Skip to main content

Gapped Quantum Systems and Entanglement Area Law

  • Chapter
  • First Online:
  • 4372 Accesses

Part of the book series: Quantum Science and Technology ((QST))

Abstract

We discuss quantum systems of large system size N, in particular, the \(N\rightarrow \infty \) limit (thermodynamic limit). We call them the quantum many-body systems. We ask about the physical properties of these quantum many-body systems in the thermodynamic limit. Our main focus in this chapter will be many-body systems with an energy gap and the entanglement properties of their ground states. We introduce the entanglement area law and its constant correction—the topological entanglement entropy. We discuss the information-theoretic meaning of topological entanglement entropy, and generalize it to construct a “universal entanglement detector”, whose values on the gapped ground states provide nontrivial information of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amico, L., Fazio, R., Osterloh, A., & Vedral, V. (2008, May). Entanglement in many-body systems. Reviews of Modern Physics, 80, 517–576.

    Google Scholar 

  2. Arad, I., Landau, Z., & Vazirani, U. (2012, May). Improved one-dimensional area law for frustration-free systems. Physical Review B, 85, 195145.

    Google Scholar 

  3. Calabrese, P., & Cardy, J. (2009). Entanglement entropy and conformal field theory. Journal of Physics A: Mathematical and Theoretical, 42(50), 504005.

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Ji, Z., Li, C.-K., Poon, Y.-T., Shen, Y., Nengkun, Y., et al. (2015). Discontinuity of maximum entropy inference and quantum phase transitions. New Journal of Physics, 17(8), 083019.

    Article  ADS  Google Scholar 

  5. De Nobili, C., Coser, A., Tonni, E. (2015). Entanglement entropy and negativity of disjoint intervals in CFT: Some numerical extrapolations. arXiv:1501.04311

  6. Doherty, A. C., & Bartlett, S. D. (2009, July). Identifying phases of quantum many-body systems that are universal for quantum computation. Physical Review Letters, 103, 020506.

    Google Scholar 

  7. Dusuel, S., Kamfor, M., Orús, R., Schmidt, K. P., & Vidal, J. (2011). Robustness of a perturbed topological phase. Physical review letters, 106(10), 107203.

    Google Scholar 

  8. Eisert, J., Cramer, M., & Plenio, M. B. (2010, February). Colloquium: Area laws for the entanglement entropy. Reviews of Modern Physics, 82, 277–306.

    Google Scholar 

  9. Furukawa, S., Pasquier, V., & Shiraishi, J. (2009, April). Mutual information and boson radius in a \(c=1\) critical system in one dimension. Physical Review Letters, 102, 170602.

    Google Scholar 

  10. Hastings, M. B. (2007). An area law for one-dimensional quantum systems. Journal of Statistical Mechanics: Theory and Experiment, 2007(08), P08024.

    Article  MathSciNet  Google Scholar 

  11. Hayden, P., Jozsa, R., Petz, D., & Winter, A. (2004). Structure of states which satisfy strong subadditivity of quantum entropy with equality. Communications in Mathematical Physics, 246(2), 359–374.

    Article  ADS  MathSciNet  Google Scholar 

  12. Hamma, A., & Lidar, D. A. (2008). Adiabatic preparation of topological order. Physical review letters, 100, 030502.

    Google Scholar 

  13. Holzhey, C., Larsen, F., & Wilczek, F. (1994). Geometric and renormalized entropy in conformal field theory. Nuclear Physics B, 424(3), 443–467.

    Article  ADS  MathSciNet  Google Scholar 

  14. Isakov, S. V., Hastings, M. B., & Melko, R. G. (2011, October). Topological entanglement entropy of a bose-hubbard spin liquid. Nature Physics, 7(10), 772–775.

    Google Scholar 

  15. Jiang, H.-C., Wang, Z., & Balents, L. (2012, December). Identifying topological order by entanglement entropy. Nature Physics, 8(12), 902–905.

    Google Scholar 

  16. Kitaev, A., & Preskill, J. (2006, March). Topological entanglement entropy. Physical Review Letters, 96(11), 110404.

    Google Scholar 

  17. Levin, M., & Wen, X.-G. (2006, March). Detecting topological order in a ground state wave function. Physical Review Letters, 96(11), 110405.

    Google Scholar 

  18. Li, H., & Haldane, F. D. M. (2008, July). Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states. Physical Review Letters, 101, 010504.

    Google Scholar 

  19. Lieb, E. H., & Ruskai, M. B. (2002). Proof of the strong subadditivity of quantum-mechanical entropy. Inequalities (pp. 63–66). Berlin: Springer.

    Chapter  Google Scholar 

  20. Liu, Y., Zeng, B., & Zhou, D. L. (2016). Irreducible many-body correlations in topologically ordered systems. New Journal of Physics, 18(2), 023024.

    Article  ADS  Google Scholar 

  21. Pollmann, F., Turner, A. M., Berg, E., & Oshikawa, M. (2010, February). Entanglement spectrum of a topological phase in one dimension. Physical Review B, 81, 064439.

    Google Scholar 

  22. Trebst, S., Werner, P., Troyer, M., Shtengel, K., & Nayak, C. (2007). Breakdown of a topological phase: Quantum phase transition in a loop gas model with tension. Physical review letters, 98, 070602.

    Google Scholar 

  23. Tupitsyn, I. S., Kitaev, A., Prokof’Ev, N. V., & Stamp, P. C. E. (2010). Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model. Physical Review B, 82, 085114.

    Google Scholar 

  24. Vidal, G., Latorre, J. I., Rico, E., & Kitaev, A. (2003, June). Entanglement in quantum critical phenomena. Physical Review Letters, 90, 227902.

    Google Scholar 

  25. Vidal, J., Dusuel, S., & Schmidt, K. P. (2009a). Low-energy effective theory of the toric code model in a parallel magnetic field. Physical Review B, 79, 033109.

    Google Scholar 

  26. Vidal, J., Thomale, R., Schmidt, K. P., & Dusuel, S. (2009b). Self-duality and bound states of the toric code model in a transverse field. Physical Review B, 80, 081104.

    Google Scholar 

  27. Zeng, B., & Wen, X.-G. (2015). Gapped quantum liquids and topological order, stochastic local transformations and emergence of unitarity. Physical Review B, 91(12), 125121.

    Article  ADS  Google Scholar 

  28. Wu, F., Deng, Y., & Prokof’ev, N. (2012). Phase diagram of the toric code model in a parallel magnetic field. Physical Review B, 85, 195104.

    Google Scholar 

  29. Zeng, B., & Zhou, D. L. (2016). Topological and error-correcting properties for symmetry-protected topological order. EPL (Europhysics Letters), 113(5), 56001.

    Article  ADS  Google Scholar 

  30. Zhang, Y., Grover, T., Turner, A., Oshikawa, M., & Vishwanath, A. (2012, June). Quasiparticle statistics and braiding from ground-state entanglement. Physical Review B, 85, 235151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, B., Chen, X., Zhou, DL., Wen, XG. (2019). Gapped Quantum Systems and Entanglement Area Law. In: Quantum Information Meets Quantum Matter. Quantum Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9084-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9084-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9082-5

  • Online ISBN: 978-1-4939-9084-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics