Skip to main content

MRA of the Aorta and Peripheral Arteries

  • Chapter
  • First Online:
Cardiovascular Magnetic Resonance Imaging

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1912 Accesses

Abstract

It can be argued that magnetic resonance angiography of the aorta and peripheral vessels has undergone more dramatic changes over the last couple decades than any other form of cardiovascular magnetic resonance imaging. The first useful clinical applications primarily used two-dimensional time-of-flight technology. However, in the mid-1990s, this approach was replaced to a large degree by contrast-enhanced techniques using conventional agents in dynamic, multiphase mode. Blood pool agents have also been developed for use in magnetic resonance angiography, but their precise role remains to be determined. Given the risks of gadolinium contrast in patients with renal failure, which is not an unusual concomitant in patients undergoing vascular evaluation, there has been a recent resurgence in interest in the use of non-contrast magnetic resonance angiographic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koelemay MJ, Lijmer JG, Stoker J, Legemate DA, Bossuyt PM. Magnetic resonance angiography for the evaluation of lower extremity arterial disease: a meta-analysis. JAMA. 2001;285(10):1338–45.

    Article  CAS  PubMed  Google Scholar 

  2. Yucel EK, Anderson CM, Edelman RR, Grist TM, Baum RA, Manning WJ, et al. AHA scientific statement. Magnetic resonance angiography : update on applications for extracranial arteries. Circulation. 1999;100(22):2284–301.

    Article  CAS  PubMed  Google Scholar 

  3. Grist TM. MRA of the abdominal aorta and lower extremities. J Magn Reson Imaging. 2000;11(1):32–43.

    Article  CAS  PubMed  Google Scholar 

  4. Ho VB, Corse WR, Hood MN, Rowedder AM. MRA of the thoracic vessels. Semin Ultrasound CT MR. 2003;24(4):192–216.

    Article  PubMed  Google Scholar 

  5. Green D, Parker D. CTA and MRA: visualization without catheterization. Semin Ultrasound CT MR. 2003;24(4):185–91.

    Article  PubMed  Google Scholar 

  6. Czum JM, Corse WR, Ho VB. MR angiography of the thoracic aorta. Magn Reson Imaging Clin N Am. 2005;13(1):41–64. V

    Article  PubMed  Google Scholar 

  7. Mcguigan EA, Sears ST, Corse WR, Ho VB. MR angiography of the abdominal aorta. Magn Reson Imaging Clin N Am. 2005;13(1):65–89. V–Vi

    Article  PubMed  Google Scholar 

  8. Tatli S, Lipton MJ, Davison BD, Skorstad RB, Yucel EK. From the RSNA refresher courses: MR imaging of aortic and peripheral vascular disease. Radiographics. 2003;23 Spec No: S59–78.

    Google Scholar 

  9. Tatli S, Yucel EK, Lipton MJ. CT and MR imaging of the thoracic aorta: current techniques and clinical applications. Radiol Clin N Am. 2004;42(3):565–85. Vi

    Article  PubMed  Google Scholar 

  10. Carroll TJ, Grist TM. Technical developments in MR angiography. Radiol Clin N Am. 2002;40(4):921–51.

    Article  PubMed  Google Scholar 

  11. Carr JC, Finn JP. MR imaging of the thoracic aorta. Magn Reson Imaging Clin N Am. 2003;11(1):135–48.

    Article  PubMed  Google Scholar 

  12. Rajagopalan S, Prince M. Magnetic resonance angiographic techniques for the diagnosis of arterial disease. Cardiol Clin. 2002;20(4):501–12. V

    Article  PubMed  Google Scholar 

  13. Neimatallah MA, Ho VB, Dong Q, Williams D, Patel S, et al. Gadolinium-enhanced 3d magnetic resonance angiography of the thoracic vessels. J Magn Reson Imaging. 1999;10(5):758–70.

    Article  CAS  PubMed  Google Scholar 

  14. Davis CP, Hany TF, Wildermuth S, Schmidt M, Debatin JF. Postprocessing techniques for gadolinium-enhanced three-dimensional MR angiography. Radiographics. 1997;17(5):1061–77.

    Article  CAS  PubMed  Google Scholar 

  15. Fuchs F, Laub G, Othomo K. Truefisp–technical considerations and cardiovascular applications. Eur J Radiol. 2003;46(1):28–32.

    Article  PubMed  Google Scholar 

  16. Kaufman JA, Mccarter D, Geller SC, Waltman AC. Two-dimensional time-of-flight MR angiography of the lower extremities: artifacts and pitfalls. AJR Am J Roentgenol. 1998;171(1):129–35.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE. Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol. 1990;154(3):623–9.

    Article  CAS  PubMed  Google Scholar 

  18. Walker MF, Souza SP, Dumoulin CL. Quantitative flow measurement in phase contrast MR angiography. J Comput Assist Tomogr. 1988;12(2):304–13.

    Article  CAS  PubMed  Google Scholar 

  19. Dumoulin CL. Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am. 1995;3(3):99–411.

    Google Scholar 

  20. Evans AJ, Iwai F, Grist TA, Sostman HD, Hedlund LW, et al. Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation. Investig Radiol. 1993;28(2):109–15.

    Article  CAS  Google Scholar 

  21. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol. 1991;157(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  22. Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22(3):651–71.

    Article  PubMed  Google Scholar 

  23. Lee VS, Spritzer CE, Carroll BA, Pool LG, Bernstein MA, et al. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR Am J Roentgenol. 1997;169(4):1125–31.

    Article  CAS  PubMed  Google Scholar 

  24. RR E, Chien D, Kim D. Fast selective black blood MR imaging. Radiology. 1991;181(3):655–60.

    Article  Google Scholar 

  25. Stehling MK, Holzknecht NG, Laub G, Böhm D, Von Smekal A, Reiser M. Single-shot T1- and T2-weighted magnetic resonance imaging of the heart with black blood: preliminary experience. MAGMA. 1996;4(3–4):231–40.

    Article  CAS  PubMed  Google Scholar 

  26. Jara H, Barish MA. Black-blood MR angiography. Techniques, and clinical applications. Magn Reson Imaging Clin N Am. 1999;7(2):303–17.

    CAS  PubMed  Google Scholar 

  27. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219(3):828–34.

    Article  CAS  PubMed  Google Scholar 

  28. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001;219(1):264–9.

    Article  CAS  PubMed  Google Scholar 

  29. Pereles FS, Mccarthy RM, Baskaran V, Carr JC, Kapoor V, et al. Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true Fisp MR angiography in less than 4 minutes. Radiology. 2002;223(1):270–4.

    Article  PubMed  Google Scholar 

  30. Krishnam MS, Tomasian A, Malik S, Desphande V, Laub G, Ruehm SG. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases. Eur Radiol. 2010;20(6):1311–20.

    Article  PubMed  Google Scholar 

  31. Stabi KL, Bendz LM. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann Pharmacother. 2011;45(12):1571–5.

    Article  CAS  PubMed  Google Scholar 

  32. Mezrich R. A perspective on K-space. Radiology. 1995;195(2):297–315.

    Article  CAS  PubMed  Google Scholar 

  33. Earls JP, Rofskky NM, Decorato DR, Krinsky GA, Weinreb JC. Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology. 1996;201(3):705–10.

    Article  CAS  PubMed  Google Scholar 

  34. Maki JH, Wilson GJ, Eubank WB, Hoogeveen RM. Utilizing sense to achieve lower station sub-millimeter isotropic resolution and minimal venous enhancement in peripheral MR angiography. J Magn Reson Imaging. 2002;15(4):484–91.

    Article  PubMed  Google Scholar 

  35. Svensson J, Petersson JS, Ståhlberg F, Larsson EM, Leander P. Olsson Le. Image artifacts due to a time-varying contrast medium concentration in 3d contrast-enhanced MRA. J Magn Reson Imaging. 1999;10(6):919–28.

    Article  CAS  PubMed  Google Scholar 

  36. Hany TF, Mckinnon GC, Leung DA, Pfammatter T, Debatin JF. Optimization of contrast timing for breath-hold three-dimensional MR angiography. J Magn Reson Imaging. 1997;7(3):551–6.

    Article  CAS  PubMed  Google Scholar 

  37. Foo TK, Saranathan M, Prince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional. Gadolinium-Enhanced MR Angiography Radiology. 1997;203(1):275–80.

    CAS  PubMed  Google Scholar 

  38. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology. 1997;205(1):137–46.

    Article  CAS  PubMed  Google Scholar 

  39. Marks B, Mitchell DG, Simelaro JP. Breath-holding in healthy and pulmonary-compromised populations: effects of hyperventilation and oxygen inspiration. J Magn Reson Imaging. 1997;7(3):595–7.

    Article  CAS  PubMed  Google Scholar 

  40. Laub G. Displays for MR angiography. Magn Reson Med. 1990;14(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  41. Cline HE, Dumoulin CL, Lorensen WE, Souza SP, Adams WJ. Volume rendering and connectivity algorithms for MR angiography. Magn Reson Med. 1991;18(2):384–94.

    Article  CAS  PubMed  Google Scholar 

  42. Kvitting JP, Ebbers T, Wigström L, Engvall J, Olin C, Bolger AF. Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg. 2004;127(6):1602–7.

    Article  PubMed  Google Scholar 

  43. Zhang HL, Khilnani NM, Prince MR, Winchester PA, Golia P, et al. Diagnostic accuracy of time-resolved 2d projection MR angiography for symptomatic Infrapopliteal arterial occlusive disease. AJR Am J Roentgenol. 2005;184(3):938–47.

    Article  PubMed  Google Scholar 

  44. Du J, Carroll TJ, Brodsky E, Lu A, Grist TM, et al. Contrast-enhanced peripheral magnetic resonance angiography using time-resolved vastly Undersampled isotropic projection reconstruction. J Magn Reson Imaging. 2004;20(5):894–900.

    Article  PubMed  Google Scholar 

  45. Wieben O, Grist TM, Hany TF, Thornton FJ, Glaser JK, et al. Time-resolved 3d MR angiography of the abdomen with a real-time system. Magn Reson Med. 2004;52(4):921–6.

    Article  PubMed  Google Scholar 

  46. Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN. Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson. 2004;6(3):663–73.

    Article  PubMed  Google Scholar 

  47. Swan JS, Carroll TJ, Kennell TW, Heisey DM, Korosec FR, et al. Time-resolved three-dimensional contrast-enhanced MR angiography of the peripheral vessels. Radiology. 2002;225(1):43–52.

    Article  PubMed  Google Scholar 

  48. Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3d MR angiography. Magn Reson Med. 1996;36(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  49. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA. Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3d projection trajectory. Magn Reson Med. 2002;48(2):297–305.

    Article  PubMed  Google Scholar 

  50. Ho KY, Leiner T, De Haan MW, Kessels AG, Kitslaar PJ, Van Engelshoven JM. Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology. 1998;206(3):683–92.

    Article  CAS  PubMed  Google Scholar 

  51. Meaney JF, Ridgway JP, Chakraverty S, Robertson I, Kessel D, et al. Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology. 1999;211(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  52. Janka R, Fellner FA, Fellner C, Lang W, Requardt M, et al. A hybrid technique for the automatic floating table MRA of peripheral arteries using a dedicated phased-Array coil combination. ROFO. 2000;172(5):477–81.

    Article  CAS  PubMed  Google Scholar 

  53. Von Kalle T, Gerlach A, Hatopp A, Klinger S, Prodehl P, Arlart IP. Contrast-enhanced Mr angiography (Cemra) in peripheral arterial occlusive disease (Paod): conventional moving table technique versus hybrid technique. ROFO. 2004;176(1):62–9.

    Article  Google Scholar 

  54. Schmitt R, Coblenz G, Cherevatyy O, Brunner H, Fröhner S, et al. Comprehensive MR angiography of the lower limbs: a hybrid dual-bolus approach including the pedal arteries. Eur Radiol. 2005;15(12):2513–24.

    Article  CAS  PubMed  Google Scholar 

  55. Rapp JH, Wolff SD, Quinn SF, Soto JA, Meranze SG, et al. Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography–multicenter comparative phase iii study. Radiology. 2005;236(1):71–8.

    Article  PubMed  Google Scholar 

  56. Huang SY, Kim CY, Miller MJ, Gupta RT, Lessne ML, et al. Abdominopelvic and lower extremity deep venous thrombosis: evaluation with contrast-enhanced MR venography with a blood-pool agent. AJR Am J Roentgenol. 2013;201(1):208–14.

    Article  PubMed  Google Scholar 

  57. Julsrud PR, Breen JF, Felmlee JP, Warnes CA, Connolly HM, Schaff HV. Coarctation of the aorta: collateral flow assessment with phase-contrast MR angiography. AJR Am J Roentgenol. 1997;169(6):1735–42.

    Article  CAS  PubMed  Google Scholar 

  58. Vandyke CW, White RD. Congenital abnormalities of the thoracic aorta presenting in the adult. J Thorac Imaging. 1994;9(4):230–45.

    Article  CAS  PubMed  Google Scholar 

  59. Khosa F, Krinsky G, Macari M, Yucel EK, Berland LL. Managing incidental findings on abdominal and pelvic CT and MRI, part 2: white paper of the ACR incidental findings committee II on vascular findings. J Am Coll Radiol. 2013;10(10):789–94.

    Article  PubMed  Google Scholar 

  60. Brown PM, Sobolev B, Zelt DT. Selective management of abdominal aortic aneurysms smaller than 5.0 cm in a prospective sizing program with gender-specific analysis. J Vasc Surg. 2003;38(4):762–5.

    Article  PubMed  Google Scholar 

  61. Nasim A, Thompson MM, Sayers RD, Boyle JR, Hartshorne T, et al. Role of magnetic resonance angiography for assessment of abdominal aortic aneurysm before endoluminal repair. Br J Surg. 1998;85(5):641–4.

    Article  CAS  PubMed  Google Scholar 

  62. Prince MR, Narasimham DL, Stanley JC, Wakefield TW, Messina LM, et al. Gadolinium-enhanced magnetic resonance angiography of abdominal aortic aneurysms. J Vasc Surg. 1995;21(4):656–69.

    Article  CAS  PubMed  Google Scholar 

  63. Nollen GJ, Van Schijndel KE, Timmermans J, Groenink M, Barentsz JO, et al. Magnetic resonance imaging of the main pulmonary artery: reliable assessment of dimensions in Marfan patients on a simple axial spin Echo image. Int J Cardiovasc Imaging. 2003;19(2):141–7. discussion 149–50

    Article  CAS  PubMed  Google Scholar 

  64. Mészáros I, Mórocz J, Szlávi J, Schmidt J, Tornóci L, Nagy L, Szép L. Epidemiology and clinicopathology of aortic dissection. Chest. 2000;117(5):1271–8.

    Article  PubMed  Google Scholar 

  65. Hagan PG, Nienaber CA, Isselbacher EM, Bruckman D, Karavite DJ, et al. The international registry of acute aortic dissection (IRAD): new insights into an old disease. JAMA. 2000;283(7):897–903.

    Article  CAS  PubMed  Google Scholar 

  66. Nienaber CA, Von Kodolitsch Y, Nicolas V, Siglow V, Piepho A, et al. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med. 1993;328(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  67. Nienaber CA, Eagle KA. Aortic dissection: new frontiers in diagnosis and management: part I: from etiology to diagnostic strategies. Circulation. 2003;108(5):628–35.

    Article  PubMed  Google Scholar 

  68. Nienaber CA, Eagle KA. Aortic dissection: new frontiers in diagnosis and management: part II: therapeutic management and follow-up. Circulation. 2003;108(6):772–8.

    Article  PubMed  Google Scholar 

  69. Nienaber CA, Rousseau H, Eggebrecht H, Kische S, Fattori R, et al. Instead trial. Randomized comparison of strategies for type B aortic dissection: the investigation of stent grafts in aortic dissection (instead) trial. Circulation. 2009;120(25):2519–28.

    Article  PubMed  Google Scholar 

  70. Kaji S, Akasaka T, Horibata Y, Nishigami K, Shono H, et al. Long-term prognosis of patients with type a aortic intramural hematoma. Circulation. 2002;106(12 Suppl 1):I248–52.

    PubMed  Google Scholar 

  71. Evangelista A, Dominguez R, Sebastia C, Salas A, Permanyer-Miralda G, et al. Long-term follow-up of aortic intramural hematoma: predictors of outcome. Circulation. 2003;108(5):583–9.

    Article  PubMed  Google Scholar 

  72. Nienaber CA, Von Kodolitsch Y, Petersen B, Loose R, Helmchen U, Haverich A, Spielmann RP. Intramural hemorrhage of the thoracic aorta. Diagnostic and Therapeutic Implications Circulation. 1995;92(6):1465–72.

    CAS  PubMed  Google Scholar 

  73. Stanson AW, Kazmier FJ, Hollier LH, Edwards WD, Pairolero PC, et al. Penetrating atherosclerotic ulcers of the thoracic aorta: natural history and clinicopathologic correlations. Ann Vasc Surg. 1986;1(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  74. Gore I. Pathogenesis of dissecting aneurysm of the aorta. AMA Arch Pathol. 1952;53(2):42–53.

    Google Scholar 

  75. Sawhney NS, Demaria AN, Blanchard DG. Aortic intramural hematoma: an increasingly recognized and potentially fatal entity. Chest. 2001;120(4):1340–6.

    Article  CAS  PubMed  Google Scholar 

  76. Shimizu H, Yoshino H, Udagawa H, Watanuki A, Yano K, et al. Prognosis of aortic intramural hemorrhage compared with classic aortic dissection. Am J Cardiol. 2000;85(6):792–5. A10

    Article  CAS  PubMed  Google Scholar 

  77. Song JK, Kim HS, Kang DH, Lim TH, Song MG, et al. Different clinical features of aortic intramural hematoma versus dissection involving the ascending aorta. J Am Coll Cardiol. 2001;37(6):1604–10.

    Article  CAS  PubMed  Google Scholar 

  78. Song JK, Kim HS, Song JM, Kang DJ, Ha JW, et al. Outcomes of medically treated patients with aortic intramural hematoma. Am J Med. 2002;113(3):181–7.

    Article  PubMed  Google Scholar 

  79. Harris JA, Bis KG, Glover JL, Bendick PJ, Shetty A, Brown OW. Penetrating atherosclerotic ulcers of the aorta. J Vasc Surg. 1994;19(1):90–8. discussion 98–9

    Article  CAS  PubMed  Google Scholar 

  80. Wann S, Jaff M, Dorros G, Sampson C. Intramural hematoma of the aorta caused by a penetrating atheromatous ulcer. Clin Cardiol. 1996;19(5):438–9.

    Article  CAS  PubMed  Google Scholar 

  81. Ganaha F, Miller DC, Sugimoto K, Do YS, Minamiguchi H, et al. Prognosis of aortic intramural hematoma with and without penetrating atherosclerotic ulcer: a clinical and radiological analysis. Circulation. 2002;106(3):342–8.

    Article  PubMed  Google Scholar 

  82. Rubinowitz AN, Krinsky GA, Lee VS. Intramural hematoma of the ascending aorta secondary to descending thoracic aortic penetrating ulcer: findings in two patients. J Comput Assist Tomogr. 2002;26(4):613–6.

    Article  PubMed  Google Scholar 

  83. Quint LE, Williams DM, Francis IR, Monaghan HM, Sonnad SS, et al. Ulcerlike lesions of the aorta: imaging features and natural history. Radiology. 2001;218(3):719–23.

    Article  CAS  PubMed  Google Scholar 

  84. Von Kodolitsch Y, Nienaber CA. Ulcer of the thoracic aorta: diagnosis, therapy and prognosis. Z Kardiol. 1998;87(12):917–27.

    Article  Google Scholar 

  85. Choe YH, Kim DK, Koh EM, Do YS, Lee WR. Takayasu arteritis: diagnosis with Mr imaging and MR angiography in acute and chronic active stages. J Magn Reson Imaging. 1999;10(5):751–7.

    Article  CAS  PubMed  Google Scholar 

  86. Yamada I, Nakagawa T, Himeno Y, Kobayashi Y, Numano F, Shibuya H. Takayasu arteritis: diagnosis with breath-hold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging. 2000;11(5):481–7.

    Article  CAS  PubMed  Google Scholar 

  87. Maksimowicz-Mckinnon K, Clark TM, Hoffman GS. Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore). 2009;88(4):221–6.

    Article  Google Scholar 

  88. Hunder G. Vasculitis: Diagnosis and Therapy. Am J Med. 1996;100(2a):37s–45s.

    Article  CAS  PubMed  Google Scholar 

  89. Riley P, Rooney S, Bonser R, Guest P. Imaging the post-operative thoracic aorta: normal anatomy and pitfalls. Br J Radiol. 2001;74(888):1150–8.

    Article  CAS  PubMed  Google Scholar 

  90. Schepens MA. Aortic arch replacement: the conventional ‘elephant trunk’ technique. Multimed Man Cardiothorac Surg. 2007;2007(102). Mmcts 2006 002006.

    Google Scholar 

  91. De Cobelli F, Mellone R, Salvioni M, Vanzulli A, Sironi S, Manunta P. Renal artery stenosis: value of screening with three-dimensional phase-contrast MR angiography with a phased-Array multicoil. Radiology. 1996;201(3):697–703.

    Article  PubMed  Google Scholar 

  92. Maki JH, Wilson GJ, Eubank WB, Glickerman DJ, Pipavath S, Hoogeveen RM. Steady-state free precession MRA of the renal arteries: breath-hold and navigator-gated techniques vs. CE-MRA J Magn Reson Imaging. 2007;26(4):966–73.

    Article  PubMed  Google Scholar 

  93. Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, et al. Coral investigators. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014;370(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  94. Hany TF, Debatin JF, Leung DA, Pfammatter T. Evaluation of the aortoiliac and renal arteries: comparison of breath-hold, contrast-enhanced, three-dimensional MR angiography with conventional catheter angiography. Radiology. 1997;204(2):357–62.

    Article  CAS  PubMed  Google Scholar 

  95. Holland GA, Dougherty L, Carpenter JP, et al. Breath-hold ultrafast three-dimensional gadolinium-enhanced MR angiography of the aorta and the renal and other visceral abdominal arteries. AJR Am J Roentgenol. 1996;166(4):971–81.

    Article  CAS  PubMed  Google Scholar 

  96. Snidow JJ, Johnson MS, Harris VJ, Margosian PM, Aisen AM, Lalka SG, et al. Three-dimensional gadolinium-enhanced MR angiography for aortoiliac inflow assessment plus renal artery screening in a single breath hold. Radiology. 1996;198(3):725–32.

    Article  CAS  PubMed  Google Scholar 

  97. Steffens JC, Link J, Grässner J, Mueller-Huelsbeck S, Brinkmann G, Reuter M, Heller M. Contrast-enhanced, K-space-centered, breath-hold MR angiography of the renal arteries and the abdominal aorta. J Magn Reson Imaging. 1997;7(4):617–22.

    Article  CAS  PubMed  Google Scholar 

  98. Ferreiros J, Mendez R, Jorquera M, Gallego J, Lezana A, Prats D, Pedrosa CS. Using gadolinium-enhanced three-dimensional MR angiography to assess arterial inflow stenosis after kidney transplantation. AJR Am J Roentgenol. 1999;172(3):751–7.

    Article  CAS  PubMed  Google Scholar 

  99. Jha RC, Korangy SJ, Ascher SM, Takahama J, Kuo PC, Johnson LB. MR angiography and preoperative evaluation for laparoscopic donor nephrectomy. AJR Am J Roentgenol. 2002;178(6):1489–95.

    Article  PubMed  Google Scholar 

  100. Schoenberg SO, Prince MR, Knopp MV, Allenberg JR. Renal MR Angiography. Magn Reson Imaging Clin N Am. 1998;6(2):351–70.

    CAS  PubMed  Google Scholar 

  101. Li KC, Whitney WS, Mcdonnell CH, Fredrickson JO, Pelc NJ, Dalman RL, Jeffrey RB Jr. Chronic mesenteric ischemia: evaluation with phase-contrast cine MR imaging. Radiology. 1994;190(1):175–9.

    Article  CAS  PubMed  Google Scholar 

  102. Wasser MN, Geelkerken RH, Kouwenhoven M, Van Bockel JH, Hermans J, Schultze Kool LJ, De Roos A. Systolically gated 3d phase contrast MRA of mesenteric arteries in suspected mesenteric ischemia. J Comput Assist Tomogr. 1996;20(2):262–8.

    Article  CAS  PubMed  Google Scholar 

  103. Wedeen VJ, Meuli RA, Edelman RR, Geller SC, Frank LR, Brady TJ, Rosen BR. Projective imaging of pulsatile flow with magnetic resonance. Science. 1985;230(4728):946–8.

    Article  CAS  PubMed  Google Scholar 

  104. Miyazaki M, Takai H, Sugiura S, Wada H, Kuwahara R, Urata J. Peripheral MR angiography: separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology. 2003;227(3):890–6.

    Article  PubMed  Google Scholar 

  105. Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ, et al. Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology. 2011;260(1):282–93.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.

    Article  CAS  PubMed  Google Scholar 

  107. Kreitner KF, Kalden P, Neufang A, Düber C, Krummenauer F, Küstner E, et al. Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR angiography with conventional digital subtraction angiography. AJR Am J Roentgenol. 2000;174(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  108. Loewe C, Schoder M, Rand T, Hoffmann U, Sailer J, Kos T, et al. Peripheral vascular occlusive disease: evaluation with contrast-enhanced moving-bed MR angiography versus digital subtraction angiography in 106 patients. AJR Am J Roentgenol. 2002;179(4):1013–21.

    Article  PubMed  Google Scholar 

  109. Dorweiler B, Neufang A, Kf K, Schmiedt W, Oelert H. Magnetic resonance angiography unmasks reliable target vessels for pedal bypass grafting in patients with diabetes mellitus. J Vasc Surg. 2002;35(4):766–72.

    Article  PubMed  Google Scholar 

  110. Morasch MD, Collins J, Pereles FS, Carr JC, Eskandari MK, Pearce WH, Finn JP. Lower extremity stepping-table magnetic resonance angiography with multilevel contrast timing and segmented contrast infusion. J Vasc Surg. 2003;37(1):62–71.

    Article  PubMed  Google Scholar 

  111. Atilla S, Ilgit ET, Akpek S, Yücel C, Tali ET, Işik S. MR imaging and MR angiography in popliteal artery entrapment syndrome. Eur Radiol. 1998;8(6):1025–9.

    Article  CAS  PubMed  Google Scholar 

  112. Turnipseed WD. Functional popliteal artery entrapment syndrome: a poorly understood and often missed diagnosis that is frequently mistreated. J Vasc Surg. 2009;49(5):1189–95.

    Article  PubMed  Google Scholar 

  113. Loewe C, Cejna M, Schoder M, Loewe-Grgurin M, Wolf F, Lammer J, Thurnher SS. Contrast material-enhanced, moving-table MR angiography versus digital subtraction angiography for surveillance of peripheral arterial bypass grafts. J Vasc Interv Radiol. 2003;14(9 Pt 1):1129–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Tatli .

Editor information

Editors and Affiliations

Electronic Supplementary Materials

Coronal MIP of CE-MRA of the thoracic aorta including arch vessels. Images of the MIP reformations from different angles can be placed in a cine loop for demonstration as in this example or can be viewed individually (AVI 12290 kb)

Coronal MIPs of CE-MRA of calf with TRICKS technique in a cine loop shows normal filling of the popliteal arteries with three-vessel runoff (AVI 1457 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tatli, S., Yucel, E.K. (2019). MRA of the Aorta and Peripheral Arteries. In: Kwong, R., Jerosch-Herold, M., Heydari, B. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8841-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8841-9_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8839-6

  • Online ISBN: 978-1-4939-8841-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics