How Proteins Recognize RNA

  • Rajan LamichhaneEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


RNA and protein interact to form ribonucleoprotein complex (RNP) that performs structural, catalytic and regulatory roles in the cell. These RNA–protein interactions are facilitated either by the primary RNA sequence or by the RNA secondary structural motifs. Once formed, these RNP complexes undergo multiple conformational changes in either or both RNA and protein. Understanding the interactions and conformational dynamics of RNA–protein complexes is significant but quite challenging. Recent advances and structural information about different RNA–protein complexes open the possibility of dissecting the interactions in the molecular level. This review is an overview of different types of RNA-binding proteins and how they recognize their target RNAs.


Protein–RNA interactions RNA-binding proteins RNA recognition RRM dsRBM KH-homology domain TRAP 



RL would like to thank Dr. Amanda Solem and Dr. Sharla Wood for their help and Dr. David Rueda for comments and suggestions on the manuscripts. RL is supported by the start-up funds from  the University of Tennessee, Knoxville.


  1. 1.
    Crick, F. H. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.Google Scholar
  2. 2.
    Glisovic, T., Bachorik, J. L., Yong, J., & Dreyfuss, G. (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Letters, 582, 1977–1986.CrossRefGoogle Scholar
  3. 3.
    Dreyfuss, G., Kim, V. N., & Kataoka, N. (2002). Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol, 3, 195–205.CrossRefGoogle Scholar
  4. 4.
    Lunde, B. M., Moore, C., & Varani, G. (2007). RNA-binding proteins: Modular design for efficient function. Nature Reviews Molecular Cell Biology, 8, 479–490.CrossRefGoogle Scholar
  5. 5.
    Foley SW, Kramer MC, Gregory BD (2017) RNA structure, binding, and coordination in Arabidopsis. Wiley Interdiscip Rev RNA.Google Scholar
  6. 6.
    Keene, J. D. (2007). RNA regulons: Coordination of post-transcriptional events. Nature Reviews Genetics, 8, 533–543.CrossRefGoogle Scholar
  7. 7.
    Gerstberger, S., Hafner, M., & Tuschl, T. (2014). A census of human RNA-binding proteins. Nature Reviews Genetics, 15, 829–845.CrossRefGoogle Scholar
  8. 8.
    Jones, S., Daley, D. T., Luscombe, N. M., Berman, H. M., & Thornton, J. M. (2001). Protein-RNA interactions: A structural analysis. Nucleic Acids Research, 29, 943–954.CrossRefGoogle Scholar
  9. 9.
    Ray, D., Kazan, H., Cook, K. B., Weirauch, M. T., Najafabadi, H. S., Li, X., et al. (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499, 172–177.ADSCrossRefGoogle Scholar
  10. 10.
    Singh, G., Pratt, G., Yeo, G. W., & Moore, M. J. (2015). The clothes make the mRNA: Past and present trends in mRNP fashion. Annual Review of Biochemistry, 84, 325–354.CrossRefGoogle Scholar
  11. 11.
    Siomi, H., & Dreyfuss, G. (1997). RNA-binding proteins as regulators of gene expression. Current Opinion in Genetics & Development, 7, 345–353.CrossRefGoogle Scholar
  12. 12.
    Burd, C. G., & Dreyfuss, G. (1994). Conserved structures and diversity of functions of RNA-binding proteins. Science, 265, 615–621.ADSCrossRefGoogle Scholar
  13. 13.
    Cooper, T. A., Wan, L., & Dreyfuss, G. (2009). RNA and disease. Cell, 136, 777–793.CrossRefGoogle Scholar
  14. 14.
    Bekenstein, U., & Soreq, H. (2013). Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: From structural insights to post-transcriptional regulatory roles. Molecular and Cellular Neuroscience, 56, 436–446.CrossRefGoogle Scholar
  15. 15.
    Mannoor, K., Liao, J. P., & Jiang, F. (2012). Small nucleolar RNAs in cancer. Biochimica et Biophysica Acta—Reviews on Cancer, 1826, 121–128.CrossRefGoogle Scholar
  16. 16.
    Ferreira, H. J., Heyn, H., Moutinho, C., & Esteller, M. (2012). CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biology, 9, 881–890.CrossRefGoogle Scholar
  17. 17.
    Mihailovic, M. K., Chen, A., Gonzalez-Rivera, J. C., & Contreras, L. M. (2017). Defective ribonucleoproteins, mistakes in RNA processing, and diseases. Biochemistry-Us, 56, 1367–1382.CrossRefGoogle Scholar
  18. 18.
    Ramaswami, M., Taylor, J. P., & Parker, R. (2013). Altered ribostasis: RNA-protein granules in degenerative disorders. Cell, 154, 727–736.CrossRefGoogle Scholar
  19. 19.
    Messias, A. C., & Sattler, M. (2004). Structural basis of single-stranded RNA recognition. Accounts of Chemical Research, 37, 279–287.CrossRefGoogle Scholar
  20. 20.
    Plaschka, C., Hantsche, M., Dienemann, C., Burzinski, C., Plitzko, J., & Cramer, P. (2016). Transcription initiation complex structures elucidate DNA opening. Nature, 533, 353–358.ADSCrossRefGoogle Scholar
  21. 21.
    Plaschka, C., Lin, P. C., & Nagai, K. (2017). Structure of a pre-catalytic spliceosome. Nature, 546, 617–621.ADSCrossRefGoogle Scholar
  22. 22.
    Khatter, H., Myasnikov, A. G., Natchiar, S. K., & Klaholz, B. P. (2015). Structure of the human 80S ribosome. Nature, 520, 640–645.ADSCrossRefGoogle Scholar
  23. 23.
    Tian, B., Bevilacqua, P. C., Diegelman-Parente, A., & Mathews, M. B. (2004). The double-stranded-RNA-binding motif: Interference and much more. Nature Reviews Molecular Cell Biology, 5, 1013–1023.CrossRefGoogle Scholar
  24. 24.
    Auweter, S. D., Oberstrass, F. C., & Allain, F. H. (2007). Solving the structure of PTB in complex with pyrimidine tracts: An NMR study of protein-RNA complexes of weak affinities. Journal of Molecular Biology, 367, 174–186.CrossRefGoogle Scholar
  25. 25.
    Clery, A., Blatter, M., & Allain, F. H. (2008). RNA recognition motifs: Boring? Not quite. Current Opinion in Structural Biology, 18, 290–298.CrossRefGoogle Scholar
  26. 26.
    Auweter, S. D., & Allain, F. H. (2008). Structure-function relationships of the polypyrimidine tract binding protein. Cellular and Molecular Life Sciences, 65, 516–527.CrossRefGoogle Scholar
  27. 27.
    Jones, S. (2016). Protein-RNA interactions: Structural biology and computational modeling techniques. Biophysical Reviews, 8, 359–367.CrossRefGoogle Scholar
  28. 28.
    Mackereth, C. D., Simon, B., & Sattler, M. (2005). Extending the size of protein-RNA complexes studied by nuclear magnetic resonance spectroscopy. ChemBioChem, 6, 1578–1584.CrossRefGoogle Scholar
  29. 29.
    Carlomagno, T. (2014). Present and future of NMR for RNA-protein complexes: A perspective of integrated structural biology. Journal of Magnetic Resonance, 241, 126–136.ADSCrossRefGoogle Scholar
  30. 30.
    Lapinaite, A., Simon, B., Skjaerven, L., Rakwalska-Bange, M., Gabel, F., & Carlomagno, T. (2013). The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature, 502, 519.ADSCrossRefGoogle Scholar
  31. 31.
    Duss, O., Michel, E., Yulikov, M., Schubert, M., Jeschke, G., & Allain, F. H. T. (2014). Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature, 509, 588.ADSCrossRefGoogle Scholar
  32. 32.
    Ren, H., & Shen, Y. (2015). RNA-binding residues prediction using structural features. BMC Bioinformatics, 16, 249.CrossRefGoogle Scholar
  33. 33.
    Mackereth, C. D., & Sattler, M. (2012). Dynamics in multi-domain protein recognition of RNA. Current Opinion in Structural Biology, 22, 287–296.CrossRefGoogle Scholar
  34. 34.
    Lamichhane, R., Hammond, J. A., Pauszek, R. F., Anderson, R. M., Pedron, I., van der Schans, E., et al. (2017). A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Nucleic Acids Research, 45, 4632–4641.CrossRefGoogle Scholar
  35. 35.
    Lamichhane, R., Daubner, G. M., Thomas-Crusells, J., Auweter, S. D., Manatschal, C., Austin, K. S., et al. (2010). RNA looping by PTB: Evidence using FRET and NMR spectroscopy for a role in splicing repression. Proceedings of the National Academy of Sciences of the United States of America, 107, 4105–4110.ADSCrossRefGoogle Scholar
  36. 36.
    Karunatilaka, K. S., Solem, A., Pyle, A. M., & Rueda, D. (2010). Single-molecule analysis of Mss116-mediated group II intron folding. Nature, 467, 935–U975.ADSCrossRefGoogle Scholar
  37. 37.
    Bonilla, S., Limouse, C., Bisaria, N., Gebala, M., Mabuchi, H., & Herschlag, D. (2017). Single-molecule fluorescence reveals commonalities and distinctions among natural and in vitro-selected RNA tertiary motifs in a multistep folding pathway. Journal of the American Chemical Society, 139, 18576–18589.CrossRefGoogle Scholar
  38. 38.
    Oberstrass, F. C., Auweter, S. D., Erat, M., Hargous, Y., Henning, A., Wenter, P., et al. (2005). Structure of PTB bound to RNA: Specific binding and implications for splicing regulation. Science, 309, 2054–2057.ADSCrossRefGoogle Scholar
  39. 39.
    Auweter SD (2006) Structure and function of PTB and fox, two regulators of alternative splicing. Swiss Federal Institute of Technology, Zurich.Google Scholar
  40. 40.
    Lewis, H. A., Musunuru, K., Jensen, K. B., Edo, C., Chen, H., Darnell, R. B., et al. (2000). Sequence-specific RNA binding by a Nova KH domain: Implications for paraneoplastic disease and the fragile X syndrome. Cell, 100, 323–332.CrossRefGoogle Scholar
  41. 41.
    Beuth, B., Pennell, S., Arnvig, K. B., Martin, S. R., & Taylor, I. A. (2005). Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO Journal, 24, 3576–3587.CrossRefGoogle Scholar
  42. 42.
    Antson, A. A., Dodson, E. J., Dodson, G., Greaves, R. B., Chen, X., & Gollnick, P. (1999). Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature, 401, 235–242.ADSCrossRefGoogle Scholar
  43. 43.
    Thore, S., Mayer, C., Sauter, C., Weeks, S., & Suck, D. (2003). Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA. Common features of RNA binding in archaea and eukarya. Journal of Biological Chemistry, 278, 1239–1247.CrossRefGoogle Scholar
  44. 44.
    Schumacher, M. A., Pearson, R. F., Moller, T., Valentin-Hansen, P., & Brennan, R. G. (2002). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: A bacterial Sm-like protein. EMBO Journal, 21, 3546–3556.CrossRefGoogle Scholar
  45. 45.
    Wang, X., McLachlan, J., Zamore, P. D., & Hall, T. M. (2002). Modular recognition of RNA by a human pumilio-homology domain. Cell, 110, 501–512.CrossRefGoogle Scholar
  46. 46.
    Wang, B., & Ye, K. (2017). Nop9 binds the central pseudoknot region of 18S rRNA. Nucleic Acids Research, 45, 3559–3567.Google Scholar
  47. 47.
    Wang, X., Zamore, P. D., & Hall, T. M. (2001). Crystal structure of a Pumilio homology domain. Molecular Cell, 7, 855–865.CrossRefGoogle Scholar
  48. 48.
    Hudson, B. P., Martinez-Yamout, M. A., Dyson, H. J., & Wright, P. E. (2004). Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nature Structural and Molecular Biology, 11, 257–264.CrossRefGoogle Scholar
  49. 49.
    Park, S., Phukan, P. D., Zeeb, M., Martinez-Yamout, M. A., Dyson, H. J., & Wright, P. E. (2017). Structural basis for interaction of the tandem zinc finger domains of human muscleblind with cognate RNA from human cardiac troponin T. Biochemistry-Us, 56, 4154–4168.CrossRefGoogle Scholar
  50. 50.
    Ma, J. B., Ye, K., & Patel, D. J. (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature, 429, 318–322.ADSCrossRefGoogle Scholar
  51. 51.
    Schirle, N. T., & MacRae, I. J. (2012). The crystal structure of human Argonaute2. Science, 336, 1037–1040.ADSCrossRefGoogle Scholar
  52. 52.
    Stefl, R., Oberstrass, F. C., Hood, J. L., Jourdan, M., Zimmermann, M., Skrisovska, L., et al. (2010). The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell, 143, 225–237.CrossRefGoogle Scholar
  53. 53.
    Ramos, A., Grunert, S., Adams, J., Micklem, D. R., Proctor, M. R., Freund, S., et al. (2000). RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO Journal, 19, 997–1009.CrossRefGoogle Scholar
  54. 54.
    Oberstrass, F. C., Lee, A., Stefl, R., Janis, M., Chanfreau, G., & Allain, F. H. (2006). Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nature Structural and Molecular Biology, 13, 160–167.CrossRefGoogle Scholar
  55. 55.
    Varani, G. (1995). Exceptionally stable nucleic acid hairpins. Annual review of biophysics and biomolecular structure, 24, 379–404.CrossRefGoogle Scholar
  56. 56.
    Daelemans, D., Costes, S. V., Cho, E. H., Erwin-Cohen, R. A., Lockett, S., & Pavlakis, G. N. (2004). In vivo HIV-1 Rev multimerization in the nucleolus and cytoplasm identified by fluorescence resonance energy transfer. Journal of Biological Chemistry, 279, 50167–50175.CrossRefGoogle Scholar
  57. 57.
    Maris, C., Dominguez, C., & Allain, F. H. (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. The FEBS Journal, 272, 2118–2131.CrossRefGoogle Scholar
  58. 58.
    Valente, L., & Nishikura, K. (2005). ADAR gene family and A-to-I RNA editing: Diverse roles in posttranscriptional gene regulation. Progress in Nucleic Acid Research and Molecular Biology, 79, 299–338.CrossRefGoogle Scholar
  59. 59.
    Garcia, M. A., Meurs, E. F., & Esteban, M. (2007). The dsRNA protein kinase PKR: Virus and cell control. Biochimie, 89, 799–811.CrossRefGoogle Scholar
  60. 60.
    Keene, J. D. (2001). Ribonucleoprotein infrastructure regulating the flow of genetic information between the genome and the proteome. Proceedings of the National Academy of Sciences of the United States of America, 98, 7018–7024.ADSCrossRefGoogle Scholar
  61. 61.
    Theobald, D. L., Mitton-Fry, R. M., & Wuttke, D. S. (2003). Nucleic acid recognition by OB-fold proteins. Annual review of biophysics and biomolecular structure, 32, 115–133.CrossRefGoogle Scholar
  62. 62.
    Auweter, S. D., Oberstrass, F. C., & Allain, F. H. (2006). Sequence-specific binding of single-stranded RNA: Is there a code for recognition? Nucleic Acids Research, 34, 4943–4959.CrossRefGoogle Scholar
  63. 63.
    Calero, G., Wilson, K. F., Ly, T., Rios-Steiner, J. L., Clardy, J. C., & Cerione, R. A. (2002). Structural basis of m7G pppG binding to the nuclear cap-binding protein complex. Nature Structural and Molecular Biology, 9, 912–917.CrossRefGoogle Scholar
  64. 64.
    Price, S. R., Evans, P. R., & Nagai, K. (1998). Crystal structure of the spliceosomal U2B”-U2A’ protein complex bound to a fragment of U2 small nuclear RNA. Nature, 394, 645–650.ADSCrossRefGoogle Scholar
  65. 65.
    Conte, M. R., Grune, T., Ghuman, J., Kelly, G., Ladas, A., Matthews, S., et al. (2000). Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. The EMBO Journal, 19, 3132–3141.CrossRefGoogle Scholar
  66. 66.
    Handa, N., Nureki, O., Kurimoto, K., Kim, I., Sakamoto, H., Shimura, Y., et al. (1999). Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature, 398, 579–585.ADSCrossRefGoogle Scholar
  67. 67.
    Allain, F. H., Bouvet, P., Dieckmann, T., & Feigon, J. (2000). Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO Journal, 19, 6870–6881.CrossRefGoogle Scholar
  68. 68.
    Auweter, S. D., Fasan, R., Reymond, L., Underwood, J. G., Black, D. L., Pitsch, S., et al. (2006). Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO Journal, 25, 163–173.CrossRefGoogle Scholar
  69. 69.
    Black, D. L., & Grabowski, P. J. (2003). Alternative pre-mRNA splicing and neuronal function. Progress in Molecular and Subcellular Biology, 31, 187–216.CrossRefGoogle Scholar
  70. 70.
    Caceres, J. F., Misteli, T., Screaton, G. R., Spector, D. L., & Krainer, A. R. (1997). Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity. Journal of Cell Biology, 138, 225–238.CrossRefGoogle Scholar
  71. 71.
    Huh, G. S., & Hynes, R. O. (1994). Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes and Development, 8, 1561–1574.CrossRefGoogle Scholar
  72. 72.
    Siomi, H., Matunis, M. J., Michael, W. M., & Dreyfuss, G. (1993). The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Research, 21, 1193–1198.CrossRefGoogle Scholar
  73. 73.
    Grishin, N. V. (2001). KH domain: One motif, two folds. Nucleic Acids Research, 29, 638–643.CrossRefGoogle Scholar
  74. 74.
    Backe, P. H., Messias, A. C., Ravelli, R. B., Sattler, M., & Cusack, S. (2005). X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure, 13, 1055–1067.CrossRefGoogle Scholar
  75. 75.
    Gibson, T. J., Thompson, J. D., & Heringa, J. (1993). The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Letters, 324, 361–366.CrossRefGoogle Scholar
  76. 76.
    Liu, Z., Luyten, I., Bottomley, M. J., Messias, A. C., Houngninou-Molango, S., Sprangers, R., et al. (2001). Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science, 294, 1098–1102.ADSCrossRefGoogle Scholar
  77. 77.
    Jensen, K. B., Dredge, B. K., Stefani, G., Zhong, R., Buckanovich, R. J., Okano, H. J., et al. (2000). Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron, 25, 359–371.CrossRefGoogle Scholar
  78. 78.
    Ostareck-Lederer, A., Ostareck, D. H., & Hentze, M. W. (1998). Cytoplasmic regulatory functions of the KH-domain proteins hnRNPs K and E1/E2. Trends in Biochemical Sciences, 23, 409–411.CrossRefGoogle Scholar
  79. 79.
    De Boulle, K., Verkerk, A. J., Reyniers, E., Vits, L., Hendrickx, J., Van Roy, B., et al. (1993). A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nature Genetics, 3, 31–35.CrossRefGoogle Scholar
  80. 80.
    Link, T. M., Valentin-Hansen, P., & Brennan, R. G. (2009). Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proceedings of the National Academy of Sciences of the United States of America, 106, 19292–19297.ADSCrossRefGoogle Scholar
  81. 81.
    Babitzke, P. (1997). Regulation of tryptophan biosynthesis: Trp-ing the TRAP or how Bacillus subtilis reinvented the wheel. Molecular Microbiology, 26, 1–9.CrossRefGoogle Scholar
  82. 82.
    Kambach, C., Walke, S., Young, R., Avis, J. M., de la Fortelle, E., Raker, V. A., et al. (1999). Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell, 96, 375–387.CrossRefGoogle Scholar
  83. 83.
    Stark, H., Dube, P., Luhrmann, R., & Kastner, B. (2001). Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature, 409, 539–542.ADSCrossRefGoogle Scholar
  84. 84.
    Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K., Li, J., & Nagai, K. (2009). Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature, 458, 475–480.ADSCrossRefGoogle Scholar
  85. 85.
    Mikulecky, P. J., Kaw, M. K., Brescia, C. C., Takach, J. C., Sledjeski, D. D., & Feig, A. L. (2004). Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nature Structural and Molecular Biology, 11, 1206–1214.CrossRefGoogle Scholar
  86. 86.
    Sauter, C., Basquin, J., & Suck, D. (2003). Sm-like proteins in Eubacteria: The crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Research, 31, 4091–4098.CrossRefGoogle Scholar
  87. 87.
    Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T., & Gottesman, S. (1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 12462–12467.ADSCrossRefGoogle Scholar
  88. 88.
    Masse, E., & Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 99, 4620–4625.ADSCrossRefGoogle Scholar
  89. 89.
    Lee, T., & Feig, A. L. (2008). The RNA binding protein Hfq interacts specifically with tRNAs. RNA, 14, 514–523.CrossRefGoogle Scholar
  90. 90.
    Santiago-Frangos A, Woodson SA (2018) Hfq chaperone brings speed dating to bacterial sRNA. Wiley Interdiscip Rev RNA:e1475.CrossRefGoogle Scholar
  91. 91.
    Santiago-Frangos A, Jeliazkov JR, Gray JJ, Woodson SA (2017) Acidic C-terminal domains autoregulate the RNA chaperone Hfq. Elife 6.Google Scholar
  92. 92.
    Santiago-Frangos, A., Kavita, K., Schu, D. J., Gottesman, S., & Woodson, S. A. (2016). C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proceedings of the National Academy of Sciences of the United States of America, 113, E6089–E6096.CrossRefGoogle Scholar
  93. 93.
    Friesen, W. J., & Darby, M. K. (1998). Specific RNA binding proteins constructed from zinc fingers. Nature Structural and Molecular Biology, 5, 543–546.CrossRefGoogle Scholar
  94. 94.
    Spassov, D. S., & Jurecic, R. (2003). The PUF family of RNA-binding proteins: Does evolutionarily conserved structure equal conserved function? IUBMB Life, 55, 359–366.CrossRefGoogle Scholar
  95. 95.
    Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L., & Zhou, M. M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature, 426, 468–474.ADSCrossRefGoogle Scholar
  96. 96.
    Chang, K. Y., & Ramos, A. (2005). The double-stranded RNA-binding motif, a versatile macromolecular docking platform. The FEBS Journal, 272, 2109–2117.CrossRefGoogle Scholar
  97. 97.
    Bycroft, M., Grunert, S., Murzin, A. G., Proctor, M., & St Johnston, D. (1995). NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO Journal, 14, 3563–3571.CrossRefGoogle Scholar
  98. 98.
    Kharrat, A., Macias, M. J., Gibson, T. J., Nilges, M., & Pastore, A. (1995). Structure of the dsRNA binding domain of E. coli RNase III. EMBO Journal, 14, 3572–3584.CrossRefGoogle Scholar
  99. 99.
    Masliah, G., Barraud, P., & Allain, F. H. T. (2013). RNA recognition by double-stranded RNA binding domains: A matter of shape and sequence. Cellular and Molecular Life Sciences, 70, 1875–1895.Google Scholar
  100. 100.
    Ryter, J. M., & Schultz, S. C. (1998). Molecular basis of double-stranded RNA-protein interactions: Structure of a dsRNA-binding domain complexed with dsRNA. EMBO Journal, 17, 7505–7513.CrossRefGoogle Scholar
  101. 101.
    Gan, J., Tropea, J. E., Austin, B. P., Court, D. L., Waugh, D. S., & Ji, X. (2006). Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell, 124, 355–366.CrossRefGoogle Scholar
  102. 102.
    Wu, H., Henras, A., Chanfreau, G., & Feigon, J. (2004). Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proceedings of the National Academy of Sciences of the United States of America, 101, 8307–8312.ADSCrossRefGoogle Scholar
  103. 103.
    Robertson, H. D. (1982). Escherichia coli ribonuclease III cleavage sites. Cell, 30, 669–672.CrossRefGoogle Scholar
  104. 104.
    Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366.ADSCrossRefGoogle Scholar
  105. 105.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.ADSCrossRefGoogle Scholar
  106. 106.
    Nishikura, K. (2006). Editor meets silencer: Crosstalk between RNA editing and RNA interference. Nature Reviews Molecular Cell Biology, 7, 919–931.CrossRefGoogle Scholar
  107. 107.
    Bass, B. L., & Weintraub, H. (1988). An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell, 55, 1089–1098.CrossRefGoogle Scholar
  108. 108.
    Qiao, F., & Bowie, J. U. (2005). The many faces of SAM. Sci STKE, 2005, 1–10.Google Scholar
  109. 109.
    Aviv, T., Lin, Z., Lau, S., Rendl, L. M., Sicheri, F., & Smibert, C. A. (2003). The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nature Structural and Molecular Biology, 10, 614–621.CrossRefGoogle Scholar
  110. 110.
    Dahanukar, A., Walker, J. A., & Wharton, R. P. (1999). Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Molecular Cell, 4, 209–218.CrossRefGoogle Scholar
  111. 111.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science, 289, 905–920.ADSCrossRefGoogle Scholar
  112. 112.
    Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., et al. (2000). Structure of the 30S ribosomal subunit. Nature, 407, 327–339.ADSCrossRefGoogle Scholar
  113. 113.
    Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Wimberly, B. T., & Ramakrishnan, V. (2002). Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: Structure of the proteins and their interactions with 16 S RNA. Journal of Molecular Biology, 316, 725–768.CrossRefGoogle Scholar
  114. 114.
    Agalarov, S. C., Sridhar Prasad, G., Funke, P. M., Stout, C. D., & Williamson, J. R. (2000). Structure of the S15, S6, S18-rRNA complex: Assembly of the 30S ribosome central domain. Science, 288, 107–113.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations