Skip to main content

How to Generate All Possible Rational Wilf-Zeilberger Pairs?

  • Conference paper
  • First Online:
Algorithms and Complexity in Mathematics, Epistemology, and Science

Part of the book series: Fields Institute Communications ((FIC,volume 82))

Abstract

A Wilf–Zeilberger pair (F, G) in the discrete case satisfies the equation

$$\displaystyle F(n+1, k) - F(n, k) = G(n, k+1) - G(n, k). $$

We present a structural description of all possible rational Wilf–Zeilberger pairs and their continuous and mixed analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The talk was given at the Waterloo Workshop in Computer Algebra (in honor of Herbert Wilf’s 80th birthday), Wilfrid Laurier University, May 28, 2011. For the talk slides, see the link: http://people.brandeis.edu/~gessel/homepage/slides/wilf80-slides.pdf.

  2. 2.

    This is motivated by the fact that a differential form ω = gdx + fdy with f, g ∈ K(x, y) is exact in K(x, y) if and only if f = D y(h) and g = D x(h) for some h ∈ K(x, y).

References

  1. Abramov SA (1975) The rational component of the solution of a first order linear recurrence relation with rational right hand side. Ž Vyčisl Mat i Mat Fiz 15(4):1035–1039, 1090

    Google Scholar 

  2. Abramov SA (1995) Indefinite sums of rational functions. In: ISSAC ’95: proceedings of the 1995 international symposium on symbolic and algebraic computation. ACM, New York, NY, pp 303–308

    Chapter  Google Scholar 

  3. Abramov SA (2003) When does Zeilberger’s algorithm succeed? Adv Appl Math 30(3):424–441

    Article  MathSciNet  MATH  Google Scholar 

  4. Abramov SA, Petkovšek M (2002) On the structure of multivariate hypergeometric terms. Adv Appl Math 29(3):386–411

    Article  MathSciNet  MATH  Google Scholar 

  5. Amdeberhan T (1996) Faster and faster convergent series for ζ(3). Electron J Combin 3(1):Research Paper 13, approx. 2

    Google Scholar 

  6. Bailey DH, Borwein JM, Bradley DM (2006) Experimental determination of Apéry-like identities for ζ(2n + 2). Exp Math 15(3):281–289

    Article  MATH  Google Scholar 

  7. Baruah ND, Berndt BC, Chan HH (2009) Ramanujan’s series for 1∕π: a survey. Am Math Mon 116(7):567–587

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauer GC (1859) Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J Reine Angew Math 56:101–121

    MathSciNet  Google Scholar 

  9. Borwein J, Bailey D, Girgensohn R (2004) Experimentation in mathematics: computational paths to discovery. A K Peters/CRC Press, Natick, MA/Boca Raton, FL

    Book  MATH  Google Scholar 

  10. Bostan A, Kauers M (2010) The complete generating function for Gessel walks is algebraic. Proc Am Math Soc 138(9):3063–3078

    Article  MathSciNet  MATH  Google Scholar 

  11. Bronstein M (2005) Symbolic integration I: transcendental functions, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  12. Chen S (2011) Some applications of differential-difference algebra to creative telescoping. PhD Thesis, Ecole Polytechnique LIX

    Google Scholar 

  13. Chen S, Singer MF (2012) Residues and telescopers for bivariate rational functions. Adv Appl Math 49(2):111–133

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen S, Singer MF (2014) On the summability of bivariate rational functions. J Algebra 409:320–343

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen WYC, Hou Q-H, Mu Y-P (2005) Applicability of the q-analogue of Zeilberger’s algorithm. J Symb Comput 39(2):155–170

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen S, Feng R, Fu G, Kang J (2012) Multiplicative decompositions of multivariate q-hypergeometric terms. J Syst Sci Math Sci 32(8):1019–1032

    MathSciNet  MATH  Google Scholar 

  17. Chen S, Chyzak F, Feng R, Fu G, Li Z (2015) On the existence of telescopers for mixed hypergeometric terms. J Symb Comput 68(part 1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen WYC, Hou Q-H, Zeilberger D (2016) Automated discovery and proof of congruence theorems for partial sums of combinatorial sequences. J Differ Equ Appl 22(6):780–788

    Article  MathSciNet  MATH  Google Scholar 

  19. Christopher C (1999) Liouvillian first integrals of second order polynomial differential equations. Electron J Differ Equ 49:1–7

    MathSciNet  MATH  Google Scholar 

  20. Dreyfus T, Hardouin C, Roques J, Singer MF (2018) On the nature of the generating series of walks in the quarter plane. Invent Math 213(1):139–203. https://doi.org/10.1007/s00222-018-0787-z

    Article  MathSciNet  MATH  Google Scholar 

  21. Ekhad SB, Zeilberger D (1994) A WZ proof of Ramanujan’s formula for π. In: Geometry, Analysis and Mechanics. World Scientific Publishing, River Edge, NJ, pp 107–108

    MATH  Google Scholar 

  22. Gessel IM (1995) Finding identities with the WZ method. J. Symb. Comput. 20(5–6):537–566

    Article  MathSciNet  MATH  Google Scholar 

  23. Guillera J (2002) Some binomial series obtained by the WZ-method. Adv Appl Math 29(4):599–603

    Article  MathSciNet  MATH  Google Scholar 

  24. Guillera J (2006) Generators of some Ramanujan formulas. Ramanujan J 11(1):41–48

    Article  MathSciNet  MATH  Google Scholar 

  25. Guillera J (2008) Hypergeometric identities for 10 extended Ramanujan-type series. Ramanujan J 15(2):219–234

    Article  MathSciNet  MATH  Google Scholar 

  26. Guillera J (2010) On WZ-pairs which prove Ramanujan series. Ramanujan J 22(3):249–259

    Article  MathSciNet  MATH  Google Scholar 

  27. Guillera J (2013) WZ-proofs of “divergent” Ramanujan-type series. In: Advances in combinatorics. Springer, Heidelberg, pp 187–195

    Chapter  Google Scholar 

  28. Guo VJW (2017) Some generalizations of a supercongruence of van Hamme. Integr Transforms Spec Funct (1):1–12

    MathSciNet  MATH  Google Scholar 

  29. Guo VJW (2018) A q-analogue of a Ramanujan-type supercongruence involving central binomial coefficients. J Math Anal Appl 458(1):590–600

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo VJW (2018) A q-analogues of the (J.2) supercongruence of van Hamme. J Math Anal Appl 466(1):776–788

    Article  MathSciNet  MATH  Google Scholar 

  31. Guo VJW, Liu J-C (2018) q-analogues of two Ramanujan-type formulas for 1∕π. J Differ Equ Appl 24(8):1368–1373

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo VJW, Zudilin W (2018) Ramanujan-type formulae for 1∕π: q-analogues. Integral Transforms Spec Funct 29(7):505–513. https://doi.org/10.1080/10652469.2018.1454448

    Article  MathSciNet  MATH  Google Scholar 

  33. Hermite C (1872) Sur l’intégration des fractions rationnelles. Ann Sci École Norm Sup (2) 1:215–218

    Article  MathSciNet  MATH  Google Scholar 

  34. Hou Q-H, Wang R-H (2015) An algorithm for deciding the summability of bivariate rational functions. Adv Appl Math 64:31–49

    Article  MathSciNet  MATH  Google Scholar 

  35. Hou Q-H, Krattenthaler C, Sun Z-W (2018) On q-analogues of some series for π and π 2. Proceedings of the American Mathematical Society. https://doi.org/10.1090/proc/14374

    Google Scholar 

  36. Kauers M, Koutschan C, Zeilberger D (2009) Proof of Ira Gessel’s lattice path conjecture. Proc Natl Acad Sci U S A 106(28):11502–11505

    Article  MathSciNet  MATH  Google Scholar 

  37. Kondratieva M, Sadov S (2005) Markov’s transformation of series and the WZ method. Adv Appl Math 34(2):393–407

    Article  MathSciNet  MATH  Google Scholar 

  38. Koutschan C, Kauers M, Zeilberger D (2011) Proof of George Andrews’s and David Robbins’s q-TSPP conjecture. Proc Natl Acad Sci U S A 108(6):2196–2199

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu Z-G (2012) Gauss summation and Ramanujan-type series for 1∕π. Int J Number Theory 08(02):289–297

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu Z-G (2015) A q-extension of a partial differential equation and the Hahn polynomials. Ramanujan J 38(3):481–501

    Article  MathSciNet  MATH  Google Scholar 

  41. Long L (2011) Hypergeometric evaluation identities and supercongruences. Pac J Math 249(2):405–418

    Article  MathSciNet  MATH  Google Scholar 

  42. Pilehrood KH, Pilehrood TH (2008a) Simultaneous generation for zeta values by the Markov-WZ method. Discrete Math Theor Comput Sci 10(3):115–123

    MathSciNet  MATH  Google Scholar 

  43. Pilehrood KH, Pilehrood TH (2008b) Generating function identities for ζ(2n + 2), ζ(2n + 3) via the WZ method. Electron J Combin 15(1):Research Paper 35, 9

    Google Scholar 

  44. Pilehrood KH, Pilehrood TH (2011) A q-analogue of the Bailey-Borwein-Bradley identity. J Symb Comput 46(6):699–711

    Article  MathSciNet  MATH  Google Scholar 

  45. Mohammed M (2005) The q-Markov-WZ method. Ann Comb 9(2): 205–221

    Article  MathSciNet  MATH  Google Scholar 

  46. Mohammed M, Zeilberger D (2004) The Markov-WZ method. Electron J Combin 11(1): 205–221

    MathSciNet  MATH  Google Scholar 

  47. Mortenson E (2008) A p-adic supercongruence conjecture of van Hamme. Proc Am Math Soc 136(12):4321–4328

    Article  MathSciNet  MATH  Google Scholar 

  48. Ore O (1930) Sur la forme des fonctions hypergéométriques de plusieurs variables. J Math Pures Appl (9) 9(4):311–326

    MATH  Google Scholar 

  49. Ostrogradskiı̆ MV (1845) De l’intégration des fractions rationnelles. Bull de la classe physico-mathématique de l’Acad Impériale des Sciences de Saint-Pétersbourg 4:145–167, 286–300

    Google Scholar 

  50. Petkovšek M, Wilf HS, Zeilberger D (1996) A = B. A K Peters Ltd., Wellesley, MA. With a foreword by Donald E. Knuth

    Google Scholar 

  51. Riordan J (1968) Combinatorial identities. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  52. Sato M (1990) Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note. Nagoya Math J 120:1–34. Notes by Takuro Shintani. Translated from the Japanese by Masakazu Muro

    Article  MathSciNet  MATH  Google Scholar 

  53. Sun Z-W (2011) Super congruences and Euler numbers. Sci China Math 54(12):2509–2535

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun X (2012) Some discussions on three kinds of WZ-equations. Master thesis, Soochow University, April 2012. Supervised by Xinrong Ma

    Google Scholar 

  55. Sun Z-W (2012) A refinement of a congruence result by van Hamme and Mortenson. Ill J Math 56(3):967–979

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun Z-W (2013) Conjectures involving arithmetical sequences. In: Kanemitsu S, Li H, Liu J (eds) Number theory: arithmetic in Shangri-La, Proceedings of the 6th China-Japan Seminar (Shanghai, August 15–17, 2011). World Scientific Publishing, Singapore, pp 244–258

    Chapter  Google Scholar 

  57. Sun Z-W (2013) Products and sums divisible by central binomial coefficients. Electron J Combin 20(1):91–109(19)

    MathSciNet  Google Scholar 

  58. Sun Z-W (2018) Two q-analogues of Euler’s formula ζ(2) = π 2∕6. Preprint. arXiv:arXiv:1802.01473

    Google Scholar 

  59. Tefera A (2010) What is … a Wilf-Zeilberger pair? Not Am Math Soc 57(4):508–509

    MathSciNet  MATH  Google Scholar 

  60. van Hamme L (1997) Some conjectures concerning partial sums of generalized hypergeometric series. In: p-adic functional analysis (Nijmegen, 1996). Lecture notes in pure and applied mathematics, vol 192. Dekker, New York, pp 223–236

    Google Scholar 

  61. Wilf HS, Zeilberger D (1992a) An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities. Invent Math 108(3):575–633

    Article  MathSciNet  MATH  Google Scholar 

  62. Wilf HS, Zeilberger D (1992b) Rational function certification of multisum/integral/“q” identities. Bull Am Math Soc (N.S.) 27(1):148–153

    Google Scholar 

  63. Zeilberger D (1993) Closed form (pun intended!). In: A tribute to Emil Grosswald: number theory and related analysis. Contemporary mathematics, vol 143. American Mathematical Society, Providence, RI, pp 579–607

    Google Scholar 

  64. Zoladek H (1998) The extended monodromy group and Liouvillian first integrals. J Dynam Control Syst 4(1):1–28

    Article  MathSciNet  MATH  Google Scholar 

  65. Zudilin W (2007) More Ramanujan-type formulas for 1∕π 2. Russ Math Surv 62(3):634–636

    Article  MathSciNet  MATH  Google Scholar 

  66. Zudilin W (2009) Ramanujan-type supercongruences. J Number Theory 129(8):1848–1857

    Article  MathSciNet  MATH  Google Scholar 

  67. Zudilin W (2011) Arithmetic hypergeometric series. Russ Math Surv 66(2):369–420

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Victor J.W. Guo and Prof. Zhi-Wei Sun for many discussions on series for special constants, (super)-congruences and their q-analogues that can be proved using the WZ method. I am also very grateful to Ruyong Feng and Rong-Hua Wang for many constructive comments on the earlier version of this paper. I also thank the anonymous reviewers for their constructive and detailed comments.This work was supported by the NSFC grants 11501552, 11688101 and by the Frontier Key Project (QYZDJ-SSW-SYS022) and the Fund of the Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoshi Chen .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Jonathan M. Borwein and Ann Johnson.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S. (2019). How to Generate All Possible Rational Wilf-Zeilberger Pairs?. In: Fillion, N., Corless, R., Kotsireas, I. (eds) Algorithms and Complexity in Mathematics, Epistemology, and Science. Fields Institute Communications, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9051-1_2

Download citation

Publish with us

Policies and ethics