Skip to main content

Structural Biology of Notch Signaling

  • Chapter
  • First Online:

Abstract

The conserved Notch signaling pathway plays a central role in development and adult tissue homeostasis. Notch signaling is initiated by binding to a transmembrane ligand. E3 ubiquitin ligase-mediated ligand endocytosis enables release of the negative regulatory region (NRR) of Notch from autoinhibition, which then allows metalloprotease cleavage within the NRR, followed by intramembrane cleavage by the γ-secretase complex. After release from the membrane, the Notch intracellular domain translocates to the nucleus to form a transcriptionally active complex and initiate transcription of Notch-responsive genes. Structural studies of Notch and Notch-associated molecules, which have advanced our understanding of each of these steps in the Notch signaling pathway, are reviewed here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrawes, M. B., Xu, X., Liu, H., Ficarro, S. B., Marto, J. A., Aster, J. C., & Blacklow, S. C. (2013). Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. The Journal of Biological Chemistry, 288, 25477–25489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arnett, K. L., Hass, M., Mcarthur, D. G., Ilagan, M. X. G., Aster, J. C., Kopan, R., & Blacklow, S. C. (2010). Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nature Structural and Molecular Biology, 17, 1312–1317.

    Article  CAS  PubMed  Google Scholar 

  3. Aste-Amézaga, M., Zhang, N., Lineberger, J. E., Arnold, B. A., Toner, T. J., Gu, M., Huang, L., Vitelli, S., Vo, K. T., Haytko, P., et al. (2010). Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One, 5, e9094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Aster, J. C., Xu, L., Karnell, F. G., Patriub, V., Pui, J. C., & Pear, W. S. (2000). Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Molecular and Cellular Biology, 20, 7505–7515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai, X.-C., Rajendra, E., Yang, G., Shi, Y., & Scheres, S. H. W. (2015). Sampling the conformational space of the catalytic subunit of human γ-secretase. eLife, 4, e11182.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bai, X.-C., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S. H. W., & Shi, Y. (2015). An atomic structure of human γ-secretase. Nature, 525, 212–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bailey, A. M., & Posakony, J. W. (1995). Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes and Development, 9, 2609–2622.

    Article  CAS  PubMed  Google Scholar 

  8. Blacklow, S. C. (2013). Refining a Jagged edge. Structure, 21, 2100–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blaumueller, C. M., Qi, H., Zagouras, P., & Artavanis-Tsakonas, S. (1997). Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell, 90, 281–291.

    Article  CAS  PubMed  Google Scholar 

  10. Bolduc, D. M., Montagna, D. R., Gu, Y., Selkoe, D. J., & Wolfe, M. S. (2016). Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain. Proceedings of the National Academy of Sciences, 113, E509–E518.

    Article  CAS  Google Scholar 

  11. Borggrefe, T., & Oswald, F. (2009). The Notch signaling pathway: Transcriptional regulation at Notch target genes. Cellular and Molecular Life Sciences: CMLS, 66, 1631–1646.

    Article  CAS  PubMed  Google Scholar 

  12. Bozkulak, E. C., & Weinmaster, G. (2009). Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Molecular and Cellular Biology, 29, 5679–5695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bray, S., & Furriols, M. (2001). Notch pathway: Making sense of suppressor of hairless. Current Biology, 11, R217–R221.

    Article  CAS  PubMed  Google Scholar 

  14. Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J. R., Cumano, A., Roux, P., Black, R. A., & Israël, A. (2000). A novel proteolytic cleavage involved in Notch signaling: The role of the disintegrin-metalloprotease TACE. Molecular Cell, 5, 207–216.

    Article  CAS  PubMed  Google Scholar 

  15. Cave, J. W., Loh, F., Surpris, J. W., Xia, L., & Caudy, M. A. (2005). A DNA transcription code for cell-specific gene activation by notch signaling. Current Biology, 15, 94–104.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, W., & Casey Corliss, D. (2004). Three modules of zebrafish Mind bomb work cooperatively to promote Delta ubiquitination and endocytosis. Developmental Biology, 267, 361–373.

    Article  CAS  PubMed  Google Scholar 

  17. Chillakuri, C. R., Sheppard, D., Ilagan, M. X. G., Holt, L. R., Abbott, F., Liang, S., Kopan, R., Handford, P. A., & Lea, S. M. (2013). Structural analysis uncovers lipid-binding properties of Notch ligands. Cell Reports, 5, 861–867.

    Article  CAS  PubMed  Google Scholar 

  18. Choi, S. H., Wales, T. E., Nam, Y., O’Donovan, D. J., Sliz, P., Engen, J. R., & Blacklow, S. C. (2012). Conformational locking upon cooperative assembly of notch transcription complexes. Structure, 20, 340–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coleman, M. L., McDonough, M. A., Hewitson, K. S., Coles, C., Mecinovic, J., Edelmann, M., Cook, K. M., Cockman, M. E., Lancaster, D. E., Kessler, B. M., et al. (2007). Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. The Journal of Biological Chemistry, 282, 24027–24038.

    Article  CAS  PubMed  Google Scholar 

  20. Collins, K. J., Yuan, Z., & Kovall, R. A. (2014). Structure and function of the CSL-KyoT2 corepressor complex: A negative regulator of Notch signaling. Structure, 22, 70–81.

    Article  CAS  PubMed  Google Scholar 

  21. Cordle, J., Johnson, S., Tay, J. Z. Y., Roversi, P., Wilkin, M. B., de Madrid, B. H., Shimizu, H., Jensen, S., Whiteman, P., Jin, B., et al. (2008). A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nature Structural and Molecular Biology, 15, 849–857.

    Article  CAS  PubMed  Google Scholar 

  22. Daskalaki, A., Shalaby, N. A., Kux, K., Tsoumpekos, G., Tsibidis, G. D., Muskavitch, M. A. T., & Delidakis, C. (2011). Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. The Journal of Cell Biology, 195, 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deblandre, G. A., Lai, E. C., & Kintner, C. (2001). Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Developmental Cell, 1, 795–806.

    Article  CAS  PubMed  Google Scholar 

  24. Del Bianco, C., Aster, J. C., & Blacklow, S. C. (2008). Mutational and energetic studies of Notch 1 transcription complexes. Journal of Molecular Biology, 376, 131–140.

    Article  PubMed  CAS  Google Scholar 

  25. Düsterhöft, S., Jung, S., Hung, C.-W., Tholey, A., Sönnichsen, F. D., Grötzinger, J., & Lorenzen, I. (2013). Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. Journal of the American Chemical Society, 135, 5776–5781.

    Article  PubMed  CAS  Google Scholar 

  26. Ehebauer, M. T., Chirgadze, D. Y., Hayward, P., Martinez-Arias, A., & Blundell, T. L. (2005). High-resolution crystal structure of the human Notch 1 ankyrin domain. The Biochemical Journal, 392, 13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fedoroff, O. Y., Townson, S. A., Golovanov, A. P., Baron, M., & Avis, J. M. (2004). The structure and dynamics of tandem WW domains in a negative regulator of notch signaling, suppressor of deltex. The Journal of Biological Chemistry, 279, 34991–35000.

    Article  CAS  PubMed  Google Scholar 

  28. Fehon, R. G., Kooh, P. J., Rebay, I., Regan, C. L., Xu, T., Muskavitch, M. A., & Artavanis-Tsakonas, S. (1990). Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell, 61, 523–534.

    Article  CAS  PubMed  Google Scholar 

  29. Friedmann, D. R., & Kovall, R. A. (2010). Thermodynamic and structural insights into CSL-DNA complexes. Protein Science, 19, 34–46.

    CAS  PubMed  Google Scholar 

  30. Friedmann, D. R., Wilson, J. J., & Kovall, R. A. (2008). RAM-induced allostery facilitates assembly of a notch pathway active transcription complex. The Journal of Biological Chemistry, 283, 14781–14791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C., & Jones, K. A. (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes and Development, 16, 1397–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ge, C., & Stanley, P. (2008). The O-fucose glycan in the ligand-binding domain of Notch1 regulates embryogenesis and T cell development. Proceedings of the National Academy of Sciences of the United States of America, 105, 1539–1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glomski, K., Monette, S., Manova, K., De Strooper, B., Saftig, P., & Blobel, C. P. (2011). Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures. Blood, 118, 1163–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gordon, W. R., Roy, M., Vardar-Ulu, D., Garfinkel, M., Mansour, M. R., Aster, J. C., & Blacklow, S. C. (2009). Structure of the Notch1-negative regulatory region: Implications for normal activation and pathogenic signaling in T-ALL. Blood, 113, 4381–4390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordon, W. R., Vardar-Ulu, D., Histen, G., Sanchez-Irizarry, C., Aster, J. C., & Blacklow, S. C. (2007). Structural basis for autoinhibition of Notch. Nature Structural and Molecular Biology, 14, 295–300.

    Article  CAS  PubMed  Google Scholar 

  36. Gordon, W. R., Vardar-Ulu, D., L'heureux, S., Ashworth, T., Malecki, M. J., Sanchez-Irizarry, C., Mcarthur, D. G., Histen, G., Mitchell, J. L., Aster, J. C., et al. (2009). Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS One, 4, e6613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gordon, W. R., Zimmerman, B., He, L., Miles, L. J., Huang, J., Tiyanont, K., Mcarthur, D. G., Aster, J. C., Perrimon, N., Loparo, J. J., et al. (2015). Mechanical allostery: Evidence for a force requirement in the proteolytic activation of Notch. Developmental Cell, 33, 729–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Greenwald, I., & Seydoux, G. (1990). Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature, 346, 197–199.

    Article  CAS  PubMed  Google Scholar 

  39. Gupta, D., Beaufils, S., Vie, V., Paboeuf, G., Broadhurst, B., Schweisguth, F., L Blundell, T., & M Bolanos-Garcia, V. (2013). Crystal structure, biochemical and biophysical characterisation of NHR1 domain of E3 Ubiquitin ligase neutralized. Advances in Enzyme Research, 01, 61–75.

    Article  CAS  Google Scholar 

  40. Hambleton, S., Valeyev, N. V., Muranyi, A., Knott, V., Werner, J. M., McMichael, A. J., Handford, P. A., & Downing, A. K. (2004). Structural and functional properties of the human notch-1 ligand binding region. Structure, 12, 2173–2183.

    Article  CAS  PubMed  Google Scholar 

  41. He, F., Saito, K., Kobayashi, N., Harada, T., Watanabe, S., Kigawa, T., Güntert, P., Ohara, O., Tanaka, A., Unzai, S., et al. (2009). Structural and functional characterization of the NHR1 domain of the Drosophila neuralized E3 ligase in the notch signaling pathway. Journal of Molecular Biology, 393, 478–495.

    Article  CAS  PubMed  Google Scholar 

  42. Heuss, S. F., Ndiaye-Lobry, D., Six, E. M., Israël, A., & Logeat, F. (2008). The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 11212–11217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hiruma-Shimizu, K., Hosoguchi, K., Liu, Y., Fujitani, N., Ohta, T., Hinou, H., Matsushita, T., Shimizu, H., Feizi, T., & Nishimura, S.-i. (2010). Chemical synthesis, folding, and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor. Journal of the American Chemical Society, 132, 14857–14865.

    Article  CAS  PubMed  Google Scholar 

  44. Hsieh, J. J., Zhou, S., Chen, L., Young, D. B., & Hayward, S. D. (1999). CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proceedings of the National Academy of Sciences of the United States of America, 96, 23–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Itoh, M., Kim, C.-H., Palardy, G., Oda, T., Jiang, Y.-J., Maust, D., Yeo, S.-Y., Lorick, K., Wright, G. J., Ariza-McNaughton, L., et al. (2003). Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Developmental Cell, 4, 67–82.

    Article  CAS  PubMed  Google Scholar 

  46. Janes, P. W., Saha, N., Barton, W. A., Kolev, M. V., Wimmer-Kleikamp, S. H., Nievergall, E., Blobel, C. P., Himanen, J.-P., Lackmann, M., & Nikolov, D. B. (2005). Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell, 123, 291–304.

    Article  CAS  PubMed  Google Scholar 

  47. Jennings, M. D., Blankley, R. T., Baron, M., Golovanov, A. P., & Avis, J. M. (2007). Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex. The Journal of Biological Chemistry, 282, 29032–29042.

    Article  CAS  PubMed  Google Scholar 

  48. Jinek, M., Chen, Y.-W., Clausen, H., Cohen, S. M., & Conti, E. (2006). Structural insights into the Notch-modifying glycosyltransferase Fringe. Nature Structural and Molecular Biology, 13, 945–946.

    Article  CAS  PubMed  Google Scholar 

  49. Johnson, S. E., Ilagan, M. X. G., Kopan, R., & Barrick, D. (2010). Thermodynamic analysis of the CSL x Notch interaction: Distribution of binding energy of the Notch RAM region to the CSL beta-trefoil domain and the mode of competition with the viral transactivator EBNA2. Journal of Biological Chemistry, 285, 6681–6692.

    Article  CAS  Google Scholar 

  50. Jorissen, E., Prox, J., Bernreuther, C., Weber, S., Schwanbeck, R., Serneels, L., Snellinx, A., Craessaerts, K., Thathiah, A., Tesseur, I., et al. (2010). The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. The Journal of Neuroscience, 30, 4833–4844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kao, H. Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C. R., Evans, R. M., & Kadesch, T. (1998). A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes and Development, 12, 2269–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kershaw, N., Church, N., Griffin, M., Luo, C., Adams, T., & Burgess, A. (2015). Notch ligand Delta-like1: X-ray crystal structure and binding affinity. The Biochemical Journal, 468, 159–166.

    Article  CAS  PubMed  Google Scholar 

  53. Koo, B.-K., Lim, H.-S., Song, R., Yoon, M.-J., Yoon, K.-J., Moon, J.-S., Kim, Y.-W., Kwon, M.-C., Yoo, K.-W., Kong, M.-P., et al. (2005). Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development, 132, 3459–3470.

    Article  CAS  PubMed  Google Scholar 

  54. Koo, B.-K., Yoon, M.-J., Yoon, K.-J., Im, S.-K., Kim, Y.-Y., Kim, C.-H., Suh, P.-G., Jan, Y. N., & Kong, Y.-Y. (2007). An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS One, 2, e1221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kopan, R., & Ilagan, M. X. G. (2009). The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell, 137, 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kopan, R., Schroeter, E. H., Weintraub, H., & Nye, J. S. (1996). Signal transduction by activated mNotch: Importance of proteolytic processing and its regulation by the extracellular domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 1683–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kovall, R. A., & Hendrickson, W. A. (2004). Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. The EMBO Journal, 23, 3441–3451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kuroda, K., Han, H., Tani, S., Tanigaki, K., Tun, T., Furukawa, T., Taniguchi, Y., Kurooka, H., Hamada, Y., Toyokuni, S., et al. (2003). Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity, 18, 301–312.

    Article  CAS  PubMed  Google Scholar 

  59. Kurooka, H., Kuroda, K., & Honjo, T. (1998). Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Research, 26, 5448–5455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ladi, E., Nichols, J. T., Ge, W., Miyamoto, A., Yao, C., Yang, L.-T., Boulter, J., Sun, Y. E., Kintner, C., & Weinmaster, G. (2005). The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. The Journal of Cell Biology, 170, 983–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lafkas, D., Shelton, A., Chiu, C., de Leon Boenig, G., Chen, Y., Stawicki, S. S., Siltanen, C., Reichelt, M., Zhou, M., Wu, X., et al. (2015). Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature, 528, 127–131.

    CAS  PubMed  Google Scholar 

  62. Lai, E. C., Deblandre, G. A., Kintner, C., & Rubin, G. M. (2001). Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Developmental Cell, 1, 783–794.

    Article  CAS  PubMed  Google Scholar 

  63. Lai, E. C., Roegiers, F., Qin, X., Jan, Y. N., & Rubin, G. M. (2005). The ubiquitin ligase Drosophila Mind bomb promotes notch signaling by regulating the localization and activity of Serrate and Delta. Development, 132, 2319–2332.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, J. O., Yang, H., Georgescu, M. M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J. E., Pandolfi, P., & Pavletich, N. P. (1999). Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99, 323–334.

    Article  CAS  PubMed  Google Scholar 

  65. Liefke, R., Oswald, F., Alvarado, C., Ferres-Marco, D., Mittler, G., Rodriguez, P., Dominguez, M., & Borggrefe, T. (2010). Histone demethylase KDM5A is an integral part of the core Notch-RBP-J repressor complex. Genes and Development, 24, 590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, H., Chi, A. W. S., Arnett, K. L., Chiang, M. Y., Xu, L., Shestova, O., Wang, H., Li, Y.-M., Bhandoola, A., Aster, J. C., et al. (2010). Notch dimerization is required for leukemogenesis and T-cell development. Genes and Development, 24, 2395–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, H., Shim, A., & He, X. (2009). Structural characterization of the ectodomain of a disintegrin and metalloproteinase-22 (ADAM22), a neural adhesion receptor instead of metalloproteinase: Insights on ADAM function. The Journal of Biological Chemistry, 284, 29077–29086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Logeat, F., Bessia, C., Brou, C., LeBail, O., Jarriault, S., Seidah, N. G., & Israël, A. (1998). The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proceedings of the National Academy of Sciences of the United States of America, 95, 8108–8112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu, P., Bai, X.-C., Ma, D., Xie, T., Yan, C., Sun, L., Yang, G., Zhao, Y., Zhou, R., Scheres, S. H. W., et al. (2014). Three-dimensional structure of human γ-secretase. Nature, 512, 166–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lubman, O. Y., Ilagan, M. X. G., Kopan, R., & Barrick, D. (2007). Quantitative dissection of the Notch:CSL interaction: Insights into the Notch-mediated transcriptional switch. Journal of Molecular Biology, 365, 577–589.

    Article  CAS  PubMed  Google Scholar 

  71. Lubman, O. Y., Kopan, R., Waksman, G., & Korolev, S. (2005). The crystal structure of a partial mouse Notch-1 ankyrin domain: Repeats 4 through 7 preserve an ankyrin fold. Protein Science, 14, 1274–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luca, V. C., Jude, K. M., Pierce, N. W., Nachury, M. V., Fischer, S., & Garcia, K. C. (2015). Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science (New York NY), 347, 847–853.

    Article  CAS  Google Scholar 

  73. Maier, D. (2006). Hairless: The ignored antagonist of the Notch signalling pathway. Hereditas, 143, 212–221.

    Article  PubMed  Google Scholar 

  74. Maier, D., Kurth, P., Schulz, A., Russell, A., Yuan, Z., Gruber, K., Kovall, R. A., & Preiss, A. (2011). Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster. Molecular Biology of the Cell, 22, 3242–3252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malecki, M. J., Sanchez-Irizarry, C., Mitchell, J. L., Histen, G., Xu, M. L., Aster, J. C., & Blacklow, S. C. (2006). Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Molecular and Cellular Biology, 26, 4642–4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G. P., Bartunik, H., Ellestad, G. A., Reddy, P., Wolfson, M. F., Rauch, C. T., Castner, B. J., et al. (1998). Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proceedings of the National Academy of Sciences of the United States of America, 95, 3408–3412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McMillan, B. J., Schnute, B., Ohlenhard, N., Zimmerman, B., Miles, L., Beglova, N., Klein, T., & Blacklow, S. C. (2015). A tail of two sites: A bipartite mechanism for recognition of Notch ligands by mind bomb E3 ligases. Molecular Cell, 57, 912–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mercher, T., Cornejo, M. G., Sears, C., Kindler, T., Moore, S. A., Maillard, I., Pear, W. S., Aster, J. C., & Gilliland, D. G. (2008). Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell, 3, 314–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mumm, J. S., Schroeter, E. H., Saxena, M. T., Griesemer, A., Tian, X., Pan, D. J., Ray, W. J., & Kopan, R. (2000). A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Molecular Cell, 5, 197–206.

    Article  CAS  PubMed  Google Scholar 

  80. Musse, A. A., Meloty-Kapella, L., & Weinmaster, G. (2012). Notch ligand endocytosis: Mechanistic basis of signaling activity. Seminars in Cell and Developmental Biology., 23, 429.

    Article  CAS  PubMed  Google Scholar 

  81. Nam, Y., Sliz, P., Pear, W. S., Aster, J. C., & Blacklow, S. C. (2007). Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proceedings of the National Academy of Sciences of the United States of America, 104, 2103–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nam, Y., Sliz, P., Song, L., Aster, J. C., & Blacklow, S. C. (2006). Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell, 124, 973–983.

    Article  CAS  PubMed  Google Scholar 

  83. Nellesen, D. T., Lai, E. C., & Posakony, J. W. (1999). Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Developmental Biology, 213, 33–53.

    Article  CAS  PubMed  Google Scholar 

  84. Nichols, J. T., Miyamoto, A., Olsen, S. L., D’Souza, B., Yao, C., & Weinmaster, G. (2007). DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. The Journal of Cell Biology, 176, 445–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Okajima, T., & Irvine, K. D. (2002). Regulation of notch signaling by o-linked fucose. Cell, 111, 893–904.

    Article  CAS  PubMed  Google Scholar 

  86. Oswald, F., Kostezka, U., Astrahantseff, K., Bourteele, S., Dillinger, K., Zechner, U., Ludwig, L., Wilda, M., Hameister, H., Knöchel, W., et al. (2002). SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. The EMBO Journal, 21, 5417–5426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pan, D., & Rubin, G. M. (1997). Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell, 90, 271–280.

    Article  CAS  PubMed  Google Scholar 

  88. Parks, A. L., Klueg, K. M., Stout, J. R., & Muskavitch, M. A. (2000). Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development, 127, 1373–1385.

    CAS  PubMed  Google Scholar 

  89. Parks, A. L., Stout, J. R., Shepard, S. B., Klueg, K. M., Dos Santos, A. A., Parody, T. R., Vaskova, M., & Muskavitch, M. A. T. (2006). Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics, 174, 1947–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Petcherski, A. G., & Kimble, J. (2000). LAG-3 is a putative transcriptional activator in the C. Elegans Notch pathway. Nature, 405, 364–368.

    Article  CAS  PubMed  Google Scholar 

  91. Pintar, A., Guarnaccia, C., Dhir, S., & Pongor, S. (2009). Exon 6 of human JAG1 encodes a conserved structural unit. BMC Structural Biology, 9, 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Qin, H., Wang, J., Liang, Y., Taniguchi, Y., Tanigaki, K., & Han, H. (2004). RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Research, 32, 1492–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rampal, R., Arboleda-Velasquez, J. F., Nita-Lazar, A., Kosik, K. S., & Haltiwanger, R. S. (2005). Highly conserved O-fucose sites have distinct effects on Notch1 function. The Journal of Biological Chemistry, 280, 32133–32140.

    Article  CAS  PubMed  Google Scholar 

  94. Rebay, I., Fleming, R. J., Fehon, R. G., Cherbas, L., Cherbas, P., & Artavanis-Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with Delta and Serrate: Implications for Notch as a multifunctional receptor. Cell, 67, 687–699.

    Article  CAS  PubMed  Google Scholar 

  95. Sanchez-Irizarry, C., Carpenter, A. C., Weng, A. P., Pear, W. S., Aster, J. C., & Blacklow, S. C. (2004). Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Molecular and Cellular Biology, 24, 9265–9273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shah, S., Lee, S.-F., Tabuchi, K., Hao, Y.-H., Yu, C., LaPlant, Q., Ball, H., Dann, C. E., Südhof, T., & Yu, G. (2005). Nicastrin functions as a gamma-secretase-substrate receptor. Cell, 122, 435–447.

    Article  CAS  PubMed  Google Scholar 

  97. Shao, L., Moloney, D. J., & Haltiwanger, R. (2003). Fringe modifies O-fucose on mouse Notch1 at epidermal growth factor-like repeats within the ligand-binding site and the Abruptex region. The Journal of Biological Chemistry, 278, 7775–7782.

    Article  CAS  PubMed  Google Scholar 

  98. Shergill, B., Meloty-Kapella, L., Musse, A. A., Weinmaster, G., & Botvinick, E. (2012). Optical tweezers studies on Notch: Single-molecule interaction strength is independent of ligand endocytosis. Developmental Cell, 22, 1313–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi, S., & Stanley, P. (2003). Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 100, 5234–5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shi, Y., Downes, M., Xie, W., Kao, H. Y., Ordentlich, P., Tsai, C. C., Hon, M., & Evans, R. M. (2001). Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes and Development, 15, 1140–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shimizu, K., Chiba, S., Kumano, K., Hosoya, N., Takahashi, T., Kanda, Y., Hamada, Y., Yazaki, Y., & Hirai, H. (1999). Mouse Jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. The Journal of Biological Chemistry, 274, 32961–32969.

    Article  CAS  PubMed  Google Scholar 

  102. Shin, O.-H., Lu, J., Rhee, J.-S., Tomchick, D. R., Pang, Z. P., Wojcik, S. M., Camacho-Perez, M., Brose, N., Machius, M., Rizo, J., et al. (2010). Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nature Structural and Molecular Biology, 17, 280–288.

    Article  CAS  PubMed  Google Scholar 

  103. Sotillos, S., Roch, F., & Campuzano, S. (1997). The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development, 124, 4769–4779.

    CAS  PubMed  Google Scholar 

  104. Sun, L., Li, X., & Shi, Y. (2016). Structural biology of intramembrane proteases: Mechanistic insights from rhomboid and S2P to γ-secretase. Current Opinion in Structural Biology, 37, 97–107.

    Article  CAS  PubMed  Google Scholar 

  105. Sun, L., Zhao, L., Yang, G., Yan, C., Zhou, R., Zhou, X., Xie, T., Zhao, Y., Wu, S., Li, X., et al. (2015). Structural basis of human γ-secretase assembly. Proceedings of the National Academy of Sciences, 112, 6003–6008.

    Article  CAS  Google Scholar 

  106. Sun, X., & Artavanis-Tsakonas, S. (1996). The intracellular deletions of Delta and Serrate define dominant negative forms of the Drosophila Notch ligands. Development, 122, 2465–2474.

    CAS  PubMed  Google Scholar 

  107. Tamura, K., Taniguchi, Y., Minoguchi, S., Sakai, T., Tun, T., Furukawa, T., & Honjo, T. (1995). Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Current Biology, 5, 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  108. Taniguchi, Y., Furukawa, T., Tun, T., Han, H., & Honjo, T. (1998). LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Molecular and Cellular Biology, 18, 644–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Taylor, P., Takeuchi, H., Sheppard, D., Chillakuri, C., Lea, S. M., Haltiwanger, R. S., & Handford, P. A. (2014). Fringe-mediated extension of O-linked fucose in the ligand-binding region of Notch1 increases binding to mammalian notch ligands. Proceedings of the National Academy of Sciences, 111, 7290–7295.

    Article  CAS  Google Scholar 

  110. Tiyanont, K., Wales, T. E., Aste-Amézaga, M., Aster, J. C., Engen, J. R., & Blacklow, S. C. (2011). Evidence for increased exposure of the Notch1 metalloprotease cleavage site upon conversion to an activated conformation. Structure, 19, 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tiyanont, K., Wales, T. E., Siebel, C. W., Engen, J. R., & Blacklow, S. C. (2013). Insights into Notch3 activation and inhibition mediated by antibodies directed against its negative regulatory region. Journal of Molecular Biology, 425, 3192–3204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vardar, D., North, C. L., Sanchez-Irizarry, C., Aster, J. C., & Blacklow, S. C. (2003). Nuclear magnetic resonance structure of a prototype Lin12-Notch repeat module from human Notch1. Biochemistry, 42, 7061–7067.

    Article  CAS  PubMed  Google Scholar 

  113. Wallberg, A. E., Pedersen, K., Lendahl, U., & Roeder, R. G. (2002). p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Molecular and Cellular Biology, 22, 7812–7819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, J., Brunkan, A. L., Hecimovic, S., Walker, E., & Goate, A. (2004). Conserved “PAL” sequence in presenilins is essential for gamma-secretase activity, but not required for formation or stabilization of gamma-secretase complexes. Neurobiology of Disease, 15, 654–666.

    Article  CAS  PubMed  Google Scholar 

  115. Weber, S., Niessen, M. T., Prox, J., Lüllmann-Rauch, R., Schmitz, A., Schwanbeck, R., Blobel, C. P., Jorissen, E., De Strooper, B., Niessen, C. M., et al. (2011). The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development, 138, 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weisshuhn, P. C., Sheppard, D., Taylor, P., Whiteman, P., Lea, S. M., Handford, P. A., & Redfield, C. (2016). Non-linear and flexible regions of the human Notch1 extracellular domain revealed by high-resolution structural studies. Structure, 24, 555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weng, A. P., Nam, Y., Wolfe, M. S., Pear, W. S., Griffin, J. D., Blacklow, S. C., & Aster, J. C. (2003). Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Molecular and Cellular Biology, 23, 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Whiteman, P., de Madrid, B. H., Taylor, P., Li, D., Heslop, R., Viticheep, N., Tan, J. Z., Shimizu, H., Callaghan, J., Masiero, M., et al. (2013). Molecular basis for Jagged-1/Serrate ligand recognition by the Notch receptor. Journal of Biological Chemistry, 288, 7305–7312.

    Article  CAS  Google Scholar 

  119. Wilson, J. J., & Kovall, R. A. (2006). Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell, 124, 985–996.

    Article  CAS  PubMed  Google Scholar 

  120. Wisniewska, M., Goettig, P., Maskos, K., Belouski, E., Winters, D., Hecht, R., Black, R., & Bode, W. (2008). Structural determinants of the ADAM inhibition by TIMP-3: Crystal structure of the TACE-N-TIMP-3 complex. Journal of Molecular Biology, 381, 1307–1319.

    Article  CAS  PubMed  Google Scholar 

  121. Wu, L., Aster, J. C., Blacklow, S. C., Lake, R., Artavanis-Tsakonas, S., & Griffin, J. D. (2000). MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nature Genetics, 26, 484–489.

    Article  CAS  PubMed  Google Scholar 

  122. Wu, L., Sun, T., Kobayashi, K., Gao, P., & Griffin, J. D. (2002). Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Molecular and Cellular Biology, 22, 7688–7700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu, Y., Cain-Hom, C., Choy, L., Hagenbeek, T. J., de Leon, G. P., Chen, Y., Finkle, D., Venook, R., Wu, X., Ridgway, J., et al. (2010). Therapeutic antibody targeting of individual Notch receptors. Nature, 464, 1052–1057.

    Article  CAS  PubMed  Google Scholar 

  124. Xie, T., Yan, C., Zhou, R., Zhao, Y., Sun, L., Yang, G., Lu, P., Ma, D., & Shi, Y. (2014). Crystal structure of the γ-secretase component nicastrin. Proceedings of the National Academy of Sciences, 111, 13349–13354.

    Article  CAS  Google Scholar 

  125. Xu, A., Haines, N., Dlugosz, M., Rana, N. A., Takeuchi, H., Haltiwanger, R. S., & Irvine, K. D. (2007). In vitro reconstitution of the modulation of Drosophila Notch-ligand binding by Fringe. The Journal of Biological Chemistry, 282, 35153–35162.

    Article  CAS  PubMed  Google Scholar 

  126. Xu, A., Lei, L., & Irvine, K. D. (2005). Regions of Drosophila Notch that contribute to ligand binding and the modulatory influence of Fringe. The Journal of Biological Chemistry, 280, 30158–30165.

    Article  CAS  PubMed  Google Scholar 

  127. Xu, X., Choi, S. H., Hu, T., Tiyanont, K., Habets, R., Groot, A. J., Vooijs, M., Aster, J. C., Chopra, R., Fryer, C., et al. (2015). Insights into autoregulation of Notch3 from structural and functional studies of its negative regulatory region. Structure, 23, 1227–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yu, H., Takeuchi, M., LeBarron, J., Kantharia, J., London, E., Bakker, H., Haltiwanger, R. S., Li, H., & Takeuchi, H. (2015). Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Nature Chemical Biology, 11, 847–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yuan, Z., Praxenthaler, H., Tabaja, N., Torella, R., Preiss, A., Maier, D., & Kovall, R. (2016). Structure-function of the Su(H)-Hairless repressor complex, the major antagonist of Notch signaling in D. melanogaster. PLoS Biology, 14, e1002509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zhang, X., Sullivan, E., Scimeca, M., Wu, X., Li, Y.-M., & Sisodia, S. S. (2016). Evidence that the “Lid” domain of nicastrin is not essential for regulating γ-secretase activity. Journal of Biological Chemistry, 291, 6748–6753.

    Article  CAS  Google Scholar 

  131. Zhang, Y., Sandy, A. R., Wang, J., Radojcic, V., Shan, G. T., Tran, I. T., Friedman, A., Kato, K., He, S., Cui, S., et al. (2011). Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood, 117, 299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhou, S., Fujimuro, M., Hsieh, J. J., Chen, L., Miyamoto, A., Weinmaster, G., & Hayward, S. D. (2000). SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC to facilitate NotchIC function. Molecular and Cellular Biology, 20, 2400–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zweifel, M. E., Leahy, D. J., & Barrick, D. (2005). Structure and Notch receptor binding of the tandem WWE domain of Deltex. Structure, 13, 1599–1611.

    Article  CAS  PubMed  Google Scholar 

  134. Zweifel, M. E., Leahy, D. J., Hughson, F. M., & Barrick, D. (2003). Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Science, 12, 2622–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Note added in proof

Since this chapter was written, a structure of a JAG1-Notch1 complex was reported (V.C. Luca et al., Science 10.1126/science.aaf9739;2017), the structure of an ADAM10 ectodomain was reported (T.C.M. Seegar et al., Cell 171, 1638–1648.e7;2017), and new structures of DLL4 and JAG2 isolated ligand fragments were reported (Suckling, R.J., et al. EMBO J 36(15): 2204–2215;2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Blacklow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnett, K.L., Seegar, T.C.M., Blacklow, S.C. (2018). Structural Biology of Notch Signaling. In: Miele, L., Artavanis-Tsakonas, S. (eds) Targeting Notch in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8859-4_1

Download citation

Publish with us

Policies and ethics