Skip to main content

Clinical Cardiac Magnetic Resonance Imaging Techniques

  • Chapter
  • First Online:

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Magnetic resonance imaging (MRI) of the cardiovascular system uses the same physical principles as MRI of other organs and has the same potential advantages, such as excellent image resolution and contrast and flexible choice of imaging planes; however, it has the added complication of the motion associated with the cardiac and respiratory cycles. With suitable compensation for the physiologic motion, however, MRI can create a wide range of different kinds of images, which can provide information on many aspects of both structure and function of the cardiovascular system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part I. J Cardiovasc Magn Reson. 2010;12:71.

    Article  Google Scholar 

  2. Feng L, Otazo R, Srichai MB, Lim RP, Sodickson DK, Kim D. Highly-accelerated real-time cine MRI using compressed sensing and parallel imaging with cardiac motion constrained reconstruction. Magn Reson Med. 2013;70(1):64–74.

    Article  Google Scholar 

  3. Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology. 1991;178:357–60.

    Article  CAS  Google Scholar 

  4. Edelman RR, Manning WJ, Burstein D, Paulin S. Coronary arteries: breath-hold MR angiography. Radiology. 1991;181:641–3.

    Article  CAS  Google Scholar 

  5. Felblinger J, Lehmann C, Boesch C. Electrocardiogram acquisition during MR examinations for patient monitoring and sequence triggering. Magn Reson Med. 1994;32:523–9.

    Article  CAS  Google Scholar 

  6. Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med. 1999;42:361–70.

    Article  CAS  Google Scholar 

  7. Boxerman JL, Mosher TJ, McVeigh ER, Atalar E, Lima JA, Bluemke DA. Advanced MR imaging techniques for evaluation of the heart and great vessels. Radiographics. 1998;18:543–64.

    Article  CAS  Google Scholar 

  8. Lenz GW, Haacke EM, White RD. Retrospective gating: a review of technical aspects and future directions. Magn Reson Imaging. 1989;7:445–55.

    Article  CAS  Google Scholar 

  9. Sievers B, Addo M, Kirchberg S, Bakan A, John-Puthenveettil B, et al. How much are atrial volumes and ejection fractions assessed by cardiac magnetic resonance imaging influenced by the ECG gating method? J Cardiovasc Magn Reson. 2005;7:587–93.

    Article  Google Scholar 

  10. Lee VS, Resnick D, Bundy JM, Simonetti OP, Lee P, Weinreb JC. Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology. 2002;222:835–42.

    Article  Google Scholar 

  11. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology. 1995;195:471–8.

    Article  CAS  Google Scholar 

  12. Axel L, Montillo A, Kim D. Tagged magnetic resonance imaging of the heart: a survey. Med Image Anal. 2005;9:376–93.

    Article  Google Scholar 

  13. Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. AJR Am J Roentgenol. 1999;172:1061–5.

    Article  CAS  Google Scholar 

  14. Holland AE, Goldfarb JW, Edelman RR. Diaphragmatic and cardiac motion during suspended breathing: preliminary experience and implications for breath-hold MR imaging. Radiology. 1998;209:483–9.

    Article  CAS  Google Scholar 

  15. Plathow C, Ley S, Zaporozhan J, Schöbinger M, Gruenig E, Puderbach M, et al. Assessment of reproducibility and stability of different breath-hold maneuvres by dynamic MRI: comparison between healthy adults and patients with pulmonary hypertension. Eur Radiol. 2006;16(1):173–9. Epub 2005 Jun 21

    Article  Google Scholar 

  16. Haacke EM, Patrick JL. Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn Reson Imaging. 1986;4:359–76.

    Article  CAS  Google Scholar 

  17. Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173:255–63.

    Article  CAS  Google Scholar 

  18. Taylor AM, Keegan J, Jhooti P, Gatehouse PD, Firmin DN, Pennell DJ. Differences between normal subjects and patients with coronary artery disease for three different MR coronary angiography respiratory suppression techniques. J Magn Reson Imaging. 1999;9:786–93.

    Article  CAS  Google Scholar 

  19. Sachs TS, Meyer CH, Pauly JM, Hu BS, Nishimura DG, Macovski A. The real-time interactive 3-D-DVA for robust coronary MRA. IEEE Trans Med Imaging. 2000;19:73–9.

    Article  CAS  Google Scholar 

  20. Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ. Prospective navigator correction of image position for coronary MR angiography. Radiology. 1997;203:733–6.

    Article  CAS  Google Scholar 

  21. Taylor AM, Keegan J, Jhooti P, Firmin DN, Pennell DJ. Calculation of a subject-specific adaptive motion-correction factor for improved real-time navigator echo-gated magnetic resonance coronary angiography. J Cardiovasc Magn Reson. 1999;1:131–8.

    Article  CAS  Google Scholar 

  22. Wang Y, Ehman RL. Retrospective adaptive motion correction for navigator-gated 3D coronary MR angiography. J Magn Reson Imaging. 2000;11:208–14.

    Article  CAS  Google Scholar 

  23. Felblinger J, Boesch C. Amplitude demodulation of the electrocardiogram signal (ECG) for respiration monitoring and compensation during MR examinations. Magn Reson Med. 1997;38:129–36.

    Article  CAS  Google Scholar 

  24. Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self gated cardiac cine MRI. Magn Reson Med. 2004;51(1):93–102.

    Article  Google Scholar 

  25. Goldfarb JW. The SENSE ghost: field-of-view restrictions for SENSE imaging. J Magn Reson Imaging. 2004;20:1046–51.

    Article  Google Scholar 

  26. Finn JP, Baskaran V, Carr JC, McCarthy RM, Pereles FS, et al. Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution – initial results. Radiology. 2002;224:896–904.

    Article  Google Scholar 

  27. Axel L, Kolman L, Charafeddine R, Hwang SN, Stolpen AH. Origin of a signal intensity loss artifact in fat-saturation MR imaging. Radiology. 2000;217:911–5.

    Article  CAS  Google Scholar 

  28. Axel L. Blood flow effects in magnetic resonance imaging. AJR Am J Roentgenol. 1984;143:1157–66.

    Article  CAS  Google Scholar 

  29. Nakats M, Hatabu H, Itoh H, Morikawa K, Miki Y, Kasagi K, et al. Comparison of short inversion time inversion recovery (STIR) and fat-saturated (chemsat) techniques for background fat intensity suppression in cervical and thoracic MR imaging. J Magn Reson Imaging. 2000;11:56–60.

    Article  Google Scholar 

  30. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology. 1991;181:655–60.

    Article  CAS  Google Scholar 

  31. Kim RJ, Wu E, Rafael A, Chen E-L, Parker MA, Simonetti O, et al. The use of contrast enhanced MRI to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  CAS  Google Scholar 

  32. Kim D, Cernicanu A, Axel L. B(0) and B(1)-insensitive uniform T(1)-weighting for quantitative, first-pass myocardial perfusion magnetic resonance imaging. Magn Reson Med. 2005;54:1423–9.

    Article  Google Scholar 

  33. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218:215–23.

    Article  CAS  Google Scholar 

  34. Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med. 2002;47:372–83.

    Article  Google Scholar 

  35. Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular applications of phase-contrast MRI. AJR Am J Roentgenol. 2009;192(3):662–75.

    Article  Google Scholar 

Download references

Acknowledgment

Adam Schwartz helped with the selection and preparation of images for the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Axel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Axel, L., Toms, M.A. (2019). Clinical Cardiac Magnetic Resonance Imaging Techniques. In: Kwong, R., Jerosch-Herold, M., Heydari, B. (eds) Cardiovascular Magnetic Resonance Imaging. Contemporary Cardiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8841-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8841-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8839-6

  • Online ISBN: 978-1-4939-8841-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics