Advertisement

Description of Species Structures

Chapter
  • 942 Downloads

Abstract

Several simple data analysis methods can be used to analyse species data tables, i.e., tables having sites as rows and species as columns. Like in the previous chapter, simple means that these methods are adapted to the analysis of only one table. Three particular data analysis methods will be studied here: Correspondence Analysis (CA), centred Principal Component Analysis (cPCA), and Principal Coordinate Analysis (PCoA).

Keywords

Principal Coordinate Analysis (PCoA) Simple Data Analysis Methods Correspondence Analysis (CA) Trout Zone Co-inertia Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118CrossRefGoogle Scholar
  2. Austin M, Noy-Meir I (1971) The problem of non-linearity in ordination: experiments with two-gradient models. J Ecol 59:763–773CrossRefGoogle Scholar
  3. Beals EW (1973) Ordination: mathematical elegance and ecological naivete. J Ecol 61:23–35CrossRefGoogle Scholar
  4. Benzécri JP (1969) Statistical analysis as a tool to make patterns emerge from data. In: Watanabe S (ed) Methodologies of pattern recognition. Academic, New York, pp 35–60CrossRefGoogle Scholar
  5. Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New YorkCrossRefGoogle Scholar
  6. ter Braak CJF (1985) Correspondence analysis of incidence and abundance data: properties in terms of a unimodal reponse model. Biometrics 41:859–873CrossRefGoogle Scholar
  7. ter Braak CJF, Looman CWN (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:3–11CrossRefGoogle Scholar
  8. ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289CrossRefGoogle Scholar
  9. Curtis JT, McIntosh RP (1951) An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32(3):476–496CrossRefGoogle Scholar
  10. Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53(1):7–26CrossRefGoogle Scholar
  11. Goodall DW (1954) Objective methods for the classification of vegetation. III. An essay on the use of factor analysis. Aust J Bot 2:304–324CrossRefGoogle Scholar
  12. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338MathSciNetCrossRefGoogle Scholar
  13. Gower JC (1984) Distance matrices and their euclidean approximation. In: Diday E, Jambu M, Lebart L, Pagès J, Tomassone R (eds) Data analysis and informatics III. Elsevier, Amsterdam, pp 3–21Google Scholar
  14. Gower J, Legendre P (1986) Metric and euclidean properties of dissimilarity coefficients. J Classif 3:5–48MathSciNetCrossRefGoogle Scholar
  15. Greenacre M (1984) Theory and applications of correspondence analysis. Academic, LondonzbMATHGoogle Scholar
  16. Hill M (1973) Reciprocal averaging: an eigenvector method of ordination. J Ecol 61:237–249CrossRefGoogle Scholar
  17. Hill MO (1974) Correspondence Analysis: a neglected multivariate method. J R Stat Soc Ser C (Appl Stat) 23:340–354MathSciNetGoogle Scholar
  18. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between staphylococcus aureus genetic background, virulence factors, agr type (alleles), and human disease type. Infect Immun 70:631–641CrossRefGoogle Scholar
  19. Lebreton JD, Chessel D, Prodon R, Yoccoz NG (1988a) L’analyse des relations espèces-milieu par l’analyse canonique des correspondances. I. Variables de milieu quantitatives. Acta Oecol Oecol Generalis 9(1):53–67Google Scholar
  20. Legendre P, Anderson M (1999) Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecol Monogr 69:1–24CrossRefGoogle Scholar
  21. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamzbMATHGoogle Scholar
  22. McIntosh RP (1978) Matrix and plexus techniques. In: Whittaker RH (ed) Ordination of plant communities. Springer, Netherlands, pp 151–184CrossRefGoogle Scholar
  23. Nishisato S (1980) Analysis of categorical data: dual scaling and its applications. University of Toronto Press, TorontozbMATHGoogle Scholar
  24. Oksanen J (1987) Problems of joint display of species and site scores in correspondence analysis. Vegetatio 72:51–57CrossRefGoogle Scholar
  25. Oksanen J, Minchin PR (2002) Continuum theory revisited: what shape are species responses along ecological gradients? Ecol Model 157:119–129CrossRefGoogle Scholar
  26. Swan J (1970) An examination of some ordination problems by use of simulated vegetational data. Ecology 51:89–102CrossRefGoogle Scholar
  27. Thioulouse J, Chessel D (1992) A method for reciprocal scaling of species tolerance and sample diversity. Ecology 73(2):670–680CrossRefGoogle Scholar
  28. Verneaux J (1973) Cours d’eau de Franche-Comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. Thèse de Doctorat d’Etat, BesançonGoogle Scholar
  29. Whittaker R (1956) Vegetation of the great smoky mountains. Ecol Monogr 26(1):1–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Biométrie et Biologie EvolutiveCNRS UMR 5558 – Université de LyonVilleurbanneFrance
  2. 2.Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
  3. 3.Centre d’Ecologie et des Sciences de la Conservation (CESCO)Muséum national déHistoire naturelle, CNRS, Sorbonne UniversitéParisFrance

Personalised recommendations