Skip to main content

Intravascular Catheter and Implantable Device Infections in Transplant Patients

  • Chapter
  • First Online:
  • 1557 Accesses

Abstract

The use of intravascular devices for administration of drugs, fluids, blood products, and nutritional support is essential in patients undergoing transplantation procedures. These intravascular devices have a significant potential to produce iatrogenic disease, such as bloodstream infection originating from colonization of the indwelling intravascular devices. Over two-thirds of all healthcare-associated bacteremia originate from devices used for vascular access. Patients undergoing hematopoietic stem cell transplantation, who have inherently compromised immune function because of their cancer and are further incapacitated due to the preparatory pretransplant conditioning regimen or graft-versus-host disease, are particularly prone to device-related infections. In this chapter, a comprehensive review of epidemiology, disease pathogenesis, clinical presentation, treatment, and prevention of intravascular device-related infections is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Raad I, Hachem R, Hanna H, et al. Sources and outcome of bloodstream infections in cancer patients: the role of central venous catheters. Eur J Clin Microbiol Infect Dis. 2007;26(8):549–56.

    Article  CAS  PubMed  Google Scholar 

  2. Hachem R, Raad I. Prevention and management of long-term catheter related infections in cancer patients. Cancer Investig. 2002;20(7–8):1105–13.

    Article  Google Scholar 

  3. Longuet P, Douard MC, Arlet G, Molina JM, Benoit C, Leport C. Venous access port – related bacteremia in patients with acquired immunodeficiency syndrome or cancer: the reservoir as a diagnostic and therapeutic tool. Clin Infect Dis. 2001;32(12):1776–83.

    Article  CAS  PubMed  Google Scholar 

  4. Safdar N, Maki DG. Antibiotic resistance and prevention of CVC-associated BSIs, catheter-associated urinary tract infection and Clostridium difficile. In: Jarvis W, editor. Bennett and Brachman’s hospital infections. Philadelphia: Williams and Wilkins; 2007. p. 395–416.

    Google Scholar 

  5. Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis. 2007;7(10):645–57.

    Article  PubMed  Google Scholar 

  6. Lukenbill J, Rybicki L, Sekeres MA, et al. Defining incidence, risk factors, and impact on survival of central line-associated blood stream infections following hematopoietic cell transplantation in acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2013;19(5):720–4.

    Article  PubMed  Google Scholar 

  7. O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. Infect Control Hosp Epidemiol. 2002;23(12):759–69.

    Article  PubMed  Google Scholar 

  8. Siempos II, Kopterides P, Tsangaris I, Dimopoulou I, Armaganidis AE. Impact of catheter-related bloodstream infections on the mortality of critically ill patients: a meta-analysis. Crit Care Med. 2009;37(7):2283–9.

    Article  PubMed  Google Scholar 

  9. Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 1994;271(20):1598–601.

    Article  CAS  PubMed  Google Scholar 

  10. Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81(9):1159–71.

    Article  PubMed  Google Scholar 

  11. Hockenhull JC, Dwan K, Boland A, et al. The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation. Health Technol Assess. 2008;12(12):iii–v, xi–xii, 1–154.

    Article  CAS  PubMed  Google Scholar 

  12. Raad II. Commentary: zero tolerance for catheter-related bloodstream infections: the unnegotiable objective. Infect Control Hosp Epidemiol. 2008;29(10):951–3.

    Article  PubMed  Google Scholar 

  13. Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–32.

    Article  CAS  PubMed  Google Scholar 

  14. Pronovost PJ, Berenholtz SM, Needham DM. Translating evidence into practice: a model for large scale knowledge translation. BMJ. 2008;337:a1714.

    Article  PubMed  Google Scholar 

  15. Pronovost PJ, Goeschel CA, Colantuoni E, et al. Sustaining reductions in catheter related bloodstream infections in Michigan intensive care units: observational study. BMJ. 2010;340:c309.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reduction in central line-associated bloodstream infections among patients in intensive care units – Pennsylvania, April 2001–March 2005. MMWR Morb Mortal Wkly Rep. 2005;54(40):1013–6.

    Google Scholar 

  17. Frankel HL, Crede WB, Topal JE, Roumanis SA, Devlin MW, Foley AB. Use of corporate Six Sigma performance-improvement strategies to reduce incidence of catheter-related bloodstream infections in a surgical ICU. J Am Coll Surg. 2005;201(3):349–58.

    Article  PubMed  Google Scholar 

  18. Gastmeier P, Geffers C. Prevention of catheter-related bloodstream infections: analysis of studies published between 2002 and 2005. J Hosp Infect. 2006;64(4):326–35.

    Article  CAS  PubMed  Google Scholar 

  19. Jeffries HE, Mason W, Brewer M, et al. Prevention of central venous catheter-associated bloodstream infections in pediatric intensive care units: a performance improvement collaborative. Infect Control Hosp Epidemiol. 2009;30(7):645–51.

    Article  PubMed  Google Scholar 

  20. Lobo RD, Levin AS, Oliveira MS, et al. Evaluation of interventions to reduce catheter-associated bloodstream infection: continuous tailored education versus one basic lecture. Am J Infect Control. 2010;38(6):440–8.

    Article  PubMed  Google Scholar 

  21. Miller RS, Norris PR, Jenkins JM, et al. Systems initiatives reduce healthcare-associated infections: a study of 22,928 device days in a single trauma unit. J Trauma. 2010;68(1):23–31.

    Article  PubMed  Google Scholar 

  22. Render ML, Brungs S, Kotagal U, et al. Evidence-based practice to reduce central line infections. Jt Comm J Qual Patient Saf. 2006;32(5):253–60.

    Article  PubMed  Google Scholar 

  23. Rosenthal VD, Guzman S, Pezzotto SM, Crnich CJ. Effect of an infection control program using education and performance feedback on rates of intravascular device-associated bloodstream infections in intensive care units in Argentina. Am J Infect Control. 2003;31(7):405–9.

    Article  PubMed  Google Scholar 

  24. Zuschneid I, Schwab F, Geffers C, Ruden H, Gastmeier P. Reducing central venous catheter-associated primary bloodstream infections in intensive care units is possible: data from the German nosocomial infection surveillance system. Infect Control Hosp Epidemiol. 2003;24(7):501–5.

    Article  PubMed  Google Scholar 

  25. Edwards JR, Peterson KD, Andrus ML, Dudeck MA, Pollock DA, Horan TC. National Healthcare Safety Network (NHSN) report, data summary for 2006 through 2007, issued November 2008. Am J Infect Control. 2008;36(9):609–26.

    Article  PubMed  Google Scholar 

  26. Edwards JR, Peterson KD, Andrus ML, et al. National Healthcare Safety Network (NHSN) report, data summary for 2006, issued June 2007. Am J Infect Control. 2007;35(5):290–301.

    Article  PubMed  Google Scholar 

  27. Edwards JR, Peterson KD, Mu Y, et al. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control. 2009;37(10):783–805.

    Article  PubMed  Google Scholar 

  28. Digiorgio MJ, Fatica C, Oden M, et al. Development of a modified surveillance definition of central line-associated bloodstream infections for patients with hematologic malignancies. Infect Control Hosp Epidemiol. 2012;33(9):865–8.

    Article  PubMed  Google Scholar 

  29. Maki DG, Goldman DA, Rhame FS. Infection control in intravenous therapy. Ann Intern Med. 1973;79(6):867–87.

    Article  CAS  PubMed  Google Scholar 

  30. Maki D, Mermel L. Infections due to infusion therapy. CINA-AGINCOURT. 1999;15:71–95. http://doctorlib.info/medical/infections/39.html

    Google Scholar 

  31. Douard MC, Clementi E, Arlet G, et al. Negative catheter-tip culture and diagnosis of catheter-related bacteremia. Nutrition. 1994;10(5):397–404.

    CAS  PubMed  Google Scholar 

  32. Nouwen JL, Wielenga JJ, van Overhagen H, et al. Hickman catheter-related infections in neutropenic patients: insertion in the operating theater versus insertion in the radiology suite. J Clin Oncol. 1999;17(4):1304.

    Article  CAS  PubMed  Google Scholar 

  33. Livesley MA, Tebbs SE, Moss HA, Faroqui MH, Lambert PA, Elliott TS. Use of pulsed field gel electrophoresis to determine the source of microbial contamination of central venous catheters. Eur J Clin Microbiol Infect Dis. 1998;17(2):108–12.

    Article  CAS  PubMed  Google Scholar 

  34. Darouiche RO, Raad II, Heard SO, et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med. 1999;340(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  35. Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med. 1997;127(4):257–66.

    Article  CAS  PubMed  Google Scholar 

  36. Garland JS, Alex CP, Sevallius JM, et al. Cohort study of the pathogenesis and molecular epidemiology of catheter-related bloodstream infection in neonates with peripherally inserted central venous catheters. Infect Control Hosp Epidemiol. 2008;29(3):243–9.

    Article  PubMed  Google Scholar 

  37. Safdar N, Maki DG. The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med. 2004;30(1):62–7.

    Article  PubMed  Google Scholar 

  38. Marrie TJ, Costerton JW. Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J Clin Microbiol. 1984;19(5):687–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cooper GL, Schiller AL, Hopkins CC. Possible role of capillary action in pathogenesis of experimental catheter-associated dermal tunnel infections. J Clin Microbiol. 1988;26(1):8–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sitges-Serra A, Linares J, Garau J. Catheter sepsis: the clue is the hub. Surgery. 1985;97(3):355–7.

    CAS  PubMed  Google Scholar 

  41. Maki DG, Jarrett F, Sarafin HW. A semiquantitative culture method for identification of catheter-related infection in the burn patient. J Surg Res. 1977;22(5):513–20.

    Article  CAS  PubMed  Google Scholar 

  42. Crnich CJ, Maki DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis. 2002;34(9):1232–42.

    Article  PubMed  Google Scholar 

  43. Yokoe DS, Mermel LA, Anderson DJ, et al. A compendium of strategies to prevent healthcare-associated infections in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(Suppl 1):S12–21.

    Article  PubMed  Google Scholar 

  44. Bjornson HS, Colley R, Bower RH, Duty VP, Schwartz-Fulton JT, Fischer JE. Association between microorganism growth at the catheter insertion site and colonization of the catheter in patients receiving total parenteral nutrition. Surgery. 1982;92(4):720–7.

    CAS  PubMed  Google Scholar 

  45. Sitges-Serra A, Puig P, Linares J, et al. Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. JPEN J Parenter Enteral Nutr. 1984;8(6):668–72.

    Article  CAS  PubMed  Google Scholar 

  46. Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168(2):400–7.

    Article  CAS  PubMed  Google Scholar 

  47. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39(3):309–17.

    Article  PubMed  Google Scholar 

  48. Trick WE, Fridkin SK, Edwards JR, Hajjeh RA, Gaynes RP. Secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989–1999. Clin Infect Dis. 2002;35(5):627–30.

    Article  CAS  PubMed  Google Scholar 

  49. Lorente L, Jimenez A, Santana M, et al. Microorganisms responsible for intravascular catheter-related bloodstream infection according to the catheter site. Crit Care Med. 2007;35(10):2424–7.

    Article  PubMed  Google Scholar 

  50. Sipsas NV, Lewis RE, Tarrand J, et al. Candidemia in patients with hematologic malignancies in the era of new antifungal agents (2001–2007): stable incidence but changing epidemiology of a still frequently lethal infection. Cancer. 2009;115(20):4745–52.

    Article  CAS  PubMed  Google Scholar 

  51. See I, Iwamoto M, Allen-Bridson K, Horan T, Magill SS, Thompson ND. Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol. 2013;34(8):769–76.

    Article  PubMed  Google Scholar 

  52. Safdar N, Fine JP, Maki DG. Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med. 2005;142(6):451–66.

    Article  PubMed  Google Scholar 

  53. Raad I, Hanna H, Boktour M, et al. Management of central venous catheters in patients with cancer and candidemia. Clin Infect Dis. 2004;38(8):1119–27.

    Article  PubMed  Google Scholar 

  54. Jones PG, Hopfer RL, Elting L, Jackson JA, Fainstein V, Bodey GP. Semiquantitative cultures of intravascular catheters from cancer patients. Diagn Microbiol Infect Dis. 1986;4(4):299–306.

    Article  CAS  PubMed  Google Scholar 

  55. Douard MC, Arlet G, Leverger G, et al. Quantitative blood cultures for diagnosis and management of catheter-related sepsis in pediatric hematology and oncology patients. Intensive Care Med. 1991;17(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  56. Douard MC, Arlet G, Longuet P, et al. Diagnosis of venous access port-related infections. Clin Infect Dis. 1999;29(5):1197–202.

    Article  CAS  PubMed  Google Scholar 

  57. Franklin JA, Gaur AH, Shenep JL, Hu XJ, Flynn PM. In situ diagnosis of central venous catheter-related bloodstream infection without peripheral blood culture. Pediatr Infect Dis J. 2004;23(7):614–8.

    Article  PubMed  Google Scholar 

  58. Malgrange VB, Escande MC, Theobald S. Validity of earlier positivity of central venous blood cultures in comparison with peripheral blood cultures for diagnosing catheter-related bacteremia in cancer patients. J Clin Microbiol. 2001;39(1):274–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gaur AH, Flynn PM, Giannini MA, Shenep JL, Hayden RT. Difference in time to detection: a simple method to differentiate catheter-related from non-catheter-related bloodstream infection in immunocompromised pediatric patients. Clin Infect Dis. 2003;37(4):469–75.

    Article  PubMed  Google Scholar 

  60. Seifert H, Cornely O, Seggewiss K, et al. Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J Clin Microbiol. 2003;41(1):118–23.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krause R, Auner HW, Gorkiewicz G, et al. Detection of catheter-related bloodstream infections by the differential-time-to-positivity method and gram stain-acridine orange leukocyte cytospin test in neutropenic patients after hematopoietic stem cell transplantation. J Clin Microbiol. 2004;42(10):4835–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Farina C, Bonanomi E, Benetti G, Fumagalli R, Goglio A. Acridine orange leukocyte cytospin test for central venous catheter – related bloodstream infection: a pediatric experience. Diagn Microbiol Infect Dis. 2005;52(4):337–9.

    Article  PubMed  Google Scholar 

  63. Abdelkefi A, Achour W, Torjman L, et al. Detection of catheter-related bloodstream infections by the Gram stain-acridine orange leukocyte cytospin test in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2006;37(6):595–9.

    Article  CAS  PubMed  Google Scholar 

  64. O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e162–93.

    Article  PubMed  PubMed Central  Google Scholar 

  65. O’Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep. 2002;51(RR-10):1–29.

    PubMed  Google Scholar 

  66. Crnich CJ, Maki DG. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. II. Long-term devices. Clin Infect Dis. 2002;34(10):1362–8.

    Article  PubMed  Google Scholar 

  67. Safdar N, Maki DG. Use of vancomycin-containing lock or flush solutions for prevention of bloodstream infection associated with central venous access devices: a meta-analysis of prospective, randomized trials. Clin Infect Dis. 2006;43(4):474–84.

    Article  PubMed  Google Scholar 

  68. Yahav D, Rozen-Zvi B, Gafter-Gvili A, Leibovici L, Gafter U, Paul M. Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta-analysis of randomized, controlled trials. Clin Infect Dis. 2008;47(1):83–93.

    Article  PubMed  Google Scholar 

  69. Sanders J, Pithie A, Ganly P, et al. A prospective double-blind randomized trial comparing intraluminal ethanol with heparinized saline for the prevention of catheter-associated bloodstream infection in immunosuppressed haematology patients. J Antimicrob Chemother. 2008;62(4):809–15.

    Article  CAS  PubMed  Google Scholar 

  70. Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA. 1999;281(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  71. Ramritu P, Halton K, Collignon P, et al. A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. Am J Infect Control. 2008;36(2):104–17.

    Article  PubMed  Google Scholar 

  72. Hockenhull JC, Dwan KM, Smith GW, et al. The clinical effectiveness of central venous catheters treated with anti-infective agents in preventing catheter-related bloodstream infections: a systematic review. Crit Care Med. 2009;37(2):702–12.

    Article  CAS  PubMed  Google Scholar 

  73. Maki D, Mermel L, Kluger D, et al. The efficacy of a chlorhexidine impregnated sponge (Biopatch) for the prevention of intravascular catheter-related infection-a prospective randomized controlled multicenter study. Abstr Intersci Conf Antimicrob Agents Chemother. 2000;40:422–4. (abstr 1430).

    Google Scholar 

  74. Ho KM, Litton E. Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother. 2006;58(2):281–7.

    Article  CAS  PubMed  Google Scholar 

  75. Timsit JF, Schwebel C, Bouadma L, Geffroy A, Garrouste-Orgeas M, Pease S, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA. 2009;301(12):1231–41.

    Article  CAS  PubMed  Google Scholar 

  76. Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med. 2002;136(11):792–801.

    Article  CAS  PubMed  Google Scholar 

  77. Maki DG, Ringer M, Alvarado CJ. Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet. 1991;338(8763):339–43.

    Article  CAS  PubMed  Google Scholar 

  78. Tacconelli E, Carmeli Y, Aizer A, Ferreira G, Foreman MG, D’Agata EM. Mupirocin prophylaxis to prevent Staphylococcus aureus infection in patients undergoing dialysis: a meta-analysis. Clin Infect Dis. 2003;37(12):1629–38.

    Article  CAS  PubMed  Google Scholar 

  79. Safdar N, Crnich CJ, Maki DG. The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention. Respir Care. 2005;50(6):725–39; discussion 739–741.

    PubMed  Google Scholar 

  80. Clemence MA, Walker D, Farr BM. Central venous catheter practices: results of a survey. Am J Infect Control. 1995;23(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  81. Wertheim HF, Vos MC, Ott A, et al. Mupirocin prophylaxis against nosocomial Staphylococcus aureus infections in nonsurgical patients: a randomized study. Ann Intern Med. 2004;140(6):419–25.

    Article  CAS  PubMed  Google Scholar 

  82. Babu T, Rekasius V, Parada JP, Schreckenberger P, Challapalli M. Mupirocin resistance among methicillin-resistant Staphylococcus aureus-colonized patients at admission to a tertiary care medical center. J Clin Microbiol. 2009;47(7):2279–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Orrett FA. The emergence of mupirocin resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in Trinidad: a first report. Jpn J Infect Dis. 2008;61(2):107–10.

    CAS  PubMed  Google Scholar 

  84. Perkins D, Hogue JS, Fairchok M, Braun L, Viscount HB. Mupirocin resistance screening of methicillin-resistant Staphylococcus aureus isolates at Madigan Army Medical Center. Mil Med. 2008;173(6):604–8.

    Article  PubMed  Google Scholar 

  85. Rossney A, O’Connell S. Emerging high-level mupirocin resistance among MRSA isolates in Ireland. Euro Surveill. 2008;13(14). pii=8084. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=8084.

  86. Graber CJ, Schwartz BS. Failure of decolonization in patients with infections due to mupirocin-resistant strains of community-associated methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2008;29(3):284; author reply 284–285

    Article  PubMed  Google Scholar 

  87. Cavdar C, Saglam F, Sifil A, et al. Effect of once-a-week vs thrice-a-week application of mupirocin on methicillin and mupirocin resistance in peritoneal dialysis patients: three years of experience. Ren Fail. 2008;30(4):417–22.

    Article  CAS  PubMed  Google Scholar 

  88. Johnson DW, van Eps C, Mudge DW, Wiggins KJ, Armstrong K, Hawley CM, et al. Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. J Am Soc Nephrol. 2005;16(5):1456–62.

    Article  CAS  PubMed  Google Scholar 

  89. Raad II, Hohn DC, Gilbreath BJ, et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol. 1994;15(4 Pt 1):231–8.

    Article  CAS  PubMed  Google Scholar 

  90. Mermel LA, McCormick RD, Springman SR, Maki DG. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med. 1991;91(3B):197S–205S.

    Article  CAS  PubMed  Google Scholar 

  91. Goetz AM, Wagener MM, Miller JM, Muder RR. Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect Control Hosp Epidemiol. 1998;19(11):842–5.

    Article  CAS  PubMed  Google Scholar 

  92. Joynt GM, Kew J, Gomersall CD, Leung VY, Liu EK. Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients. Chest. 2000;117(1):178–83.

    Article  CAS  PubMed  Google Scholar 

  93. Merrer J, De Jonghe B, Golliot F, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700–7.

    Article  CAS  PubMed  Google Scholar 

  94. Richet H, Hubert B, Nitemberg G, et al. Prospective multicenter study of vascular-catheter-related complications and risk factors for positive central-catheter cultures in intensive care unit patients. J Clin Microbiol. 1990;28(11):2520–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Parienti JJ, Thirion M, Megarbane B, et al. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA. 2008;299(20):2413–22.

    Article  CAS  PubMed  Google Scholar 

  96. Gowardman JR, Robertson IK, Parkes S, Rickard CM. Influence of insertion site on central venous catheter colonization and bloodstream infection rates. Intensive Care Med. 2008;34(6):1038–45.

    Article  PubMed  Google Scholar 

  97. Randolph AG, Cook DJ, Gonzales CA, Pribble CG. Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med. 1996;24(12):2053–8.

    Article  CAS  PubMed  Google Scholar 

  98. Karakitsos D, Labropoulos N, De Groot E, et al. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care. 2006;10(6):R162.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB. Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med. 2009;169(15):1420–3.

    Article  PubMed  Google Scholar 

  100. Timsit JF, Cheval C, Gachot B, et al. Usefulness of a strategy based on bronchoscopy with direct examination of bronchoalveolar lavage fluid in the initial antibiotic therapy of suspected ventilator-associated pneumonia. Intensive Care Med. 2001;27(4):640–7.

    Article  CAS  PubMed  Google Scholar 

  101. Ruschulte H, Franke M, Gastmeier P, et al. Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol. 2009;88(3):267–72.

    Article  CAS  PubMed  Google Scholar 

  102. O’Horo JC, Silva GL, Munoz-Price LS, Safdar N. The efficacy of daily bathing with chlorhexidine for reducing healthcare-associated bloodstream infections: a meta-analysis. Infect Control Hosp Epidemiol. 2012;33(3):257–67.

    Article  PubMed  Google Scholar 

  103. Climo MW, Wong ES. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013;368(6):533–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lowe CF, Lloyd-Smith E, Sidhu, Ritchie G, Sharma A, Jang W, et al. Reduction in hospital-associated methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus with daily chlorhexidine gluconate bathing for medical inpatients. Am J Infect Control. 2017;45(3):255–9.

    Article  CAS  PubMed  Google Scholar 

  105. Climo MW, Wong ES. Daily chlorhexidine bathing and hospital-acquired infection. N Engl J Med. 2013;368(24):2332.

    CAS  PubMed  Google Scholar 

  106. Casey AL, Mermel LA, Nightingale P, Elliott TS. Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8(12):763–76.

    Article  CAS  PubMed  Google Scholar 

  107. Loertzer H, Soukup J, Hamza A, et al. Use of catheters with the AgION antimicrobial system in kidney transplant recipients to reduce infection risk. Transplant Proc. 2006;38(3):707–10.

    Article  CAS  PubMed  Google Scholar 

  108. Worth LJ, Slavin MA, Heath S, Szer J, Grigg AP. Ethanol versus heparin locks for the prevention of central venous catheter-associated bloodstream infections: a randomized trial in adult haematology patients with Hickman devices. J Hosp Infect. 2014;88(1):48–51.

    Article  CAS  PubMed  Google Scholar 

  109. Zacharioudakis IM, Zervou FN, Arvanitis M, Ziakas PD, Mermel LA, Mylonakis E. Antimicrobial lock solutions as a method to prevent central line-associated bloodstream infections: a meta-analysis of randomized controlled trials. Clin Infect Dis. 2014;59(12):1741–9.

    Article  CAS  PubMed  Google Scholar 

  110. Bookstaver PB, Williamson JC, Tucker BK, Raad II, Sherertz RJ. Activity of novel antibiotic lock solutions in a model against isolates of catheter-related bloodstream infections. Ann Pharmacother. 2009;43(2):210–9.

    Article  CAS  PubMed  Google Scholar 

  111. Mendelson MH, Short LJ, Schechter CB, et al. Study of a needleless intermittent intravenous-access system for peripheral infusions: analysis of staff, patient, and institutional outcomes. Infect Control Hosp Epidemiol. 1998;19(6):401–6.

    Article  CAS  PubMed  Google Scholar 

  112. Skolnick R, LaRocca J, Barba D, Paicius L. Evaluation and implementation of a needleless intravenous system: making needlesticks a needless problem. Am J Infect Control. 1993;21(1):39–41.

    Article  CAS  PubMed  Google Scholar 

  113. Gartner K. Impact of a needleless intravenous system in a university hospital. J Healthc Mater Manag. 1993;11(8):44–6, 48–49.

    CAS  Google Scholar 

  114. Lawrence D. HAI – a high visibility problem: recent studies show that hospitals with low HAI rates rely heavily on IT, but the jury is still out on where a CIO should begin. Healthc Inform. 2008;25(12):22, 24.

    PubMed  Google Scholar 

  115. Jarvis WR, Murphy C, Hall KK, et al. Health care-associated bloodstream infections associated with negative- or positive-pressure or displacement mechanical valve needleless connectors. Clin Infect Dis. 2009;49(12):1821–7.

    Article  PubMed  Google Scholar 

  116. Do AN, Ray BJ, Banerjee SN, Illian AF, Barnett BJ, Pham MH, et al. Bloodstream infection associated with needleless device use and the importance of infection-control practices in the home health care setting. J Infect Dis. 1999;179(2):442–8.

    Article  CAS  PubMed  Google Scholar 

  117. Cookson ST, Ihrig M, O’Mara EM, et al. Increased bloodstream infection rates in surgical patients associated with variation from recommended use and care following implementation of a needleless device. Infect Control Hosp Epidemiol. 1998;19(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  118. McDonald LC, Banerjee SN, Jarvis WR. Line-associated bloodstream infections in pediatric intensive-care-unit patients associated with a needleless device and intermittent intravenous therapy. Infect Control Hosp Epidemiol. 1998;19(10):772–7.

    Article  CAS  PubMed  Google Scholar 

  119. Kellerman S, Shay DK, Howard J, et al. Bloodstream infections in home infusion patients: the influence of race and needleless intravascular access devices. J Pediatr. 1996;129(5):711–7.

    Article  CAS  PubMed  Google Scholar 

  120. Rupp ME, Sholtz LA, Jourdan DR, et al. Outbreak of bloodstream infection temporally associated with the use of an intravascular needleless valve. Clin Infect Dis. 2007;44(11):1408–14.

    Article  PubMed  Google Scholar 

  121. Maragakis LL, Bradley KL, Song X, et al. Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol. 2006;27(1):67–70.

    Article  PubMed  Google Scholar 

  122. Casey AL, Worthington T, Lambert PA, Quinn D, Faroqui MH, Elliott TS. A randomized, prospective clinical trial to assess the potential infection risk associated with the PosiFlow needleless connector. J Hosp Infect. 2003;54(4):288–93.

    Article  CAS  PubMed  Google Scholar 

  123. Menyhay SZ, Maki DG. Disinfection of needleless catheter connectors and access ports with alcohol may not prevent microbial entry: the promise of a novel antiseptic-barrier cap. Infect Control Hosp Epidemiol. 2006;27(1):23–7.

    Article  PubMed  Google Scholar 

  124. Maki DG. In vitro studies of a novel antimicrobial luer-activated needleless connector for prevention of catheter-related bloodstream infection. Clin Infect Dis. 2010;50(12):1580–7.

    Article  PubMed  Google Scholar 

  125. Menyhay SZ, Maki DG. Preventing central venous catheter-associated bloodstream infections: development of an antiseptic barrier cap for needleless connectors. Am J Infect Control. 2008;36(10):S174 e15.

    Article  Google Scholar 

  126. Schears GJ. Summary of product trials for 10,164 patients: comparing an intravenous stabilizing device to tape. J Infus Nurs. 2006;29(4):225–31.

    Article  PubMed  Google Scholar 

  127. Yamamoto AJ, Solomon JA, Soulen MC, et al. Sutureless securement device reduces complications of peripherally inserted central venous catheters. J Vasc Interv Radiol. 2002;13(1):77–81.

    Article  PubMed  Google Scholar 

  128. Frey AM, Schears GJ. Why are we stuck on tape and suture? A review of catheter securement devices. J Infus Nurs. 2006;29(1):34–8.

    Article  PubMed  Google Scholar 

  129. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  130. Van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.

    Article  PubMed  Google Scholar 

  131. Finfer S, Chittock DR, Su SY, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.

    Article  PubMed  Google Scholar 

  132. Griesdale DE, de Souza RJ, van Dam RM, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821–7.

    Article  PubMed  Google Scholar 

  133. Haraden C. What is a bundle? 2006. 09/07/2006. Available from: http://www.ihi.org/IHI/Topics/CriticalCare/IntensiveCare/ImprovementStories/WhatIsaBundle.htm.

  134. Bhutta A, Gilliam C, Honeycutt M, et al. Reduction of bloodstream infections associated with catheters in paediatric intensive care unit: stepwise approach. BMJ. 2007;334(7589):362–5.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Costello JM, Morrow DF, Graham DA, Potter-Bynoe G, Sandora TJ, Laussen PC. Systematic intervention to reduce central line-associated bloodstream infection rates in a pediatric cardiac intensive care unit. Pediatrics. 2008;121(5):915–23.

    Article  PubMed  Google Scholar 

  136. Blot K, Bergs J, Vogelaers D, Blot S, Vandijck D. Prevention of central line-associated bloodstream infections through quality improvement interventions: a systematic review and meta-analysis. Clin Infect Dis. 2014;59(1):96–105.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasia Safdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Safdar, N., Abad, C.L.R., Maki, D.G. (2019). Intravascular Catheter and Implantable Device Infections in Transplant Patients. In: Safdar, A. (eds) Principles and Practice of Transplant Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-9034-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9034-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-9032-0

  • Online ISBN: 978-1-4939-9034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics