Skip to main content

A Unification of Information and Matter

  • Chapter
  • First Online:
Quantum Information Meets Quantum Matter

Part of the book series: Quantum Science and Technology ((QST))

  • 4325 Accesses

Abstract

In this book, our discussions on many-body quantum systems have been concentrated on gapped topological states. After the introduction of the concept of long-range quantum entanglement and the discovery of related mathematical theories (such as tensor category theory), a systematic understanding of all gapped states in any dimensions is emerging, which include topological orders and SPT orders. However, our understanding of highly entangled gapless states is very limited. We do not even know where to start, to gain a systematic understanding of highly entangled gapless states. This will be the next big challenge in condensed matter physics. In this chapter, we will study some examples of highly entangled gapless states. We will show that long-range entangled qubits can provide a unified origin of light and electrons (or more generally, gauge interactions and Fermi statistics): light waves (gauge fields) are fluctuations of long-range entanglement and electrons (fermions) are defects of long-range entanglement. Since gauge bosons and fermions represent almost all the elementary particles, the above results suggest that the space formed by long-range entangled qubits may be an origin of all matter. In other words, (quantum) information unifies matter. This happens to be the central theme of this book: a theory of quantum information and quantum matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we do not discuss the revolution for thermodynamical and statistical physics.

  2. 2.

    Many people have ignored such challenges and the geometric view of world becomes the main stream.

  3. 3.

    The solids here should be more accurately referred to as crystals.

  4. 4.

    Grassmann numbers are anti-commuting numbers.

References

  1. Affleck, I., & Brad Marston, J. (1988). Large-n limit of the Heisenberg-Hubbard model: Implications for high-Tc superconductors. Physical Review B, 37, 3774.

    Article  ADS  Google Scholar 

  2. Andrei Bernevig, B., & Haldane, F. D. M. (2008). Fractional quantum Hall states and Jack polynomials. Physical Review Letters, 100, 246802.

    Article  ADS  Google Scholar 

  3. Andrei Bernevig, B., & Haldane, F. D. M. (2008). Generalized clustering conditions of Jack polynomials at negative Jack parameter \(\alpha \). Physical Review B, 77, 184502.

    Article  ADS  Google Scholar 

  4. Ardonne, E., Bergholtz, E. J., Kailasvuori, J., & Wikberg, E. (2008). Degeneracy of non-Abelian quantum Hall states on the torus: Domain walls and conformal field theory. Journal of Statistical Mechanics: Theory and Experiment, 2008(04), P04016.

    Google Scholar 

  5. Banks, T., Myerson, R., & Kogut, J. B. (1977). Phase transitions in Abelian lattice gauge theories. Nuclear Physics B, 129, 493.

    Article  ADS  Google Scholar 

  6. Barkeshli, M., & Wen, X.-G. (2009). Structure of quasiparticles and their fusion algebra in fractional quantum Hall states. Physical Review B, 79, 195132.

    Article  ADS  Google Scholar 

  7. Barkeshli, M., & Wen, X.-G. (2010). Classification of Abelian and non-Abelian multilayer fractional quantum Hall states through the pattern of zeros. Physical Review B, 82, 245301.

    Article  ADS  Google Scholar 

  8. Baskaran, G., & Anderson, P. W. (1988). Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Physical Review B, 37, 580–583.

    Article  ADS  Google Scholar 

  9. Bergholtz, E. J., Kailasvuori, J., Wikberg, E., Hansson, T. H., & Karlhede, A. (2006). The pfaffian quantum Hall state made simple-multiple vacua and domain walls on a thin torus. Physical Review B, 74, 081308.

    Article  ADS  Google Scholar 

  10. Chen, X., Zheng-Cheng, G., & Wen, X.-G. (2010). Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Physical Review B, 82, 155138.

    Article  ADS  Google Scholar 

  11. D’Adda, A., Di Vecchia, P., & Lüscher, M. (1978). Nuclear Physics B, 146, 63.

    Article  ADS  MathSciNet  Google Scholar 

  12. Dirac, P. A. M. (1926). On the theory of quantum mechanics. Proceedings of the Royal Society, A112, 661.

    Article  ADS  MATH  Google Scholar 

  13. Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 17, 891.

    Article  ADS  MATH  Google Scholar 

  14. Einstein, A. (1916). The foundation of the general theory of relativity. Annalen der Physik, 49, 769.

    Article  ADS  Google Scholar 

  15. Fermi, E. (1926). Zur quantelung des idealen einatomigen gases. Zeitschrift für Physik, 36, 902.

    Article  ADS  MATH  Google Scholar 

  16. Flavin, J., & Seidel, A. (2011). Abelian and non-Abelian statistics in the coherent state representation. Physical Review X, 1, 021015.

    Article  ADS  Google Scholar 

  17. Foerster, D., Nielsen, H. B., & Ninomiya, M. (1980). Dynamical stability of local gauge symmetry - creation of light from chaos. Physics Letters B, 94, 135.

    Article  ADS  Google Scholar 

  18. Goldhaber, A. S. (1982). Electromagnetism, spin, and statistics. Physical Review Letters, 49, 905–908.

    Article  ADS  Google Scholar 

  19. Gong, S.-S., Zhu, W., Balents, L., & Sheng, D. N. (2015). Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice. Physical Review B, 91(7), 075112.

    Article  ADS  Google Scholar 

  20. Gross, D. J., & Wilczek, F. (1973). Ultraviolet behavior of non-Abelian gauge theories. Physical Review Letters, 30, 1343.

    Article  ADS  Google Scholar 

  21. Grushin, A. G., Neupert, T., Chamon, C., & Mudry, C. (2012). Enhancing the stability of fractional Chern insulators against competing phases.

    Google Scholar 

  22. Gu, Z.-C., Wang, Z., & Wen, X.-G. (2015). A classification of 2D fermionic and bosonic topological orders. Physical Review B, 91, 125149.

    Google Scholar 

  23. Hastings, M. B. (2000). Dirac, Anderson, and Goldstone on the Kagome. Physical Review B, 63, 14413.

    Article  Google Scholar 

  24. Hastings, M. B., & Wen, X.-G. (2005). Quasi-adiabatic continuation of quantum states: The stability of topological ground state degeneracy and emergent gauge invariance. Physical Review B, 72, 045141.

    Article  ADS  Google Scholar 

  25. He, Y.-C., Sheng, D. N., & Chen, Y. (2014). Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model. Physical Review Letters, 112, 137202.

    Article  ADS  Google Scholar 

  26. Helton, J. S., Matan, K., Shores, M. P., Nytko, E. A., Bartlett, B. M., Yoshida, Y., et al. (2007). Spin dynamics of the spin-1/2 kagome lattice antiferromagnet \(ZnCu_3(OH)_6Cl_2\). Physical Review Letters, 98, 107204.

    Article  ADS  Google Scholar 

  27. Hermele, M., Fisher, M. P. A., & Balents, L. (2004). Pyrochlore photons: The U(1) spin liquid in a S=1/2 three-dimensional frustrated magnet. Physical Review B, 69, 064404.

    Google Scholar 

  28. Hermele, M., Ran, Y., Lee, P. A., & Wen, X.-G. (2008). Properties of an algebraic spin liquid on the kagome lattice. Physical Review B, 77, 224413.

    Article  ADS  Google Scholar 

  29. Hong, S.-M. (2009). On symmetrization of 6j-symbols and Levin-Wen Hamiltonian.

    Google Scholar 

  30. Imai, T., Fu, M., Han, T. H., & Lee, Y. S. (2011). Local spin susceptibility of the S=1/2 kagome lattice in ZnCu3(OD)6Cl2. Physical Review B, 84, 020411.

    Article  ADS  Google Scholar 

  31. Jackiw, R., & Rebbi, C. (1976). Spin from isospin in a gauge theory. Physical Review Letters, 36, 1116–1119.

    Article  ADS  Google Scholar 

  32. Jiang, H. C., Weng, Z. Y., & Sheng, D. N. (2008). DMRG numerical study of the kagom antiferromagnet. Physical Review Letters, 101, 117203.

    Article  ADS  Google Scholar 

  33. Kalmeyer, V., & Laughlin, R. B. (1987). Equivalence of the resonating-valence-bond and fractional quantum Hall states. Physical Review Letters, 59, 2095–2098.

    Article  ADS  Google Scholar 

  34. Kaluza, T. (1921). On the problem of unity in physics. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (Math. Phys.) 966.

    Google Scholar 

  35. Kitaev, A. Yu. (2003). Fault-tolerant quantum computation by anyons. Annals of Physics (N.Y.), 303, 2–30.

    Google Scholar 

  36. Klein, O. (1926). Quantum theory and five dimensional theory of relativity. Zeitschrift für Physik, 37, 895.

    Article  ADS  Google Scholar 

  37. Ko, W.-H., Lee, P. A., & Wen, X.-G. (2009). Doped kagome system as exotic superconductor with fractional quasiparticles. Physical Review B, 79, 214502.

    Article  ADS  Google Scholar 

  38. Kogut, J. B. (1979). An introduction to lattice gauge theory and spin systems. Reviews of Modern Physics, 51, 659–713.

    Article  ADS  MathSciNet  Google Scholar 

  39. Kogut, J., & Susskind, L. (1975). Hamiltonian formulation of Wilson’s lattice gauge theories. Physical Review D, 11, 395.

    Article  ADS  Google Scholar 

  40. Laughlin, R. B. (1983). Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Physical Review Letters, 50, 1395–1398.

    Article  ADS  Google Scholar 

  41. Lechner, K., & Marchetti, P. A. (2000). Spin-statistics transmutation in relativistic quantum field theories of dyons. Journal of High Energy Physics, 2000, 12.

    Article  MathSciNet  MATH  Google Scholar 

  42. Lee, T. D., & Yang, C. N. (1956). Question of parity conservation in weak interactions. Physical Review A, 104, 254.

    Article  ADS  Google Scholar 

  43. Leinaas, J. M., & Myrheim, J. (1977). On the theory of identical particles. Il Nuovo Cimento, 37B, 1.

    ADS  Google Scholar 

  44. Levin, M., & Wen, X.-G. (2003). Fermions, strings, and gauge fields in lattice spin models. Physical Review B, 67, 245316.

    Article  ADS  Google Scholar 

  45. Levin, M., & Wen, X.-G. (2005). String-net condensation: A physical mechanism for topological phases. Physical Review B, 71, 045110.

    Article  ADS  Google Scholar 

  46. Levin, M. A., & Wen, X.-G. (2005). Photons and electrons as emergent phenomena. Reviews of Modern Physics, 77, 871.

    Article  ADS  Google Scholar 

  47. Levin, M., & Wen, X.-G. (2006). Quantum ether: Photons and electrons from a rotor model. Physical Review B, 73, 035122.

    Article  ADS  Google Scholar 

  48. Lu, Y.-M., & Ran, Y. (2011). \(Z_2\) spin liquid and chiral antiferromagnetic phase in Hubbard model on the honeycomb lattice: Duality between Schwinger-fermion and Schwinger-boson representations. Physical Review B, 84, 024420.

    Article  ADS  Google Scholar 

  49. Lu, Y.-M., Wen, X.-G., Wang, Z., & Wang, Z. (2010). Non-Abelian quantum Hall states and their quasiparticles: From the pattern of zeros to vertex algebra. Physical Review B, 81, 115124.

    Google Scholar 

  50. Lu, Y.-M., Ran, Y., & Lee, P. A. (2011). Z2 spin liquid in S=1/2 Heisenberg model on Kagome lattice: A projective symmetry group study of Schwinger-fermion mean-field states. Physical Review B, 83, 224413.

    Article  ADS  Google Scholar 

  51. Misguich, G., Lhuillier, C., Bernu, B., & Waldtmann, C. (1999). Spin-liquid phase of the multiple-spin exchange Hamiltonian on the triangular lattice. Physical Review B, 60, 1064.

    Article  ADS  Google Scholar 

  52. Moessner, R., & Sondhi, S. L. (2001). Resonating valence bond phase in the triangular lattice quantum dimer model. Physical Review Letters, 86, 1881.

    Article  ADS  Google Scholar 

  53. Moessner, R., & Sondhi, S. L. (2003). Three-dimensional resonating-valence-bond liquids and their excitations. Physical Review B, 68, 184512.

    Article  ADS  Google Scholar 

  54. Moore, G., & Read, N. (1991). Nonabelions in the fractional quantum Hall effect. Nuclear Physics B, 360, 362.

    Article  ADS  MathSciNet  Google Scholar 

  55. Motrunich, O. I., & Senthil, T. (2002). Exotic order in simple models of bosonic systems. Physical Review Letters, 89, 277004.

    Article  ADS  Google Scholar 

  56. Neupert, T., Santos, L., Chamon, C., & Mudry, C. (2011). Fractional quantum Hall states at zero magnetic field. Physical Review Letters, 106, 236804.

    Article  ADS  Google Scholar 

  57. Nordstrom, G. and Uber die Moglichkeit. (1914). On the possibility of a unification of the electromagnetic and gravitational fields. Physikalische Zeitschrift, 15, 504.

    Google Scholar 

  58. Pauli, W. (1941). Relativistic field theories of elementary particles. Reviews of Modern Physics, 13, 203.

    Article  ADS  MATH  Google Scholar 

  59. Politzer, H. D. (1973). Reliable perturbative results for strong interactions? Physical Review Letters, 30, 1346.

    Article  ADS  Google Scholar 

  60. Radu, I. P., Miller, J. B., Marcus, C. M., Kastner, M. A., Pfeiffer, L. N., & West, K. W. (2008). Quasiparticle tunneling in the fractional quantum Hall state at \(\nu = 5/2\). Science, 320, 899.

    Google Scholar 

  61. Ran, Y., Hermele, M., Lee, P. A., & Wen, X.-G. (2007). Projected wavefunction study of spin-1/2 Heisenberg model on the Kagome lattice. Physical Review Letters, 98, 117205.

    Article  ADS  Google Scholar 

  62. Ran, Y., Ko, W.-H., Lee, P. A., & Wen, X.-G. (2009). Spontaneous parity breaking and spin ordering of Dirac spin liquid in a magnetic field. Physical Review Letters, 102, 047205.

    Article  ADS  Google Scholar 

  63. Read, N. (2006). Wavefunctions and counting formulas for quasiholes of clustered quantum Hall states on a sphere. Physical Review B, 73, 245334.

    Article  ADS  Google Scholar 

  64. Read, N., & Sachdev, S. (1991). Large-N expansion for frustrated quantum antiferromagnets. Physical Review Letters, 66, 1773.

    Google Scholar 

  65. Savit, R. (1980). Duality in field theory and statistical systems. Reviews of Modern Physics, 52, 453.

    Article  ADS  MathSciNet  Google Scholar 

  66. Seidel, A. (2008). Pfaffian statistics through adiabatic transport in the 1D coherent state. Physical Review Letters, 101, 196802.

    Article  ADS  Google Scholar 

  67. Seidel, A. (2010). S-duality constraints on 1D patterns associated with fractional quantum Hall states. Physical Review Letters, 105, 026802.

    Article  ADS  Google Scholar 

  68. Seidel, A., & Lee, D.-H. (2006). Abelian and non-Abelian Hall liquids and charge density wave: Quantum number fractionalization in one and two dimensions. Physical Review Letters, 97, 056804.

    Article  ADS  Google Scholar 

  69. Seidel, A., & Lee, D.-H. (2007). Domain wall type defects as anyons in phase space. Physical Review B, 76, 155101.

    Article  ADS  Google Scholar 

  70. Seidel, A., & Yang, K. (2008). Halperin (m, m’, n) bilayer quantum hall states on thin cylinders.

    Google Scholar 

  71. Sheng, D. N., Gu, Z.-C., Sun, K., & Sheng, L. (2011). Fractional quantum Hall effect in the absence of Landau levels. Nature, 2, 389.

    Google Scholar 

  72. Simon, S. H., Rezayi, E. H., & Cooper, N. R. (2007). Pseudopotentials for multi-particle interactions in the quantum Hall regime. Physical Review B, 75, 195306.

    Article  ADS  Google Scholar 

  73. Sun, K., Gu, Z.-C., Katsura, H., & Sarma, S. D. (2011). Nearly-flat bands with nontrivial topology. Physical Review Letters, 106, 236803.

    Article  ADS  Google Scholar 

  74. Tamm, I. (1931). Zeitschrift für Physik, 71, 141.

    Article  ADS  Google Scholar 

  75. Tang, E., Mei, J.-W., & Wen, X.-G. (2011). High temperature fractional quantum hall states. Physical Review Letters, 106, 236802.

    Article  ADS  Google Scholar 

  76. Tsui, D. C., Stormer, H. L., & Gossard, A. C. (1982). Two-dimensional magnetotransport in the extreme quantum limit. Physical Review Letters, 48, 1559–1562.

    Article  ADS  Google Scholar 

  77. Wen, X.-G. (1989). Vacuum degeneracy of chiral spin state in compactified spaces. Physical Review B, 40, 7387.

    Article  ADS  Google Scholar 

  78. Wen, X.-G. (1990). Topological orders in rigid states. International Journal of Modern Physics B, 4, 239.

    Article  ADS  MathSciNet  Google Scholar 

  79. Wen, X.-G. (1991). Mean-field theory of spin-liquid states with finite energy gap and topological orders. Physical Review B, 44, 2664.

    Article  ADS  Google Scholar 

  80. Wen, X.-G. (1991). Non-abelian statistics in the FQH states. Physical Review Letters, 66, 802.

    Article  ADS  MathSciNet  Google Scholar 

  81. Wen, X.-G. (2002). Origin of gauge bosons from strong quantum correlations (origin of light). Physical Review Letters, 88, 11602.

    Article  ADS  Google Scholar 

  82. Wen, X.-G. (2003). Artificial light and quantum order in systems of screened dipoles. Physical Review B, 68, 115413.

    Article  ADS  Google Scholar 

  83. Wen, X.-G. (2003). Quantum order from string-net condensations and origin of light and massless fermions. Physical Review D, 68, 065003.

    Article  ADS  Google Scholar 

  84. Wen, X.-G., & Wang, Z. (2008). Classification of symmetric polynomials of infinite variables: Construction of Abelian and non-Abelian quantum Hall states. Physical Review B, 77, 235108.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. Wen, X.-G., & Wang, Z. (2008). Topological properties of Abelian and non-Abelian quantum Hall states from the pattern of zeros. Physical Review B, 78, 155109.

    Article  ADS  Google Scholar 

  86. Xiao-Gang, W., Wilczek, F., & Zee, A. (1989). Chiral spin states and superconductivity. Physical Review B, 39, 11413.

    Google Scholar 

  87. Weyl, H. (1952). Space, time. Matter: Dover.

    Google Scholar 

  88. Wilczek, F. (1982). Quantum mechanics of fractional-spin particles. Physical Review Letters, 49, 957.

    Article  ADS  MathSciNet  Google Scholar 

  89. Wilczek, F. (1982). Remarks on dyons. Physical Review Letters, 48, 1146–1149.

    Article  ADS  Google Scholar 

  90. Willett, R., Eisenstein, J. P., Strörmer, H. L., Tsui, D. C., Gossard, A. C., & English, J. H. (1987). Physical Review Letters, 59, 1776.

    Article  ADS  Google Scholar 

  91. Wilson, K. G. (1974). Confinement of quarks. Physical Review D, 10, 2445.

    Article  ADS  Google Scholar 

  92. Witten, E. (1979). Nuclear Physics B, 149, 285.

    Article  ADS  Google Scholar 

  93. Wu, C. S., et al. (1957). Experimental test of parity conservation in beta decay. Physical Review, 105, 1413.

    Article  ADS  Google Scholar 

  94. Yan, S., Huse, D. A., & White, S. R. (2011). Spin liquid ground state of the \(S=1/2\) kagome Heisenberg model. Science, 332, 1173–1176.

    Article  ADS  Google Scholar 

  95. Yang, C. N., & Mills, R. L. (1954). Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96, 191.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Zhu, W., Gong, S. S., & Sheng, D. N. (2015). Chiral and critical spin liquids in a spin-1/2 kagome antiferromagnet. Physical Review B, 92(1), 014424.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Zeng .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeng, B., Chen, X., Zhou, DL., Wen, XG. (2019). A Unification of Information and Matter. In: Quantum Information Meets Quantum Matter. Quantum Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9084-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9084-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9082-5

  • Online ISBN: 978-1-4939-9084-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics