Skip to main content

How Proteins Recognize RNA

  • Chapter
  • First Online:
Biophysics of RNA-Protein Interactions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 881 Accesses

Abstract

RNA and protein interact to form ribonucleoprotein complex (RNP) that performs structural, catalytic and regulatory roles in the cell. These RNA–protein interactions are facilitated either by the primary RNA sequence or by the RNA secondary structural motifs. Once formed, these RNP complexes undergo multiple conformational changes in either or both RNA and protein. Understanding the interactions and conformational dynamics of RNA–protein complexes is significant but quite challenging. Recent advances and structural information about different RNA–protein complexes open the possibility of dissecting the interactions in the molecular level. This review is an overview of different types of RNA-binding proteins and how they recognize their target RNAs.

This chapter is based on a dissertation submitted in 2011 (Department of Chemistry, Wayne State University, Detroit MI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crick, F. H. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.

    Google Scholar 

  2. Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Letters, 582, 1977–1986.

    Article  Google Scholar 

  3. Dreyfuss, G., Kim, V. N., & Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol, 3, 195–205.

    Article  Google Scholar 

  4. Lunde, B. M., Moore, C., & Varani, G. (2007). RNA-binding proteins: Modular design for efficient function. Nature Reviews Molecular Cell Biology, 8, 479–490.

    Article  Google Scholar 

  5. Foley SW, Kramer MC, Gregory BD (2017) RNA structure, binding, and coordination in Arabidopsis. Wiley Interdiscip Rev RNA.

    Google Scholar 

  6. Keene, J. D. (2007). RNA regulons: Coordination of post-transcriptional events. Nature Reviews Genetics, 8, 533–543.

    Article  Google Scholar 

  7. Gerstberger, S., Hafner, M., & Tuschl, T. (2014). A census of human RNA-binding proteins. Nature Reviews Genetics, 15, 829–845.

    Article  Google Scholar 

  8. Jones, S., Daley, D. T., Luscombe, N. M., Berman, H. M., & Thornton, J. M. (2001). Protein-RNA interactions: A structural analysis. Nucleic Acids Research, 29, 943–954.

    Article  Google Scholar 

  9. Ray, D., Kazan, H., Cook, K. B., Weirauch, M. T., Najafabadi, H. S., Li, X., et al. (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499, 172–177.

    Article  ADS  Google Scholar 

  10. Singh, G., Pratt, G., Yeo, G. W., & Moore, M. J. (2015). The clothes make the mRNA: Past and present trends in mRNP fashion. Annual Review of Biochemistry, 84, 325–354.

    Article  Google Scholar 

  11. Siomi, H., & Dreyfuss, G. (1997). RNA-binding proteins as regulators of gene expression. Current Opinion in Genetics & Development, 7, 345–353.

    Article  Google Scholar 

  12. Burd, C. G., & Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science, 265, 615–621.

    Article  ADS  Google Scholar 

  13. Cooper, T. A., Wan, L., & Dreyfuss, G. (2009). RNA and disease. Cell, 136, 777–793.

    Article  Google Scholar 

  14. Bekenstein, U., & Soreq, H. (2013). Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: From structural insights to post-transcriptional regulatory roles. Molecular and Cellular Neuroscience, 56, 436–446.

    Article  Google Scholar 

  15. Mannoor, K., Liao, J. P., & Jiang, F. (2012). Small nucleolar RNAs in cancer. Biochimica et Biophysica Acta—Reviews on Cancer, 1826, 121–128.

    Article  Google Scholar 

  16. Ferreira, H. J., Heyn, H., Moutinho, C., & Esteller, M. (2012). CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biology, 9, 881–890.

    Article  Google Scholar 

  17. Mihailovic, M. K., Chen, A., Gonzalez-Rivera, J. C., & Contreras, L. M. (2017). Defective ribonucleoproteins, mistakes in RNA processing, and diseases. Biochemistry-Us, 56, 1367–1382.

    Article  Google Scholar 

  18. Ramaswami, M., Taylor, J. P., & Parker, R. (2013). Altered ribostasis: RNA-protein granules in degenerative disorders. Cell, 154, 727–736.

    Article  Google Scholar 

  19. Messias, A. C., & Sattler, M. (2004). Structural basis of single-stranded RNA recognition. Accounts of Chemical Research, 37, 279–287.

    Article  Google Scholar 

  20. Plaschka, C., Hantsche, M., Dienemann, C., Burzinski, C., Plitzko, J., & Cramer, P. (2016). Transcription initiation complex structures elucidate DNA opening. Nature, 533, 353–358.

    Article  ADS  Google Scholar 

  21. Plaschka, C., Lin, P. C., & Nagai, K. (2017). Structure of a pre-catalytic spliceosome. Nature, 546, 617–621.

    Article  ADS  Google Scholar 

  22. Khatter, H., Myasnikov, A. G., Natchiar, S. K., & Klaholz, B. P. (2015). Structure of the human 80S ribosome. Nature, 520, 640–645.

    Article  ADS  Google Scholar 

  23. Tian, B., Bevilacqua, P. C., Diegelman-Parente, A., & Mathews, M. B. (2004). The double-stranded-RNA-binding motif: Interference and much more. Nature Reviews Molecular Cell Biology, 5, 1013–1023.

    Article  Google Scholar 

  24. Auweter, S. D., Oberstrass, F. C., & Allain, F. H. (2007). Solving the structure of PTB in complex with pyrimidine tracts: An NMR study of protein-RNA complexes of weak affinities. Journal of Molecular Biology, 367, 174–186.

    Article  Google Scholar 

  25. Clery, A., Blatter, M., & Allain, F. H. (2008). RNA recognition motifs: Boring? Not quite. Current Opinion in Structural Biology, 18, 290–298.

    Article  Google Scholar 

  26. Auweter, S. D., & Allain, F. H. (2008). Structure-function relationships of the polypyrimidine tract binding protein. Cellular and Molecular Life Sciences, 65, 516–527.

    Article  Google Scholar 

  27. Jones, S. (2016). Protein-RNA interactions: Structural biology and computational modeling techniques. Biophysical Reviews, 8, 359–367.

    Article  Google Scholar 

  28. Mackereth, C. D., Simon, B., & Sattler, M. (2005). Extending the size of protein-RNA complexes studied by nuclear magnetic resonance spectroscopy. ChemBioChem, 6, 1578–1584.

    Article  Google Scholar 

  29. Carlomagno, T. (2014). Present and future of NMR for RNA-protein complexes: A perspective of integrated structural biology. Journal of Magnetic Resonance, 241, 126–136.

    Article  ADS  Google Scholar 

  30. Lapinaite, A., Simon, B., Skjaerven, L., Rakwalska-Bange, M., Gabel, F., & Carlomagno, T. (2013). The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature, 502, 519.

    Article  ADS  Google Scholar 

  31. Duss, O., Michel, E., Yulikov, M., Schubert, M., Jeschke, G., & Allain, F. H. T. (2014). Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature, 509, 588.

    Article  ADS  Google Scholar 

  32. Ren, H., & Shen, Y. (2015). RNA-binding residues prediction using structural features. BMC Bioinformatics, 16, 249.

    Article  Google Scholar 

  33. Mackereth, C. D., & Sattler, M. (2012). Dynamics in multi-domain protein recognition of RNA. Current Opinion in Structural Biology, 22, 287–296.

    Article  Google Scholar 

  34. Lamichhane, R., Hammond, J. A., Pauszek, R. F., Anderson, R. M., Pedron, I., van der Schans, E., et al. (2017). A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Nucleic Acids Research, 45, 4632–4641.

    Article  Google Scholar 

  35. Lamichhane, R., Daubner, G. M., Thomas-Crusells, J., Auweter, S. D., Manatschal, C., Austin, K. S., et al. (2010). RNA looping by PTB: Evidence using FRET and NMR spectroscopy for a role in splicing repression. Proceedings of the National Academy of Sciences of the United States of America, 107, 4105–4110.

    Article  ADS  Google Scholar 

  36. Karunatilaka, K. S., Solem, A., Pyle, A. M., & Rueda, D. (2010). Single-molecule analysis of Mss116-mediated group II intron folding. Nature, 467, 935–U975.

    Article  ADS  Google Scholar 

  37. Bonilla, S., Limouse, C., Bisaria, N., Gebala, M., Mabuchi, H., & Herschlag, D. (2017). Single-molecule fluorescence reveals commonalities and distinctions among natural and in vitro-selected RNA tertiary motifs in a multistep folding pathway. Journal of the American Chemical Society, 139, 18576–18589.

    Article  Google Scholar 

  38. Oberstrass, F. C., Auweter, S. D., Erat, M., Hargous, Y., Henning, A., Wenter, P., et al. (2005). Structure of PTB bound to RNA: Specific binding and implications for splicing regulation. Science, 309, 2054–2057.

    Article  ADS  Google Scholar 

  39. Auweter SD (2006) Structure and function of PTB and fox, two regulators of alternative splicing. Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  40. Lewis, H. A., Musunuru, K., Jensen, K. B., Edo, C., Chen, H., Darnell, R. B., et al. (2000). Sequence-specific RNA binding by a Nova KH domain: Implications for paraneoplastic disease and the fragile X syndrome. Cell, 100, 323–332.

    Article  Google Scholar 

  41. Beuth, B., Pennell, S., Arnvig, K. B., Martin, S. R., & Taylor, I. A. (2005). Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO Journal, 24, 3576–3587.

    Article  Google Scholar 

  42. Antson, A. A., Dodson, E. J., Dodson, G., Greaves, R. B., Chen, X., & Gollnick, P. (1999). Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature, 401, 235–242.

    Article  ADS  Google Scholar 

  43. Thore, S., Mayer, C., Sauter, C., Weeks, S., & Suck, D. (2003). Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA. Common features of RNA binding in archaea and eukarya. Journal of Biological Chemistry, 278, 1239–1247.

    Article  Google Scholar 

  44. Schumacher, M. A., Pearson, R. F., Moller, T., Valentin-Hansen, P., & Brennan, R. G. (2002). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: A bacterial Sm-like protein. EMBO Journal, 21, 3546–3556.

    Article  Google Scholar 

  45. Wang, X., McLachlan, J., Zamore, P. D., & Hall, T. M. (2002). Modular recognition of RNA by a human pumilio-homology domain. Cell, 110, 501–512.

    Article  Google Scholar 

  46. Wang, B., & Ye, K. (2017). Nop9 binds the central pseudoknot region of 18S rRNA. Nucleic Acids Research, 45, 3559–3567.

    Google Scholar 

  47. Wang, X., Zamore, P. D., & Hall, T. M. (2001). Crystal structure of a Pumilio homology domain. Molecular Cell, 7, 855–865.

    Article  Google Scholar 

  48. Hudson, B. P., Martinez-Yamout, M. A., Dyson, H. J., & Wright, P. E. (2004). Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nature Structural and Molecular Biology, 11, 257–264.

    Article  Google Scholar 

  49. Park, S., Phukan, P. D., Zeeb, M., Martinez-Yamout, M. A., Dyson, H. J., & Wright, P. E. (2017). Structural basis for interaction of the tandem zinc finger domains of human muscleblind with cognate RNA from human cardiac troponin T. Biochemistry-Us, 56, 4154–4168.

    Article  Google Scholar 

  50. Ma, J. B., Ye, K., & Patel, D. J. (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature, 429, 318–322.

    Article  ADS  Google Scholar 

  51. Schirle, N. T., & MacRae, I. J. (2012). The crystal structure of human Argonaute2. Science, 336, 1037–1040.

    Article  ADS  Google Scholar 

  52. Stefl, R., Oberstrass, F. C., Hood, J. L., Jourdan, M., Zimmermann, M., Skrisovska, L., et al. (2010). The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell, 143, 225–237.

    Article  Google Scholar 

  53. Ramos, A., Grunert, S., Adams, J., Micklem, D. R., Proctor, M. R., Freund, S., et al. (2000). RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO Journal, 19, 997–1009.

    Article  Google Scholar 

  54. Oberstrass, F. C., Lee, A., Stefl, R., Janis, M., Chanfreau, G., & Allain, F. H. (2006). Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nature Structural and Molecular Biology, 13, 160–167.

    Article  Google Scholar 

  55. Varani, G. (1995). Exceptionally stable nucleic acid hairpins. Annual review of biophysics and biomolecular structure, 24, 379–404.

    Article  Google Scholar 

  56. Daelemans, D., Costes, S. V., Cho, E. H., Erwin-Cohen, R. A., Lockett, S., & Pavlakis, G. N. (2004). In vivo HIV-1 Rev multimerization in the nucleolus and cytoplasm identified by fluorescence resonance energy transfer. Journal of Biological Chemistry, 279, 50167–50175.

    Article  Google Scholar 

  57. Maris, C., Dominguez, C., & Allain, F. H. (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. The FEBS Journal, 272, 2118–2131.

    Article  Google Scholar 

  58. Valente, L., & Nishikura, K. (2005). ADAR gene family and A-to-I RNA editing: Diverse roles in posttranscriptional gene regulation. Progress in Nucleic Acid Research and Molecular Biology, 79, 299–338.

    Article  Google Scholar 

  59. Garcia, M. A., Meurs, E. F., & Esteban, M. (2007). The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89, 799–811.

    Article  Google Scholar 

  60. Keene, J. D. (2001). Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proceedings of the National Academy of Sciences of the United States of America, 98, 7018–7024.

    Article  ADS  Google Scholar 

  61. Theobald, D. L., Mitton-Fry, R. M., & Wuttke, D. S. (2003). Nucleic acid recognition by OB-fold proteins. Annual review of biophysics and biomolecular structure, 32, 115–133.

    Article  Google Scholar 

  62. Auweter, S. D., Oberstrass, F. C., & Allain, F. H. (2006). Sequence-specific binding of single-stranded RNA: Is there a code for recognition? Nucleic Acids Research, 34, 4943–4959.

    Article  Google Scholar 

  63. Calero, G., Wilson, K. F., Ly, T., Rios-Steiner, J. L., Clardy, J. C., & Cerione, R. A. (2002). Structural basis of m7G pppG binding to the nuclear cap-binding protein complex. Nature Structural and Molecular Biology, 9, 912–917.

    Article  Google Scholar 

  64. Price, S. R., Evans, P. R., & Nagai, K. (1998). Crystal structure of the spliceosomal U2B”-U2A’ protein complex bound to a fragment of U2 small nuclear RNA. Nature, 394, 645–650.

    Article  ADS  Google Scholar 

  65. Conte, M. R., Grune, T., Ghuman, J., Kelly, G., Ladas, A., Matthews, S., et al. (2000). Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. The EMBO Journal, 19, 3132–3141.

    Article  Google Scholar 

  66. Handa, N., Nureki, O., Kurimoto, K., Kim, I., Sakamoto, H., Shimura, Y., et al. (1999). Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature, 398, 579–585.

    Article  ADS  Google Scholar 

  67. Allain, F. H., Bouvet, P., Dieckmann, T., & Feigon, J. (2000). Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO Journal, 19, 6870–6881.

    Article  Google Scholar 

  68. Auweter, S. D., Fasan, R., Reymond, L., Underwood, J. G., Black, D. L., Pitsch, S., et al. (2006). Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO Journal, 25, 163–173.

    Article  Google Scholar 

  69. Black, D. L., & Grabowski, P. J. (2003). Alternative pre-mRNA splicing and neuronal function. Progress in Molecular and Subcellular Biology, 31, 187–216.

    Article  Google Scholar 

  70. Caceres, J. F., Misteli, T., Screaton, G. R., Spector, D. L., & Krainer, A. R. (1997). Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. Journal of Cell Biology, 138, 225–238.

    Article  Google Scholar 

  71. Huh, G. S., & Hynes, R. O. (1994). Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes and Development, 8, 1561–1574.

    Article  Google Scholar 

  72. Siomi, H., Matunis, M. J., Michael, W. M., & Dreyfuss, G. (1993). The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Research, 21, 1193–1198.

    Article  Google Scholar 

  73. Grishin, N. V. (2001). KH domain: One motif, two folds. Nucleic Acids Research, 29, 638–643.

    Article  Google Scholar 

  74. Backe, P. H., Messias, A. C., Ravelli, R. B., Sattler, M., & Cusack, S. (2005). X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure, 13, 1055–1067.

    Article  Google Scholar 

  75. Gibson, T. J., Thompson, J. D., & Heringa, J. (1993). The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Letters, 324, 361–366.

    Article  Google Scholar 

  76. Liu, Z., Luyten, I., Bottomley, M. J., Messias, A. C., Houngninou-Molango, S., Sprangers, R., et al. (2001). Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science, 294, 1098–1102.

    Article  ADS  Google Scholar 

  77. Jensen, K. B., Dredge, B. K., Stefani, G., Zhong, R., Buckanovich, R. J., Okano, H. J., et al. (2000). Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron, 25, 359–371.

    Article  Google Scholar 

  78. Ostareck-Lederer, A., Ostareck, D. H., & Hentze, M. W. (1998). Cytoplasmic regulatory functions of the KH-domain proteins hnRNPs K and E1/E2. Trends in Biochemical Sciences, 23, 409–411.

    Article  Google Scholar 

  79. De Boulle, K., Verkerk, A. J., Reyniers, E., Vits, L., Hendrickx, J., Van Roy, B., et al. (1993). A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nature Genetics, 3, 31–35.

    Article  Google Scholar 

  80. Link, T. M., Valentin-Hansen, P., & Brennan, R. G. (2009). Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proceedings of the National Academy of Sciences of the United States of America, 106, 19292–19297.

    Article  ADS  Google Scholar 

  81. Babitzke, P. (1997). Regulation of tryptophan biosynthesis: Trp-ing the TRAP or how Bacillus subtilis reinvented the wheel. Molecular Microbiology, 26, 1–9.

    Article  Google Scholar 

  82. Kambach, C., Walke, S., Young, R., Avis, J. M., de la Fortelle, E., Raker, V. A., et al. (1999). Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell, 96, 375–387.

    Article  Google Scholar 

  83. Stark, H., Dube, P., Luhrmann, R., & Kastner, B. (2001). Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature, 409, 539–542.

    Article  ADS  Google Scholar 

  84. Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K., Li, J., & Nagai, K. (2009). Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature, 458, 475–480.

    Article  ADS  Google Scholar 

  85. Mikulecky, P. J., Kaw, M. K., Brescia, C. C., Takach, J. C., Sledjeski, D. D., & Feig, A. L. (2004). Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nature Structural and Molecular Biology, 11, 1206–1214.

    Article  Google Scholar 

  86. Sauter, C., Basquin, J., & Suck, D. (2003). Sm-like proteins in Eubacteria: The crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Research, 31, 4091–4098.

    Article  Google Scholar 

  87. Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T., & Gottesman, S. (1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 12462–12467.

    Article  ADS  Google Scholar 

  88. Masse, E., & Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 99, 4620–4625.

    Article  ADS  Google Scholar 

  89. Lee, T., & Feig, A. L. (2008). The RNA binding protein Hfq interacts specifically with tRNAs. RNA, 14, 514–523.

    Article  Google Scholar 

  90. Santiago-Frangos A, Woodson SA (2018) Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip Rev RNA:e1475.

    Article  Google Scholar 

  91. Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA (2017) Acidic C-terminal domains autoregulate the RNA chaperone Hfq. Elife 6.

    Google Scholar 

  92. Santiago-Frangos, A., Kavita, K., Schu, D. J., Gottesman, S., & Woodson, S. A. (2016). C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proceedings of the National Academy of Sciences of the United States of America, 113, E6089–E6096.

    Article  Google Scholar 

  93. Friesen, W. J., & Darby, M. K. (1998). Specific RNA binding proteins constructed from zinc fingers. Nature Structural and Molecular Biology, 5, 543–546.

    Article  Google Scholar 

  94. Spassov, D. S., & Jurecic, R. (2003). The PUF family of RNA-binding proteins: Does evolutionarily conserved structure equal conserved function? IUBMB Life, 55, 359–366.

    Article  Google Scholar 

  95. Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L., & Zhou, M. M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature, 426, 468–474.

    Article  ADS  Google Scholar 

  96. Chang, K. Y., & Ramos, A. (2005). The double-stranded RNA-binding motif, a versatile macromolecular docking platform. The FEBS Journal, 272, 2109–2117.

    Article  Google Scholar 

  97. Bycroft, M., Grunert, S., Murzin, A. G., Proctor, M., & St Johnston, D. (1995). NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO Journal, 14, 3563–3571.

    Article  Google Scholar 

  98. Kharrat, A., Macias, M. J., Gibson, T. J., Nilges, M., & Pastore, A. (1995). Structure of the dsRNA binding domain of E. coli RNase III. EMBO Journal, 14, 3572–3584.

    Article  Google Scholar 

  99. Masliah, G., Barraud, P., & Allain, F. H. T. (2013). RNA recognition by double-stranded RNA binding domains: A matter of shape and sequence. Cellular and Molecular Life Sciences, 70, 1875–1895.

    Google Scholar 

  100. Ryter, J. M., & Schultz, S. C. (1998). Molecular basis of double-stranded RNA-protein interactions: Structure of a dsRNA-binding domain complexed with dsRNA. EMBO Journal, 17, 7505–7513.

    Article  Google Scholar 

  101. Gan, J., Tropea, J. E., Austin, B. P., Court, D. L., Waugh, D. S., & Ji, X. (2006). Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell, 124, 355–366.

    Article  Google Scholar 

  102. Wu, H., Henras, A., Chanfreau, G., & Feigon, J. (2004). Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proceedings of the National Academy of Sciences of the United States of America, 101, 8307–8312.

    Article  ADS  Google Scholar 

  103. Robertson, H. D. (1982). Escherichia coli ribonuclease III cleavage sites. Cell, 30, 669–672.

    Article  Google Scholar 

  104. Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366.

    Article  ADS  Google Scholar 

  105. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.

    Article  ADS  Google Scholar 

  106. Nishikura, K. (2006). Editor meets silencer: Crosstalk between RNA editing and RNA interference. Nature Reviews Molecular Cell Biology, 7, 919–931.

    Article  Google Scholar 

  107. Bass, B. L., & Weintraub, H. (1988). An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell, 55, 1089–1098.

    Article  Google Scholar 

  108. Qiao, F., & Bowie, J. U. (2005). The many faces of SAM. Sci STKE, 2005, 1–10.

    Google Scholar 

  109. Aviv, T., Lin, Z., Lau, S., Rendl, L. M., Sicheri, F., & Smibert, C. A. (2003). The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nature Structural and Molecular Biology, 10, 614–621.

    Article  Google Scholar 

  110. Dahanukar, A., Walker, J. A., & Wharton, R. P. (1999). Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Molecular Cell, 4, 209–218.

    Article  Google Scholar 

  111. Ban, N., Nissen, P., Hansen, J., Moore, P. B., & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science, 289, 905–920.

    Article  ADS  Google Scholar 

  112. Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., et al. (2000). Structure of the 30S ribosomal subunit. Nature, 407, 327–339.

    Article  ADS  Google Scholar 

  113. Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Wimberly, B. T., & Ramakrishnan, V. (2002). Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: Structure of the proteins and their interactions with 16 S RNA. Journal of Molecular Biology, 316, 725–768.

    Article  Google Scholar 

  114. Agalarov, S. C., Sridhar Prasad, G., Funke, P. M., Stout, C. D., & Williamson, J. R. (2000). Structure of the S15, S6, S18-rRNA complex: Assembly of the 30S ribosome central domain. Science, 288, 107–113.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RL would like to thank Dr. Amanda Solem and Dr. Sharla Wood for their help and Dr. David Rueda for comments and suggestions on the manuscripts. RL is supported by the start-up funds from  the University of Tennessee, Knoxville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Lamichhane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lamichhane, R. (2019). How Proteins Recognize RNA. In: Joo, C., Rueda, D. (eds) Biophysics of RNA-Protein Interactions. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9726-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9726-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9724-4

  • Online ISBN: 978-1-4939-9726-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics