Analysing Changes in Structures



This chapter is a short introduction to the K-table family of methods. We first present some examples of ecological K-table, the structure of the ktab object used in the ade4 package to store a K-table, and the functions that allow to build and manage them. We briefly present three types of methods: STATIS, Multiple Factor Analysis and Multiple Coinertia Analysis. We explain the differences between these three groups of methods, with several examples of use.


Multiple Co-inertia Analysis Ade4 Package Intrastructure Foucart Interstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdi H, Williams LJ, Valentin D, Bennani-Dosse M (2012) STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. Wiley Interdiscip Rev Comput Stat 4:124–167CrossRefGoogle Scholar
  2. Bady P, Dolédec S, Dumont B, Fruget JF (2004) Multiple co-inertia analysis: a tool for assessing synchrony in the temporal variability of aquatic communities. C R Biol 327:29–36CrossRefGoogle Scholar
  3. Bertrand F, Maumy M (2010) Using partial triadic analysis for depicting the temporal evolution of spatial structures: assessing phytoplankton structure and succession in a water reservoir. Case Stud Bus Ind Gov Stat 4:23–43MathSciNetGoogle Scholar
  4. Blondel J, Farré H (1988) The convergent trajectories of bird communities along ecological successions in European forests. Oecologia 75:83–93CrossRefGoogle Scholar
  5. Bougeard S, Dray S (2018) Supervised multiblock analysis in R with the ade4 package. J Stat Soft 86(1):1–17. Scholar
  6. Bouroche JM (1975) Analyse des données ternaires: la double analyse en composantes principales. PhD thesis, Thèse de troisième cycle, Université Paris VIGoogle Scholar
  7. Chessel D, Hanafi M (1996) Analyse de la co-inertie de K nuages de points. Rev Stat Appl 44:35–60Google Scholar
  8. Escofier B, Pagès J (1994) Multiple Factor Analysis (AFMULT package). Comput Stat Data Anal 18:121–140CrossRefGoogle Scholar
  9. Escoufier Y (1973) Le traitement des variables vectorielles. Biometrics 29:750–760MathSciNetCrossRefGoogle Scholar
  10. Foucart T (1978) Sur les suites de tableaux de contingence indexées par le temps. Statistique et Analyse des données 3:67–85Google Scholar
  11. Friday L (1987) The diversity of macroinvertebrate and macrophyte communities in ponds. Freshw Biol 18:87–104CrossRefGoogle Scholar
  12. Jaffrenou P (1978) Sur l’analyse des familles finies de variables vectorielles. Bases algébriques et application à la description statistique. PhD thesis, Thèse de troisième cycle, Université Lyon 1Google Scholar
  13. Kroonenberg PM (1983) Three-mode principal component analysis: theory and applications. DWO Press, LeidenGoogle Scholar
  14. Kroonenberg PM (1989) The analysis of multiple tables in factorial ecology. III. Three-mode Principal Component Analysis: “Analyse triadique complète”. Acta Oecol Oecol Generalis 10:245–256Google Scholar
  15. Lafosse R, Hanafi M (1997) Concordance d’un tableau avec K tableaux: définition de K + 1 uples synthétiques. Revue de Statistique Appliquée 45:111–126Google Scholar
  16. Lavit C (1988) Analyse conjointe de tableaux quantitatifs. Masson, Paris,Google Scholar
  17. Lavit C, Escoufier Y, Sabatier R, Traissac P (1994) The ACT (STATIS method). Comput Stat Data Anal 18:97–119MathSciNetCrossRefGoogle Scholar
  18. Mendes S, Gómez JF, Pereira MJ, Azeiteiro UM, Galindo-Villardón MP (2010) The efficiency of the Partial Triadic Analysis method: an ecological application. Biometr Lett 47:83–106Google Scholar
  19. Pavoine S, Blondel J, Baguette M, Chessel D (2007) A new technique for ordering asymmetrical three-dimensional data sets in ecology. Ecology 88:512–523CrossRefGoogle Scholar
  20. Pegaz-Maucet D (1980) Impact d’une perturbation d’origine organique sur la dérive des macro-invertébrés benthiques d’un cours d’eau. Comparaison avec le benthos. PhD thesis, Thèse de troisième cycle, Université Lyon 1Google Scholar
  21. Rolland A, Bertrand F, Maumy M, Jacquet S (2009) Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Res 43:3155–3168CrossRefGoogle Scholar
  22. Slimani N, Guilbert E, El Ayni F, Jrad A, Boumaiza M, Thioulouse J (2017) The use of STATICO and COSTATIS, two exploratory three-ways analysis methods. An application to the ecology of aquatic Heteroptera in the Medjerda watershed (Tunisia). Environ Ecol Stat 24:269–295MathSciNetCrossRefGoogle Scholar
  23. Thioulouse J, Chessel D (1987) Les analyses multitableaux en écologie factorielle. I: de la typologie d’état à la typologie de fonctionnement par l’analyse triadique. Acta Oecol Oecol Generalis 8:463–480Google Scholar
  24. Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31:279–311MathSciNetCrossRefGoogle Scholar
  25. Verneaux J (1973) Cours d’eau de Franche-Comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. Thèse de Doctorat d’Etat, BesançonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Biométrie et Biologie EvolutiveCNRS UMR 5558 – Université de LyonVilleurbanneFrance
  2. 2.Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
  3. 3.Centre d’Ecologie et des Sciences de la Conservation (CESCO)Muséum national déHistoire naturelle, CNRS, Sorbonne UniversitéParisFrance

Personalised recommendations