Advertisement

Analysing Patterns of Biodiversity

Chapter
  • 944 Downloads

Abstract

Patterns of functional or phylogenetic diversity among communities can be described thanks to the Double Principal Coordinate Analysis (DPCoA). This approach depicts differences among communities in low-dimensional plots and explains those differences by their species compositions and the functional or phylogenetic differences among species.

References

  1. ter Braak CJF (1983) Principal components biplots and alpha and beta diversity. Ecology 64(3):454–462CrossRefGoogle Scholar
  2. ter Braak C (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  3. Cardoso GC, Price TD (2010) Community convergence in bird song. Evol Ecol 24:447–461CrossRefGoogle Scholar
  4. Dray S, Pavoine S, Aguirre de Carcer D (2015) Considering external information to improve the phylogenetic comparison of microbial communities: a new approach based on constrained Double Principal Coordinates Analysis (cDPCoA). Mol Ecol Resour 15:242–249CrossRefGoogle Scholar
  5. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638CrossRefGoogle Scholar
  6. Krasnov BR, Mouillot D, Khokhlova IS, Shenbrot G, Poulin R (2012) Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology 139:338–347CrossRefGoogle Scholar
  7. Kroonenberg PM, Lombardo R (1999) Nonsymmetric correspondence analysis: a tool for analysing contingency tables with a dependence structure. Multivar Behav Res 34(3):367–396CrossRefGoogle Scholar
  8. Lebreton P, Lebrun P, Martinot J, Miquet A, Tournier H (1999) Approche écologique de l’avifaune de la vanoise. Travaux scientifiques du Parc national de la Vanoise 21:7–304Google Scholar
  9. Pavoine S, Bailly X (2007) New analysis for consistency among markers in the study of genetic diversity: development and application to the description of bacterial diversity. BMC Evol Biol 7:156CrossRefGoogle Scholar
  10. Pavoine S, Dolédec S (2005) The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environ Ecol Stat 12:125–138MathSciNetCrossRefGoogle Scholar
  11. Pavoine S, Dufour AB, Chessel D (2004) From dissimilarities among species to dissimilarities among communities: a double principal coordinate analysis. J Theor Biol 228:523–537MathSciNetCrossRefGoogle Scholar
  12. Pavoine S, Vallet J, Dufour AB, Gachet S, Daniel H (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118(3):391–402CrossRefGoogle Scholar
  13. Pélissier R, Couteron P, Dray S, Sabatier D (2003b) Consistency between ordination techniques and diversity measurements: two strategies for species occurrence data. Ecology 84(1):242–251CrossRefGoogle Scholar
  14. Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21:24–43MathSciNetCrossRefGoogle Scholar
  15. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de’Angelis GL, Shanahan F, Sinderen Dv, Ventura M (2009) Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75:1534–1545CrossRefGoogle Scholar
  16. Valet J, Daniel H, Beaujouan V, Rozé F, Pavoine S (2010) Using biological traits to assess how urbanization filters plant species of small woodlands. Appl Veg Sci 13:412–424CrossRefGoogle Scholar
  17. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Biométrie et Biologie EvolutiveCNRS UMR 5558 – Université de LyonVilleurbanneFrance
  2. 2.Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
  3. 3.Centre d’Ecologie et des Sciences de la Conservation (CESCO)Muséum national déHistoire naturelle, CNRS, Sorbonne UniversitéParisFrance

Personalised recommendations