Skip to main content

Generalized Additive Models

  • Chapter
  • First Online:
Semiparametric Regression with R

Part of the book series: Use R! ((USE R))

Abstract

The models fit in Chap. 2 have two limitations. First, the conditional distribution of the response, given the predictors, is assumed to be Gaussian. Second, only a single predictor is allowed to have a smooth nonlinear effect—the other predictors are modeled linearly. The first limitation is addressed by using generalized linear models (GLMs), which remove the Gaussian assumption and allow the response variable to have other distributions such as those within the Binomial and Poisson families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Braglia, L. (2016). aplore3: Datasets from Hosmer, Lemeshow and Sturdivant, ‘Applied Logistic Regression’ (Third Edition, 2013). R package version 0.9. http://www.r-project.org.

  • Chouldechova, A., and Hastie, T. (2015). Generalized additive model selection. Unpublished manuscript. https://arxiv.org/pdf/1506.03850

    Google Scholar 

  • Chouldechova, A., Hastie, T., and Spinu, V. (2018). gamsel: Fit regularization path for generalized additive models. R package version 1.8.1 http://www.r-project.org.

  • Croissant, Y. (2016). Ecdat: Data sets for econometrics. R package version 0.3. http://www.r-project.org.

  • Deb, P. and Trivedi, P.K. (1997). Demand for medical care by the elderly: A finite mixture approach. Journal of Applied Econometrics, 12, 313–336.

    Article  Google Scholar 

  • Dunn, P.K. and Smyth, G.K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 236–244.

    Google Scholar 

  • Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties (with discussion). Statistical Science, 11, 89–121.

    Article  MathSciNet  Google Scholar 

  • Fahrmeir, L. and Kneib, T. (2011). Bayesian Smoothing and Regression for Longitudinal, Spatial, and Event History Data. Oxford, U.K.: Oxford University Press.

    Book  Google Scholar 

  • Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. New York: Springer-Verlag.

    Book  Google Scholar 

  • Faraway, J.J. (2006). Extending the Linear Model with R. Boca Raton, Florida: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Gu, C. (2017). gss: General smoothing splines. R package version 2.1. http://www.r-project.org.

  • Guo, J., Gabry, J. and Goodrich, B. (2017). rstan: R interface to Stan. R package version 2.17.2.http://mc-stan.org.

  • Hastie, T. J. (1992) Generalized additive models. Chapter 7 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

    Google Scholar 

  • Hastie, T. (2017a). gam: Generalized additive models. R package version 1.14. http://www.r-project.org.

  • Hastie, T. (2017b). mda: Mixture and flexible discriminant analysis. R package version 0.4. http://www.r-project.org.

  • Hastie, T.J. and Tibshirani, R.J. (1986). Generalized additive models. Statistical Science, 1, 297–310.

    Article  MathSciNet  Google Scholar 

  • Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Boca Raton, Florida: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R. and Wainwright, M. (2015). Statistical Learning with Sparsity. Boca Raton, Florida: CRC Press.

    Book  Google Scholar 

  • Karatzoglou, A., Smola, A. and Hornik, K. (2016). kernlab: Kernel-based machine learning lab. R package version 0.9.http://www.r-project.org.

  • Kleiber, C. and Kleiber, A. (2017). AER: Applied econometrics with R. R package version 1.2. http://cran.r-project.org.

  • Kooperberg, C. (2015). polspline: Polynomial spline routines. R package version 1.1. http://www.r-project.org.

  • Lin, Y. and Zhang, H. (2006). Component selection and smoothing in multivariate nonparametric regression. Annals of Statistics, 34, 2272–2297.

    Article  MathSciNet  Google Scholar 

  • Marra, G. and Wood, S.N. (2011). Practical variable selection for generalized additive models. Computational Statistics and Data Analysis, 55, 2372–2387.

    Article  MathSciNet  Google Scholar 

  • McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models, Second edition. London: Chapman and Hall.

    Book  Google Scholar 

  • McCulloch, C.E., Searle, S.R. and Neuhaus, J.M. (2008). Generalized, Linear, and Mixed Models, Second Edition. New York: John Wiley & Sons.

    MATH  Google Scholar 

  • Munnell, A.H., Tootell, G.M.B., Browne, L.E. and McEneaney, J. (1996). Mortgage lending in Boston: Interpreting HDMA data. American Economic Review, 25–53.

    Google Scholar 

  • Pya, N. (2017). scam: Shape constrained additive models. R package version 1.2-2.http://cran.r-project.org.

  • Ravikumar, P., Lafferty, J., Liu, H. and Wasserman, L. (2009). Sparse additive models. Journal of the Royal Statistical Society, Series B, 71, 1009–1030.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D., Wand, M.P. and Carroll, R.J. (2003). Semiparametric Regression. Cambridge, U.K.: Cambridge University Press.

    Book  Google Scholar 

  • Stasinopoulos, D.M. and Rigby, R.A. (2008). Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23, Issue 7, 1–46.

    Google Scholar 

  • Stasinopoulos, M. and Rigby, B. (2017). gamlss: Generalised additive models for location scale and shape. R package version 5.0.http://www.gamlss.org/.

  • Taylor, J. and Tibshirani, R.J. (2015). Statistical learning and selective inference. Proceedings of the National Academy of Sciences of the United States of America, 112, 7629–7634.

    Article  MathSciNet  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, Methodological, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  • Tibshirani, R., Tibshirani, R., Taylor, J., Loftus, J. and Reid, S. (2017). selectiveInference: Tools for post-selection inference. R package version 1.2.4. http://cran.r-project.org.

  • Wood, S.N. (2006a). Generalized Additive Models. Boca Raton, Florida: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Wood, S.N. (2017). mgcv: Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation. R package version 1.8.http://cran.r-project.org.

  • Yee, T.W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Software, 32, Issue 10, 1–34.

    Google Scholar 

  • Yee, T.W. (2017). VGAM: Vector generalized linear and additive models. R package version 1.0. http://www.stat.auckland.ac.nz/~yee/VGAM.

  • Zhang, H.H. and Lin, C-Y. (2013). cosso: Fit regularized nonparametric regression models using COSSO. R package version 2.1. http://www.r-project.org.

  • Zhao, T., Li, X., Liu, H. and Roeder, K. (2014) SAM: Sparse additive modeling. R package version 1.0.5. http://www.r-project.org.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harezlak, J., Ruppert, D., Wand, M.P. (2018). Generalized Additive Models. In: Semiparametric Regression with R. Use R!. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8853-2_3

Download citation

Publish with us

Policies and ethics