Advertisement

Multivariate Analysis Graphs

Chapter
  • 983 Downloads

Abstract

This chapter outlines the main characteristics of the adegraphics package. The structure of graphical objects, classes and associated methods are explained. Several examples show how user-level functions can be used to draw scientific graphs particularly adapted to multivariate data analysis. Automated collection of graphs, spatial representations, and the case of big data sets are detailed.

References

  1. Auda Y (1983) Rôle des méthodes graphiques en analyse des données: application au dépouillement des enquêtes écologiques. Thèse de 3ème cycle, Université Lyon 1Google Scholar
  2. Bertin J (1967) Les diagrammes, les réseaux, les cartes. Mouton & Gautier-Villars, ParisGoogle Scholar
  3. Bivand R, Lewin-Koh N (2017) maptools: tools for reading and handling spatial objects. https://CRAN.R-project.org/package=maptools, R package version 0.9-2
  4. Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  5. Dray S, Jombart T (2011) Revisiting Guerry’s data: introducing spatial constraints in multivariate analysis. Ann Appl Stat 5:2278–2299MathSciNetCrossRefGoogle Scholar
  6. Friendly M, Dray S (2014) Guerry: maps, data and methods related to Guerry (1833) “Moral statistics of France”. http://CRAN.R-project.org/package=Guerry, R package version 1.6-1Google Scholar
  7. Neuwirth E (2014) RColorBrewer: ColorBrewer palettes. https://CRAN.R-project.org/package=RColorBrewer, R package version 1.1-2Google Scholar
  8. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2):9–13Google Scholar
  9. Sarkar D (2008) Lattice: multivariate data visualization with R. Springer, New YorkCrossRefGoogle Scholar
  10. Siberchicot A, Julien-Laferrière A, Dufour AB, Thioulouse J, Dray S (2017) adegraphics: an S4 lattice-based package for the representation of multivariate data. R J 9(2):198–212Google Scholar
  11. Thioulouse J (1989) Statistical analysis and graphical display of multivariate data on the Macintosh. Comput Appl Biosci 5(4):287–292MathSciNetGoogle Scholar
  12. Thioulouse J (1990) Macmul and Graphmu: two Macintosh programs for the display and analysis of multivariate data. Comput Geosci 16(8):1235–1240CrossRefGoogle Scholar
  13. Thioulouse J (1996) Outils logiciels, méthodes statistiques et implications biologiques: une approche de la biométrie. Mémoire d’habilitation à diriger des recherches, Université Lyon 1Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Biométrie et Biologie EvolutiveCNRS UMR 5558 – Université de LyonVilleurbanneFrance
  2. 2.Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
  3. 3.Centre d’Ecologie et des Sciences de la Conservation (CESCO)Muséum national déHistoire naturelle, CNRS, Sorbonne UniversitéParisFrance

Personalised recommendations