Skip to main content

Quantum Error-Correcting Codes

  • Chapter
  • First Online:

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Any quantum system inevitably interacts with the environment which causes decoherence. While the environment is generally inaccessible, can we protect our system against noise to maintain its quantum coherence? One technique developed in quantum information science, called the quantum error-correcting codes, does the job. The main idea is to “encode” the system into a subspace of the entire N-qubit space, called the “code space”, such that the errors caused by decoherence of the system can be “corrected”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beigi, S., Chuang, I., Grassl, M., Shor, P., & Zeng, B. (2011, February). Graph concatenation for quantum codes. Journal of Mathematical Physics, 52(2), 022201.

    Google Scholar 

  2. Bombin, H. (2013). An introduction to topological quantum codes.

    Google Scholar 

  3. Briegel, H. J., & Raussendorf, R. (2001, January). Persistent entanglement in arrays of interacting particles. Physical Review Letters, 86, 910–913.

    Google Scholar 

  4. Calderbank, A. R., & Shor, P. W. (1996, August). Good quantum error-correcting codes exist. Physical Review A, 54, 1098–1105.

    Google Scholar 

  5. Calderbank, A. R., Rains, E. M., Shor, P. M., & Sloane, N. J. (1998). Quantum error correction via codes over \({GF}(4)\). IEEE Transactions on Information Theory, 44(4), 1369–1387.

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Chung, H., Cross, A. W., Zeng, B., & Chuang, I. L. (2008). Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit. Physical Review A, 78(1), 012353. arXiv:0801.2360.

  7. Chuang, I. L., Cross, A. W., Smith, G., Smolin, J. A., & Zeng, B. (2009). Codeword stabilized quantum codes: Algorithm and structure. Journal of Mathematical Physics, 50(4), 042109. arXiv:0803.3232

  8. Cross, A., Smith, G., Smolin, J., & Zeng, B. (2009). Codeword stabilized quantum codes. IEEE Transactions on Information Theory, 55(1), 1369–1387.

    Article  MathSciNet  Google Scholar 

  9. Gottesman, D. (1997) Stabilizer codes and quantum error correction. Ph.D. thesis, CalTech.

    Google Scholar 

  10. Gross, D., & Eisert, J. (2007, June). Novel schemes for measurement-based quantum computation. Physical Review Letters, 98(22), 220503.

    Google Scholar 

  11. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., & Briegel, H. (2006, February). Entanglement in graph states and its applications. arXiv:quant-ph/0602096.

  12. Kitaev, A. Y. (1997). Quantum computations: Algorithms and error correction. Russian Mathematical Surveys, 52, 1191–1249.

    Article  ADS  MathSciNet  Google Scholar 

  13. Kitaev, A. Y., Shen, A. H., & Vyalyi, M. N. (2002). Classical and quantum computation. Graduate studies in mathematics (Vol. 47). Providence, RI: American Mathematical Society.

    Google Scholar 

  14. Knill, E., & Laflamme, R. (1997, February). Theory of quantum error-correcting codes. Physical Review A, 55, 900–911.

    Google Scholar 

  15. Kou, S.-P., Levin, M., & Wen, X.-G. (2008, October). Mutual Chern-Simons theory for Z\(_{2}\) topological order. Physical Review B, 78(15), 155134.

    Google Scholar 

  16. Kwek, L. C., Wei, Z., & Zeng, B. (2012). Measurement-based quantum computing with valence-bond-solids. International Journal of Modern Physics B, 26, 30002.

    Article  ADS  Google Scholar 

  17. Nielsen, M., & Chuang, I. (2000). Quantum computation and quantum information. Cambridge, England: Cambridge University Press.

    MATH  Google Scholar 

  18. Raussendorf, R., & Briegel, H. J. (2001, May). A one-way quantum computer. Physical Review Letters, 86, 5188–5191.

    Google Scholar 

  19. Raussendorf, R., & Wei, T.-C. (2012, July). Quantum computation by local measurement.

    Google Scholar 

  20. Schlingemann, D. (2002). Stabilizer codes can be realized as graph codes. Quantum Information and Computation, 2(4), 307–323.

    MathSciNet  MATH  Google Scholar 

  21. Schlingemann, D., & Werner, R. F. (2002). Quantum error-correcting codes associated with graphs. Physical Review A, 65, 012308.

    Article  ADS  Google Scholar 

  22. Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4), 2493–2496.

    Article  ADS  Google Scholar 

  23. Steane, A. (1996, November). Multiple-particle interference and quantum error correction. Royal Society of London Proceedings Series A, 452, 2551–2577.

    Google Scholar 

  24. Verstraete, F., & Cirac, J. I. (2004, December). Valence-bond states for quantum computation. Physical Review A, 70(6), 060302.

    Google Scholar 

  25. Wen, X.-G. (2003, January). Quantum orders in an exact soluble model. Physical Review Letters, 90(1), 016803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, B., Chen, X., Zhou, DL., Wen, XG. (2019). Quantum Error-Correcting Codes. In: Quantum Information Meets Quantum Matter. Quantum Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9084-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9084-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9082-5

  • Online ISBN: 978-1-4939-9084-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics