGoogle Scholar
- 13.Yin, Y. W., & Steitz, T. A. (2002). Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science, 298(5597), 1387–1395.CrossRefADSGoogle Scholar
- 14.Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M., & Bustamante, C. (2009). Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science, 325(5940), 626–628.CrossRefADSGoogle Scholar
- 15.Marszalek, P. E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A. F., Schulten, K., et al. (1999). Mechanical unfolding intermediates in titin modules. Nature, 402(6757), 100–103.CrossRefADSGoogle Scholar
- 16.Nahas, M. K., Wilson, T. J., Hohng, S., Jarvie, K., Lilley, D. M. J., & Ha, T. (2004). Observation of internal cleavage and ligation reactions of a ribozyme. Nature Structural and Molecular Biology, 11(11), 1107–1113.CrossRefGoogle Scholar
- 17.Laurence, T. A., Kong, X., Jager, M., & Weiss, S. (2005). Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17348–17353.CrossRefADSGoogle Scholar
- 18.Rothwell, P. J., Berger, S., Kensch, O., Felekyan, S., Antonik, M., Wöhrl, B. M., et al. (2003). Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase: Primer/template complexes. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1655–1660.CrossRefADSGoogle Scholar
- 19.Zhuang, X., Kim, H., Pereira, M. J. B., Babcock, H. P., Walter, N. G., & Chu, S. (2002). Correlating structural dynamics and function in single ribozyme molecules. Science, 296(5572), 1473–1476.CrossRefADSGoogle Scholar
- 20.Onoa, B., Dumont, S., Liphardt, J., Smith, S. B., Tinoco, I., Jr., & Bustamante, C. (2003). Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science, 299(5614), 1892–1895.Google Scholar
- 21.Myong, S., Rasnik, I., Joo, C., Lohman, T. M., & Ha, T. (2005). Repetitive shuttling of a motor protein on DNA. Nature, 437(7063), 1321–1325.CrossRefADSGoogle Scholar
- 22.Zhuang, X., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T., Herschlag, D., et al. (2000). A single-molecule study of RNA catalysis and folding. Science, 288(5473), 2048–2051.CrossRefADSGoogle Scholar
- 23.Ha, T., Rasnik, I., Cheng, W., Babcock, H. P., Gauss, G. H., Lohman, T. M., et al. (2002). Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature, 419(6907), 638–641.CrossRefADSGoogle Scholar
- 24.Tinoco, I., Jr., Li, P. T. X., & Bustamante, C. (2006). Determination of thermodynamics and kinetics of RNA reactions by force. Quarterly Reviews of Biophysics, 39(4), 325–360.Google Scholar
- 25.Keller, D., Swigon, D., & Bustamante, C. (2003). Relating single-molecule measurements to thermodynamics. Biophysical Journal, 84(2 I), 733–738.Google Scholar
- 26.Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., & Gaub, H. E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 276(5315), 1109–1112.CrossRefGoogle Scholar
- 27.Zhao, Y., Terry, D. S., Shi, L., Quick, M., Weinstein, H., Blanchard, S. C., et al. (2011). Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature, 474(7349), 109–113.CrossRefGoogle Scholar
- 28.Zhao, Y., Terry, D., Shi, L., Weinstein, H., Blanchard, S. C., & Javitch, J. A. (2010). Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature, 465(7295), 188–193.CrossRefADSGoogle Scholar
- 29.Lee, H. K., Yang, Y., Su, Z., Hyeon, C., Lee, T. S., Lee, H. W., et al. (2010). Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science, 328(5979), 760–763.CrossRefADSGoogle Scholar
- 30.Yoon, T. Y., Okumus, B., Zhang, F., Shin, Y. K., & Ha, T. (2006). Multiple intermediates in SNARE-induced membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 103(52), 19731–19736.CrossRefADSGoogle Scholar
- 31.Yoon, T. Y., Lu, X., Diao, J., Lee, S. M., Ha, T., & Shin, Y. K. (2008). Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nature Structural and Molecular Biology, 15(7), 707–713.CrossRefGoogle Scholar
- 32.Pandey, M., Syed, S., Donmez, I., Patel, G., Ha, T., & Patel, S. S. (2009). Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature, 462(7275), 940–943.CrossRefADSGoogle Scholar
- 33.Yardimci, H., Wang, X., Loveland, A. B., Tappin, I., Rudner, D. Z., Hurwitz, J., et al. (2012). Bypass of a protein barrier by a replicative DNA helicase. Nature, 492(7428), 205–209.CrossRefADSGoogle Scholar
- 34.Finkelstein, I. J., Visnapuu, M. L., & Greene, E. C. (2010). Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature, 468(7326), 983–987.CrossRefADSGoogle Scholar
- 35.Lee, J. B., Hite, R. K., Hamdan, S. M., Xie, X. S., Richardson, C. C., & Van Oijen, A. M. (2006). DNA primase acts as a molecular brake in DNA replication. Nature, 439(7076), 621–624.CrossRefADSGoogle Scholar
- 36.Hamdan, S. M., Loparo, J. J., Takahashi, M., Richardson, C. C., & Van Oijen, A. M. (2009). Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature, 457(7227), 336–339.CrossRefADSGoogle Scholar
- 37.Visnapuu, M. L., & Greene, E. C. (2009). Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nature Structural and Molecular Biology, 16(10), 1056–1062.CrossRefGoogle Scholar
- 38.Joo, C., McKinney, S. A., Nakamura, M., Rasnik, I., Myong, S., & Ha, T. (2006). Real-time observation of RecA filament dynamics with single monomer resolution. Cell, 126(3), 515–527.CrossRefGoogle Scholar
- 39.Rothenberg, E., Grimme, J. M., Spies, M., & Ha, T. (2008). Human Rad52-mediated homology search and annealing occurs by continuous interactions between overlapping nucleoprotein complexes. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20274–20279.CrossRefADSGoogle Scholar
- 40.Graneli, A., Yeykal, C. C., Robertson, R. B., & Greene, E. C. (2006). Long-distance lateral diffusion of human Rad51 on double-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1221–1226.CrossRefADSGoogle Scholar
- 41.Galletto, R., Amitani, I., Baskin, R. J., & Kowalczykowski, S. C. (2006). Direct observation of individual RecA filaments assembling on single DNA molecules. Nature, 443(7113), 875–878.CrossRefADSGoogle Scholar
- 42.Bianco, P. R., Brewer, L. R., Corzett, M., Balhorn, R., Yeh, Y., Kowalczykowski, S. C., et al. (2001). Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature, 409(6818), 374–378.CrossRefADSGoogle Scholar
- 43.Robertson, R. B., Moses, D. N., Kwon, Y., Chan, P., Chi, P., Klein, H., et al. (2009). Structural transitions within human Rad51 nucleoprotein filaments. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12688–12693.CrossRefADSGoogle Scholar
- 44.Blainey, P. C., Van Oijen, A. M., Banerjee, A., Verdine, G. L., & Xie, X. S. (2006). A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5752–5757.CrossRefADSGoogle Scholar
- 45.Gorman, J., Chowdhury, A., Surtees, J. A., Shimada, J., Reichman, D. R., Alani, E., et al. (2007). Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Molecular Cell, 28(3), 359–370.CrossRefGoogle Scholar
- 46.Gorman, J., Wang, F., Redding, S., Plys, A. J., Fazio, T., Wind, S., et al. (2012). Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proceedings of the National Academy of Sciences of the United States of America, 109(45), E3074–E3083.CrossRefADSGoogle Scholar
- 47.Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438(7067), 460–465.CrossRefADSGoogle Scholar
- 48.Davenport, R. J., Wuite, G. J. L., Landick, R., & Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science, 287(5462), 2497–2500.Google Scholar
- 49.Bintu, L., Ishibashi, T., Dangkulwanich, M., Wu, Y. Y., Lubkowska, L., Kashlev, M., et al. (2013). Nucleosomal elements that control the topography of the barrier to transcription. Cell, 151(4), 738–749.CrossRefGoogle Scholar
- 50.Larson, M. H., Greenleaf, W. J., Landick, R., & Block, S. M. (2008). Applied force reveals mechanistic and energetic details of transcription termination. Cell, 132(6), 971–982.CrossRefGoogle Scholar
- 51.Neuman, K. C., Abbondanzieri, E. A., Landick, R., Gelles, J., & Block, S. M. (2003). Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 115(4), 437–447.CrossRefGoogle Scholar
- 52.Jeong, C., Cho, W. K., Song, K. M., Cook, C., Yoon, T. Y., Ban, C., et al. (2011). MutS switches between two fundamentally distinct clamps during mismatch repair. Nature Structural and Molecular Biology, 18(3), 379–385.CrossRefGoogle Scholar
- 53.Cornish, P. V., Ermolenko, D. N., Staple, D. W., Hoang, L., Hickerson, R. P., Noller, H. F., et al. (2009). Following movement of the L1 stalk between three functional states in single ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 106(8), 2571–2576.CrossRefADSGoogle Scholar
- 54.Wen, J. D., Lancaster, L., Hodges, C., Zeri, A. C., Yoshimura, S. H., Noller, H. F., et al. (2008). Following translation by single ribosomes one codon at a time. Nature, 452(7187), 598–603.CrossRefADSGoogle Scholar
- 55.Lee, G., Hartung, S., Hopfner, K. P., & Ha, T. (2010). Reversible and controllable nanolocomotion of an RNA-processing machinery. Nano Letters, 10(12), 5123–5130.CrossRefADSGoogle Scholar
- 56.Lee, G., Bratkowski, M. A., Ding, F., Ke, A., & Ha, T. (2012). Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science, 336(6089), 1726–1729.CrossRefADSGoogle Scholar
- 57.Maillard, R. A., Chistol, G., Sen, M., Righini, M., Tan, J., Kaiser, C. M., et al. (2011). ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell, 145(3), 459–469.CrossRefGoogle Scholar
- 58.Aubin-Tam, M. E., Olivares, A. O., Sauer, R. T., Baker, T. A., & Lang, M. J. (2011). Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell, 145(2), 257–267.CrossRefGoogle Scholar
- 59.Shin, Y., Davis, J. H., Brau, R. R., Martin, A., Kenniston, J. A., Baker, T. A., et al. (2009). Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19340–19345.CrossRefADSGoogle Scholar
- 60.Sarkar, S. K., Marmer, B., Goldberg, G., & Neuman, K. C. (2012). Single-molecule tracking of collagenase on native type I collagen fibrils reveals degradation mechanism. Current Biology, 22(12), 1047–1056.CrossRefGoogle Scholar
- 61.Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., & Yanagida, T. (1995). Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature, 374(6522), 555–559.CrossRefADSGoogle Scholar
- 62.Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., & Selvin, P. R. (2003). Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science, 300(5628), 2061–2065.Google Scholar
- 63.Veigel, C., Coluccio, L. M., Jontes, J. D., Sparrow, J. C., Milligan, R. A., & Molloy, J. E. (1999). The motor protein myosin-I produces its working stroke in two steps. Nature, 398(6727), 530–533.CrossRefADSGoogle Scholar
- 64.Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr., & Itoh, H. (2001). Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature, 410(6831), 898–904.CrossRefADSGoogle Scholar
- 65.Noji, H., Yasuda, R., Yoshida, M., & Kinosita, K., Jr. (1997). Direct observation of the rotation of F1-ATPase. Nature, 386(6622), 299–302.CrossRefADSGoogle Scholar
- 66.van Oijen, A. M., Blainey, P. C., Crampton, D. J., Richardson, C. C., Ellenberger, T., & Xie, X. S. (2003). Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science, 301(5637), 1235–1238.CrossRefADSGoogle Scholar
- 67.Hohng, S., Zhou, R., Nahas, M. K., Yu, J., Schulten, K., Lilley, D. M. J., et al. (2007). Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science, 318(5848), 279–283.CrossRefADSGoogle Scholar
- 68.Cecconi, G., Shank, E. A., Bustamante, C., & Marqusee, S. (2005). Biochemistry: Direct observation of the three-state folding of a single protein molecule. Science, 309(5743), 2057–2060.CrossRefADSGoogle Scholar
- 69.Woodside, M. T., Anthony, P. C., Behnke-Parks, W. M., Larizadeh, K., Herschlag, D., & Block, S. M. (2006). Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science, 314(5801), 1001–1004.CrossRefADSGoogle Scholar
- 70.Shi, J., Dertouzos, J., Gafni, A., Steel, D., & Palfey, B. A. (2006). Single-molecule kinetics reveals signatures of half-sites reactivity in dihydroorotate dehydrogenase A catalysis. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5775–5780.CrossRefADSGoogle Scholar
- 71.Myong, S., Bruno, M. M., Pyle, A. M., & Ha, T. (2007). Spring-loaded mechanism of DNA unwinding by hepatitis C virus NS3 helicase. Science, 317(5837), 513–516.CrossRefADSGoogle Scholar
- 72.Kim, S., Grant, R. A., & Sauer, R. T. (2011). Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. Cell, 145(1), 67–78.CrossRefGoogle Scholar
- 73.Jiao, X., Xiang, S., Oh, C., Martin, C. E., Tong, L., & Kiledjian, M. (2010). Identification of a quality-control mechanism for mRNA 5′-end capping. Nature, 467(7315), 608–611.CrossRefADSGoogle Scholar
- 74.Livak, K. J. (1999). Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genetic Analysis: Biomolecular Engineering, 14(5–6), 143–149.CrossRefGoogle Scholar
- 75.Li, J. J., Geyer, R., & Tan, W. (2000). Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 28(11).Google Scholar
- 76.Chemla, Y. R., Aathavan, K., Michaelis, J., Grimes, S., Jardine, P. J., Anderson, D. L., et al. (2005). Mechanism of force generation of a viral DNA packaging motor. Cell, 122(5), 683–692.CrossRefGoogle Scholar
- 77.Moffitt, J. R., Chemla, Y. R., Aathavan, K., Grimes, S., Jardine, P. J., Anderson, D. L., et al. (2009). Intersubunit coordination in a homomeric ring ATPase. Nature, 457(7228), 446–450.CrossRefADSGoogle Scholar
- 78.Aathavan, K., Politzer, A. T., Kaplan, A., Moffitt, J. R., Chemla, Y. R., Grimes, S., et al. (2009). Substrate interactions and promiscuity in a viral DNA packaging motor. Nature, 461(7264), 669–673.CrossRefADSGoogle Scholar
- 79.Cheng, W., Arunajadai, S. G., Moffitt, J. R., Tinoco, I., Jr., & Bustamante, C. (2011). Single-base pair unwinding and asynchronous RNA release by the hepatitis C virus NS3 helicase. Science, 333(6050), 1746–1749.CrossRefADSGoogle Scholar
- 80.Dumont, S., Cheng, W., Serebrov, V., Beran, R. K., Tinoco, I., Jr., Pyle, A. M., et al. (2006). RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature, 439(7072), 105–108.CrossRefADSGoogle Scholar
- 81.Sun, B., Johnson, D. S., Patel, G., Smith, B. Y., Pandey, M., Patel, S. S., et al. (2011). ATP-induced helicase slippage reveals highly coordinated subunits. Nature, 478(7367), 132–135.CrossRefADSGoogle Scholar
- 82.Qu, X., Wen, J. D., Lancaster, L., Noller, H. F., Bustamante, C., & Tinoco, I. (2011). The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature, 475(7354), 118–121.CrossRefGoogle Scholar
- 83.Kaiser, C. M., Goldman, D. H., Chodera, J. D., Tinoco, I., Jr., & Bustamante, C. (2011). The ribosome modulates nascent protein folding. Science, 334(6063), 1723–1727.CrossRefADSGoogle Scholar
- 84.Moffitt, J. R., Chemla, Y. R., Smith, S. B., & Bustamante, C. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 205–228.Google Scholar
- 85.Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505.CrossRefGoogle Scholar
- 86.Kim, S., Blainey, P. C., Schroeder, C. M., & Xie, X. S. (2007). Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA. Nature Methods, 4(5), 397–399.CrossRefGoogle Scholar
- 87.Deniz, A. A., Dahan, M., Grunwell, J. R., Ha, T., Faulhaber, A. E., Chemla, D. S., et al. (1999). Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Förster distance dependence and subpopulations. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3670–3675.CrossRefADSGoogle Scholar
- 88.Talaga, D. S., Lau, W. L., Roder, H., Tang, J., Jia, Y., DeGrado, W. F., et al. (2000). Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. Proceedings of the National Academy of Sciences of the United States of America, 97(24), 13021–13026.CrossRefADSGoogle Scholar
- 89.Ha, T. (2001). Single-molecule fluorescence resonance energy transfer. Methods, 25(1), 78–86.CrossRefGoogle Scholar
- 90.Roy, R., Hohng, S., & Ha, T. (2008). A practical guide to single-molecule FRET. Nature Methods, 5(6), 507–516.CrossRefGoogle Scholar
- 91.Hohng, S., Joo, C., & Ha, T. (2004). Single-molecule three-color FRET. Biophysical Journal, 87(2), 1328–1337.CrossRefADSGoogle Scholar
- 92.Lee, J., Lee, S., Ragunathan, K., Joo, C., Ha, T., & Hohng, S. (2010). Single-molecule four-color FRET. Angewandte Chemie - International Edition, 49(51), 9922–9925.CrossRefGoogle Scholar
- 93.Hohng, S., Lee, S., Lee, J., & Jo, M. H. (2014). Maximizing information content of single-molecule FRET experiments: Multi-color FRET and FRET combined with force or torque. Chemical Society Reviews, 43(4), 1007–1013.CrossRefGoogle Scholar
- 94.Vaughan, J. C., Jia, S., & Zhuang, X. (2012). Ultrabright photoactivatable fluorophores created by reductive caging. Nature Methods, 9(12), 1181–1184.CrossRefGoogle Scholar
- 95.Fazio, T., Visnapuu, M. L., Wind, S., & Greene, E. C. (2008). DNA curtains and nanoscale curtain rods: High-throughput tools for single molecule imaging. Langmuir, 24(18), 10524–10531.CrossRefGoogle Scholar
- 96.Courtemanche, N., Lee, J. Y., Pollard, T. D., & Greene, E. C. (2013). Tension modulates actin filament polymerization mediated by formin and profilin. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9752–9757.CrossRefADSGoogle Scholar
- 97.Fedor, M. J., & Williamson, J. R. (2005). The catalytic diversity of RNAs. Nature Reviews Molecular Cell Biology, 6(5), 399–412.CrossRefGoogle Scholar
- 98.Nowotny, M., Gaidamakov, S. A., Crouch, R. J., & Yang, W. (2005). Crystal structures of RNase H bound to an RNA/DNA hybrid: Substrate specificity and metal-dependent catalysis. Cell, 121(7), 1005–1016.CrossRefGoogle Scholar
- 99.Shevelev, I. V., & Hubscher, U. (2002). The 3′-5′ exonucleases. Nature Reviews Molecular Cell Biology, 3(5), 364–375.CrossRefGoogle Scholar
- 100.Baumeister, W., Walz, J., Zühl, F., & Seemüller, E. (1998). The proteasome: Paradigm of a self-compartmentalizing protease. Cell, 92(3), 367–380.Google Scholar
- 101.Lee, G., Yoo, J., Leslie, B. J., & Ha, T. (2011). Single-molecule analysis reveals three phases of DNA degradation by an exonuclease. Nature Chemical Biology, 7(6), 367–374.CrossRefADSGoogle Scholar
- 102.Radding, C. M. (1966). Regulation of lambda exonuclease. I. Properties of lambda exonuclease purified from lysogens of lambda T11 and wild type. Journal of Molecular Biology, 18(2), 235–250.CrossRefGoogle Scholar
- 103.Little, J. W. (1967). An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. Journal of Biological Chemistry, 242(4), 679–686.Google Scholar
- 104.Perkins, T. T., Dalal, R. V., Mitsis, P. G., & Block, S. M. (2003). Sequence-dependent pausing of single lambda exonuclease molecules. Science, 301(5641), 1914–1918.CrossRefADSGoogle Scholar
- 105.Kuo, T. L., Garcia-Manyes, S., Li, J., Barel, I., Lu, H., Berne, B. J., et al. (2010). Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11336–11340.CrossRefADSGoogle Scholar
- 106.Zhang, J., McCabe, K. A., & Bella, C. E. (2011). Crystal structures of lambda exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 11872–11877.CrossRefADSGoogle Scholar
- 107.Young, B. A., Gruber, T. M., & Gross, C. A. (2002). Views of transcription initiation. Cell, 109(4), 417–420.CrossRefGoogle Scholar
- 108.Marshall, R. A., Aitken, C. E., Dorywalska, M., & Puglisi, J. D. (2008). Translation at the single-molecule level. Annual Review of Biochemistry, 177–203.Google Scholar
- 109.Makino, D. L., Baumgärtner, M., & Conti, E. (2013). Crystal structure of an rna-bound 11-subunit eukaryotic exosome complex. Nature, 495(7439), 70–75.CrossRefADSGoogle Scholar
- 110.Büttner, K., Wenig, K., & Hopfner, K. P. (2005). Structural framework for the mechanism of archaeal exosomes in RNA processing. Molecular Cell, 20(3), 461–471.CrossRefGoogle Scholar
- 111.Lorentzen, E., & Conti, E. (2006). The exosome and the proteasome: Nano-compartments for degradation. Cell, 125(4), 651–654.CrossRefGoogle Scholar
- 112.Wahle, E. (2007). Wrong PH for RNA degradation. Nature Structural and Molecular Biology, 14(1), 5–7.CrossRefGoogle Scholar
- 113.Xie, X. S. (1998). Single-molecule enzymatic dynamics. Science, 282(5395), 1877–1882.CrossRefADSGoogle Scholar
- 114.Lin-Chao, S., Chiou, N. T., & Schuster, G. (2007). The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines. Journal of Biomedical Science, 14(4), 523–532.CrossRefGoogle Scholar
- 115.Shi, Z., Yang, W. Z., Lin-Chao, S., Chak, K. F., & Yuan, H. S. (2008). Crystal structure of Escherichia coli PNPase: Central channel residues are involved in processive RNA degradation. RNA, 14(11), 2361–2371.CrossRefGoogle Scholar
- 116.Fazal, F. M., Koslover, D. J., Luisi, B. F., & Block, S. M. (2015). Direct observation of processive exoribonuclease motion using optical tweezers. Proceedings of the National Academy of Sciences of the United States of America, 112(49), 15101–15106.CrossRefADSGoogle Scholar
- 117.Houseley, J., LaCava, J., & Tollervey, D. (2006). RNA-quality control by the exosome. Nature Reviews Molecular Cell Biology, 7(7), 529–539.CrossRefGoogle Scholar
- 118.Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A., & Conti, E. (2008). Structure of the active subunit of the yeast exosome core, Rrp44: Diverse modes of substrate recruitment in the RNase II nuclease family. Molecular Cell, 29(6), 717–728.CrossRefGoogle Scholar